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Abstract: We present a new method for proving rank lower bounds for the cutting planes
procedures of Gomory and Chtal (GC) and Lo&aisz and Schrijver (LS), when viewed

as proof systems for unsatisfiability. We apply this method to obtain the following new
results: First, we prove near-optimal rank bounds for GC and LS proofs for several promi-
nent unsatisfiable CNF examples, including random kCNF formulas and the Tseitin graph
formulas. It follows from these lower bounds that a linear number of rounds of GC or LS
procedures when applied to the standard MAXSAT linear relaxation does not reduce the
integrality gap. Second, we give unsatisfiable examples that have constant rank GC and
LS proofs but that require linear rank Resolution proofs. Third, we give examples where
the GC rank igO(logn) but the LS rank is linear. Finally, we address the question of size
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versus rank; we show that, for both proof systems, rank does not accurately reflect proof
size. Specifically, there are examples which have polynomial-size GC/LS proofs but require
linear rank.

1 Introduction

Integer linear programming is the problem of optimizing a linear objective function over the integral
points of a given (bounded or unbounded) polyhedron. In his seminal paper, Khaghjigondposed

the ellipsoid method for (nonintegral) linear programming, showing that the optimization problem over
a polytope is polytime. The additional integrality constraints change the complexity of the problem
dramatically: it is well-known that general integer LP is NP-hard. In both the unrestricted and the
integral cases, one can also look at feasibility problems instead of at optimization problems. Here, the
guestion is whether a polytope given by a set of linear inequalities is empty. The feasibility problem
is closely related to the linear optimization problem, and here too the nonintegral version (checking
whether the polytope contains any points at all) is easy while the integral one is NP-complete.

Cutting planes methods for integer linear programming are instrumental in bridging the gap between
the true, computationally complex structures (the integral solutions to the problem, or, rather, their
convex hull) and their relaxed counterpart, which are generally simple polytopes that contain the convex
hull of the integral solutions but also contain other, extraneous nonintegral points. These are methods in
which the initial, relaxed polytopP is transformed through a sequence of ever-decreasing (contained)
polytopes to the integral hull d?, i.e. the smallest polytope containing the integral point®.ofin
this sequence, a polytope is produced from its predecessor by using the integrality constraint locally.
A simple example of this kind of reasoning is that if one knows that a certain coordinate is g Jeast
then a stronger conclusion, that this coordinate is at Iga§tis valid for the integral hull oP. For
optimization problems this sequence of polytopes produces a sequence of optimal values that get closer
and closer to the desired optimal integral solution, and for feasibility problems, the sequence terminates
with the empty polytope if and only if the initial polytope contained no integral points. In either case,
then, it seems natural to view this sequence as a proof, either of optimality or of infeasibility.

From the complexity standpoint, there are three important desirable properties of the above se-
guence: (i) the local operations transforming a polytope to its successor are efficient (ii) the length of
the sequence is small, and (iii) there is an efficient algorithm producing the sequence. Properties (i) and
(ii) guarantee a small size proof, while (iii) guarantees that we can find the proof efficiently if it is small.

In this paper, we study several prominent cutting planes methods: GomoataCleuts L0, 22,
and a collection of “matrix-cut” or “lift-and-project” operations defined by Bex and Schrijver33].

These methods are currently among the most important techniques for solving or approximating a range
of NP-hard 0/1 optimization problems. There are two standard complexity measures of interest for these

procedures: rank and size. The size is the total number of cut operations that must be applied and the
rank is the total number of rounds of cut operations that must be applied. Rank, therefore, measures the
amount of inherent sequentialism in the proof.

Superpolynomial lower bounds on size for a cutting planes method are important since they show
thatany algorithm that produces a cutting planes proof will not be polynomial-time. Superpolynomial
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size lower bounds are known for the Gomory-@tal cutting planes metho®4]. There are three
distinct types of matrix cuts defined by Lasz and Schrijver, L§ LS and LS. Exponential lower
bounds have been proven for ¢,3he weakest of thesd$, 16]. For LS and LS, no nontrivial size
bounds are known.

Rank is also a natural complexity measure when it comes to proofs. In some proof systems for
unsatisfiability, there is a natural rank-based procedure for generating a proof which is practical in certain
cases. For example, a rank-based method for Resolution is the familiar Davis-Putnam pratédure [
and a rank-based method for the Polynomial Calculus is a variation on tien&rbasis algorithimlp].

In both of these cases, it is important that it can be determined if therd-imand/rank derivation in

time at mosn®@. It turns out that matrix cut systems have a somewhat similar property and therefore
rank is a particularly interesting measure in this case38hif was shown that for any polytog®, there

is an algorithm for optimizing oveP(") in time n°"), whereP(") is the polytope obtained by applying

r rounds of any of the LS methods ands the total description size of the polytope Using similar
arguments it can be shown that the same is true when considering the feasibility question rather than
optimization for LS and L& It follows that there is a deterministic algorithm that can "search through”

all LS proofs of rankd in time n°®d, While this holds for other proof systems such as Resolution, it

is less obvious here because the number of faces in therrpakqtope is not easily bounded, even for
smallr.

1.1 Our Results and Context

Prior to this work some limitations on the rank-based application of the LS procedure to the problem
of approximating vertex cover were show#j.[In this paper, we study rank-based limitations of all the
above-mentioned cutting planes methods both in the case of feasibilty for polytopes defined by unsatis-
fiable CNF formulas and unsatisfiable sets of mod-2 linear equations and in the case of the optimization
problems MAXSAT and MAXLIN.

We present a new method for proving rank lower bounds that applies to both GomoayaGhutting
planes and matrix-cut proof systems. This method can be viewed as a game which produces a tree of
(nonintegral) points in the polytope, whose depth is a lower bound on the rank of the polytope in all of the
above proof systems. This game allows us to prove asymptotically tight rank bounds for many classes
of unsatisfiable boolean formulas, especially those which contain a certain measure of expansion, like
random kCNFs and the Tseitin principle on expander graphs. The idea of playing a game on expanding
CNFs to achieve proof-complexity lower bounds was largely pioneeref]by [

Result 1: The following holds for GC, L§ LS and LS :

(1) The Tseitin tautology on a grapth has rank at leagtc — 2)n/2, wherec is the edge-expansion of
H;

(2) Letk > 5. There exists a constamsuch that, for allA > ¢, a random set din k-mod-2 equations
overn variables requires rar®R(n) with high probability;

(3) Letk > 5. There exists a constansuch that, for alA > ¢, a random set oAn k-clauses oven
variables requires rar®(n) with high probability.
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Prior to our result, the only high-rank bounds for unsatisfiable boolean examples were for the clique-vs-
coloring ([34]) formulas in Gomory-Chétal cutting planes, and for the PHP in L&3]). Concurrently

with this work, however, §] examined GC-rank and, in particular, proved a tight lower bound for the
PHP. Subsequent to our result, howevgkjiproved the above result for the LS systems to require only
k> 3in parts (2) and (3).

The integrality gapof a linear relaxation is the ratio of the optimal value of the relaxation to the
optimum over all integer points. If a linear relaxation of a boolean optimization problem has a small in-
tegrality gap, then it is feasible to approximate the optimum of the original problem by solving the linear
relaxation. We show that there are MAXSAT and MAXk-LIN examples where cutting planes proce-
dures are not helpful in the sense that after linearly-many rounds, the integrality gap of the relaxation of
the problem is still as big as possible.

Result 2: Letk > 5 and fix anye > 0. LetF be a set o®(n) randomk-mod-2 equations. The relaxation
that results from applyin@(n) rounds of GC, Lg, LS or LS; to the standard MAX«LIN relaxation
of F has integrality gap at least-2¢ with high probability. Similarly, lelC be a set o®(n) random
k-clauses. The relaxation that results from applyX(@) rounds of GC, Lg, LS or LS; to the standard
MAX- k-SAT relaxation ofC has integrality gap at Iea%ff—l — & with high probability.

To the best of our knowledge there were no results of this form (see A148]) that give hardness of
approximation for more than a logarithmic-number of rounds. Again, subsequdnt®gl has proven
linear rank lower bounds in the LS systems for various optimization problems, including MAX-3-SAT
and MAX-3-LIN. All of these results rule out a particular type of subexponential-time approximation
algorithm that works by applying a sublinear number of rounds of an LS system to the obvious LP
relaxation to generate an LP with small integrality gap. As notedlpyrhany recent successes in
approximation algorithms can be viewed as applications of this algorithm. In particular, the SDP relax-
ations of the Goemans-Williamson maxcut approximati@i]jJand of the Arora-Rao-Vazirani sparsest
cut approximation ¢]) are implied by a constant number of rounds of,LSNhile there are optimal
PCP results that rule out approximations of MAXSAT and MAXk-LIN by general algorithmsZ§g],
these results rely on unproven complexity assumptions—the stronger the time lower bound desired, the
stronger the assumption must be. Our results are unconditional.

Finally, we give examples separating LS-, GC-, and Resolution-rank, and examples with polynomial-
size Resolution/GC/LS proofs, that require large rank.

Result 3: There are examples of unsatisfiable CNFs that have
(1) Constant LS and GC-rank, but linear Resolution-rank;
(2) Constant LS-rank,©(logn) GC-rank, and linear LS-rank.
Result 4: There are examples of unsatisfiable CNFs that have
(1) Polynomial-size GC-proofs, but linear GC-rank;
(2) Polynomial-size LS-proofs, but linear LS-rank.
The rest of the paper is organized as follows.Skction2 we define the Resolution/GC/LS proof

systems, and give some backgroundSkttion3 we provide a general scheme for proving rank lower
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bounds. InSectiond4 we prove rank lower bounds when the constraints are expan8igtion5 deals
with integrality gaps that are based on our rank lower bouBdstion6 gives various separation exam-
ples for LS-, GC-, and Resolution-rangection7 gives an example where both the Resolution/GC/LS
proof size and rank are polynomial. 8ection8 we describe an algorithm for showing the unsatisfiabil-
ity of formulas of LS-rankd in time n®@ based on the results i§]. This section is largely expository
in that we suspect the results were known, but not written down in the generality we supply.

Finally, we would like to note that an extended abstract of this paper appeared in FOC®R003 [
The results here are the same as in that version, but the exposition is more complete.

2 Definitions and Background

Resolution: Resolution proofs work with clauses, viewed as sets of literalsC #ndD are sets of
literals, then the clausgC v D) is derivable from the clausés Vv C) and (—xV D) by the Resolution
rule. A resolution refutation of a CNF formulfiis a sequence of claus€s,...,Cq such that each
clause is either a clause 6f or follows from two previous clauses by the resolution rule, and the final
clause Cq, is the empty clause. L& be a resolution refutation of a CNF formufa represented as a
directed acyclic graph (with nodes corresponding to clauses)sikkef Sis the number of clauses in

S, thedepthor rank of Sis the length of the longest path in the directed acyclic graph. The resolution
size(or depth) off is the minimal size (depth) over all resolution refutationd ofSis tree-likeif the
directed acyclic graph is a tree.

Proof systems based on linear programmingWe describe several proof systems for systems of linear
inequalities where the values of the variables are restricted to be boolean. In these proof systems, we
begin with a polytopeP defined by linear inequalities associated with the logical formulation of the
problem. In the more common case of CNF-formulas we convert clauses to inequalities in the usual
way, i.e.

T(ﬁl\/--'\/ék) = [T(ﬁl)—i-'--—i-f(fk) > l] ,

where eacld; is a literal andr(x) = x andt(—x) = 1—x for each variable. For examplez(xV -yVz) =

X+ (1—y)+z> 1. Notice that the 01 solutions to these inequalities are exactly the satisfying boolean
assignments to the formula. Relaxing t&£&; < 1 makes the set of solutions a polytope whose integral
points are the solutions to the original problem. The following fact is immediate, but will be important
later:

Proposition 2.1. Let C be a clause with at least two variables. Thg@) is a linear inequality that is
satisfied if at least two of its underlying variables have va}ue

We begin by describing Gomory-Cétal (GC) cutting planes. This proof system is sometimes
referred to as simply Cutting Planes in the proof complexity literature. In what follows, &&R" and
let x be a vector oh variables. By( ), we mean the standard inner-product. Consider the following two
rules: (1) (Linear combinations) From linear inequalities,x) —b; > 0, ..., (ax,X) — bx > 0, derive
z!‘zl((liai,x> — Aibi) > 0, where; are positive rational constants; (2) (Rounding) Fr@yx) —1 >0
derive (a,x) — [A] > 0O, provided that the coordinates afare integers. Without loss of generality, we
can assume that a rounding operation is always applied after every application of rule (1), and thus we
can merge (1) and (2) into a single rule, called a €
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X+y+z>1 1-x>21  y+(1-2>21 (1-y)4z>1 (1-y)+(1-2>1
y+z>1
2y >

y>[1/2]

yz1

0>1

Figure 1. A GC refutation

Definition 2.2. A GC refutation for a set of linear inequalitids= {fi,..., fn} is a sequence of linear
inequalities gy, . .. ,gq such that eacly; is either an inequality fronf, or an axiomx > 0 or 1—x > 0),
or follows from previous inequalities by a GC cut, and the final inequaljtis 0> 1.

There are several cutting planes proof systems defined bydzaand Schrijver, collectively referred
to as matrix cuts. These systems allow one to “lift” the linear inequalities to quadratic inequalities, and
then “project” back to linear inequalities using the fact tyfat= y for y € {0,1}. Again, leta; ¢ R" and
let x be a vector ofi variables. The basic intuition of the following systems is thataifx) — b; > 0 is
valid for the integral hull ofP, then so are the inequaliti¢éa;, x) — bi)x; > 0, ({&;,x) —b;j)x; > 0, and
(xJ2 —X;j) = 0 for eachj, sincex; € {0,1}. Of course, we can't directly use these quadratic inequalities
because it is generally NP-hard to solve the optimization or feasibility problem over such constraints, but
it might be helpful, and is certainly valid, to add any linear inequality that is a positive linear combination

of them.

Definition 2.3. Given a polytopé® C [0, 1]" defined by(a;,x) > b; fori=1,2,...,m:

(1) Aninequality(c,x) —d > 0 is called arN-cutfor P if
{ex)—d = % oij({&,x) —bi)x;
1]
+ Y Bij((a,x) —bi)(1—xj)
]

+ ZAJ(XJZ_XJ) :
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whereq;j, Bij > 0andAj e Rfori=1,....m j=1,....n.

(2) A weakening ofN-cuts, called\p-cuts can be obtained if, when simplifying to the linear term
(c,x) —d, we viewx;x; as distinct fromx;x;.

(3) Aninequality(c,x) —d is called arN,.-cutif
(ex)—d = % anj({a,x) —bi)x;
N

+ > Bij((ai,x) —bi)(1—x;)
7

+ ZAJ (ij_xj) + Z(<hk>x> +gk)2>
J

where agair;j, B >0, Aj e Rfori=1,....,m, j=1,...,nandgk + (h,X) is a linear function
fork=1,...,n+1.

The operatord\, Ny andN, are called theommutativenon-commutativand semidefiniteopera-
tors, respectively. All three are collectively calleghtrix-cutoperators.

Definition 2.4. A Lovasz-Schrijver(LS) refutation for a set of linear inequaliti€sis a sequence of
inequalitiesys, ..., gq such that eact is either an inequality fronfi or anN-cut for the polytope defined
by g1,...,0_1, and such that the final inequality is01. Similarly, a LS refutation use®y-cuts and
LS, usesN,-cuts.

Definition 2.5. Let P be one of the proof systems GC, LS, & LS, . Let f be an unsatisfiable set of
boolean inequalities and I18tbe aP-refutation off, viewed as a directed acyclic graph. The inequalities
in Sare represented with all coefficients in binary notation. Thereforesit®®f such an inequality is
the sum of all the sizes of its coefficients. Tdizeof Sis the sum of the sizes of all inequalitiesSnthe
P-size off is the minimal size over afP refutations off.

The complexity measure with which we are primarily concerned is rank. It is defined not only for
unsatisfiable sets of boolean inequalities, but for sets of linear inequalities in general.

Definition 2.6. For a set of linear inequalitiels that define a polytope ifR", let B = Plfo) be that
polytope. Giverf? € {GC,LSy,LS,LS, }, let Plf” denote the polytope defined by all inequalities that
can be derived in depthfrom the initial inequalities irfP. CIearIyPlf”l) C Plfi). Therankof L (orR)

is the minimali such thaPL(i) is the convex hull of the integral points Ba. Therank of a pointx € R"
with respect tdR_ is the minimali such thai ¢ PL<i).

That the rank of any bounded polytope in any of these proof systems is finite is a well-known fact
([22, 10, 33)). Note that, ifP contains no integral points, then the rank of the polytope is the maximum
rank of its points.
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X+y+z>1 1-x>21  y+(1-2>1 (1-y)4z>1 (1-y)+(1-2>1
y+z>1
Y —y<0

0>1

Figure 2: An LS refutation

Note that in our definition of these cutting planes systems, we can derive a new inequality from
any number of previous inequalities in one step, whereas for Resolution, we are restricted to fanin-
two. However, Caratheodory’s theorem tells us that for any set of ve¢i@sy vector that is a positive
combination of vectors i can be generated as a positive combinatioaiwiV ) such vectors. Viewing
inequalities as vectors, we see that a GC cut is a positive combination of vectors in dimenslon
and an LS (respectively (SLS,) cut is a positive combination of vectors in dimensigid-n+ 1.
Therefore, we can assume wlog that the fanin is at mast in GC andn®+n+1in LS, and so the
rank and size would not increase significantly if instead our proof systems were defined to have fanin 2.

Definition 2.7. Let 1 and P, be two refutation systems. We say tl3at p-simulatesP; if there is
a polynomialp such that, for every unsatisfiable formulasizep, (f) < p(sizep,(f)), wheresizep(f)
denotes the size of the minimum refutationfah systemp.

2.1 Alternative definitions

The above definitions of the cutting planes methods lead one to visualize the process syntactically, in a
way similar to most proof systems. It is often helpful, however, to look at the dual definitions, which
indicate which points remain after applying one round of each of the methods. In fact, this is the way
they are usually viewed in optimization.

In general, for a polytopP € [0,1]", we letP’ be the points that remain after applying one round of
the cutting planes method in question.
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Definition 2.8. Given a polytope® C [0,1]", the result of applying one round of GC cuts is

P ={xe P:(ax) > [b] whenevem € Z",b € R,
and(a,y) > bforallye P} .

For the case of GC, it is not hard to see that for every polytBffé—= P’, and henc®(+V = (PMY’
for everyi > 0.

The dual definitions of the matrix-cut systems are most easily stated fardfective congP €
R"™1, of a polytopeP c [0,1]". That s,

P={(a,a-wy,...,a-wy) :a>0and(wy,...,w,) € P} .

If the coordinates oR" arexy, ..., Xn, we usually refer to this extra coordinatePrasx,. Note thatP
is exactly the intersection d? with the hyperplaneg = 1. Hence we will often refer to a poimt =
(Wo, W1, . ..,Wyq) in P\ {0} projectedontoxo = 1]. This simply means the poifitvy /Wo, . . . , Wn /W) € P.

Definition 2.9. (i) A pointw € R™? is in P for LS, if there is an(n+ 1) x (n+ 1) matrixY such that
Y& = (]Y)T =diag(Y) =wand, for alli, Ye,Yey— Yeg € P.

(ii) A point wis in P for LS if (i) holds with the extra constraint th¥tis symmetric.

(iii) A point wis in P’ for LS, if (ii) holds with the extra constraint thatis positive semidefinite.

Definition 2.10. For any of LS, LS, LSy, we defineP’ to beP N [xo =1].
To gain some intuition abowefinition 2.9 we prove the following useful fact:

Fact 2.11. Given a polytopé® € [0, 1]", after one round of L&we have

P = (n]conv(Pﬁ X =0],PN[x=1]) ,
i=1

wherecon\) denotes the convex hull of its arguments.

Proof. ConsiderP and some pointv € P’. In the matrixY, the pointYg (when projected téxy = 1]) is
a point inPN [x = 1] becausé&i = Yyi. Also, Y& —Ye is a point inPN [x; = O] becauséio = Y;. The
fact thatY ey = w forcesw to be a convex combination ¥ andYe&) —Ya, for all i.

For the other direction, consider a pointe N_;con( PN [x; = 0],PN[x = 1]). Sayw = (1 —
2i)WP + 2wl for eachi, wherew? € PN [x = 0], w! € PN [x = 1] and 0< A < 1. Itis easy to check that
the matrix with 0-th columr(}) andi-th column(k’li ) fulfills the requirements obefiniton 2.9 O

ik

To see that the dual definitions for the matrix cut systems are equivalent to the initial definitions (that
is, P = P consult [L5].
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2.2 What's known about complexity

By definition LS p-simulates Land LS, p-simulates LS, and these simulations are rank preserving.
Moreover for unsatisfiable CNF formulas, GC, 4,%S and LS can all p-simulate Resolution and
this simulation is rank-preservind4]. It has also been shown that GC can p-simulate small-weight
LSy [29). In terms of negative results for simulations, the propositional pigeonhole principle (PHP)
provides a family of unsatisfiable CNF examples requiring exponential-size Resolution @6ldisi
with polynomial-size GC, L& LS and LS. proofs [L4]. For GC and Lg, exponential size lower bounds
for one specific family of boolean examples are knoad# [L6]. For LS and LS, no superpolynomial
lower bounds are known.

Now let us review what is known with respect to rank. Every system of linear inequalities has a rank
n LS proof [33]. For GC, the rank of every polytope in the unit cube is at n@gt*logn) [18], and
moreover there are examples requiring GC-rank more f{a8]. However for unsatisfiable examples,
the GC-rank is at mogt [7]. For GC, linear rank bounds for unsatisfiable CNF examples were first
obtained in 11]; however, these examples have exponentially-many faces (inequalities) and thus the
rank is still small in the input size. Linear rank bounds for GC (as a function of the input size) for
unsatisfiable CNF examples were first proven3f]] and also follow from the size bound34]. For
LS, a wealth of rank lower bounds are known for the non-empty or non-CNF case (see, for example,
[33, 20, 36]). Otherwise, R3] prove linear rank lower bounds for the PHP. In summary, the only known
high-rank, unsatisfiable CNF examples were the clique-vs-coloring formulas for GC and the PHP for
LS. In this paper, we prove rank bounds for all of these proof systems for many unsatisfiable CNFs
satisfying certain combinatorial conditions.

3 Proving Rank Lower Bounds

In what follows, we give methods for proving rank lower bounds for many natural, polysizé séts
contradictory linear inequalities. These lower bounds follow by characterizing some of the points in
PL(') that survive inPL('”). We call these characterizations “protection lemmas,” because they argue that
certain points are protected from removal in the next round provided certain other points survived the
previous round. These sorts of lemmas have been used in the past to prove rank lower bounds for specific
polytopes in specific cutting planes procedures (dde 20|, for example). We develop a common
protection lemma that works for many examples in any of the proof systems we define. Moreover, we
define a simple, two-player game that uses this common protection lemma to establish lower bounds.

3.1 Protection Lemmas

We begin with some notation. Farc R", ec {1,...,n}, anda € R, we denote by the point that
is the same ag except that the-th coordinate has value Forx € R", we denote bye(x) the set of
coordinates on whick is non-integral.

Lemma 3.1 (GC Lemma). The following holds for GC: Let P be a bounded polytopeRih Let
X € %Z”, and let E= E(x) be partitioned into setsEE; ..., E:. Suppose that for everyg{1,2,...,t}
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we can represent x as an average of vectors in P that are 0-1;ané& agree with x elsewhere. Then
xeP.

Proof. Assume for contradiction that¢ P’. Then there is a vecta € Z" and a non integral scalar
b, such thata,y) > b for all y € P and(a,x) < [b]. Clearlyx € P, being an average of points in that
polytope. So{a,x) > b and it follows that(a,x) must be in} + Z. Thus Y ecg(x) @ must be odd, and
SINCeY eck(x) 8e = Yi Y ecE, B there is ] such thaty g, ae is odd. Consider the set of vectdrsC P
that average ta and that differ fromx exactly onE; where they take (L values. Sincg ecg, 8 is odd
we can see thag, V) is integral for allv € V. But then(a,v) > [b]. Sincexis an average of thec V,
we also geta,x) > [b]. Contradiction. O

The following lemma is immediate frofact 2.11

Lemma 3.2 (LS Lemma). The following holds for L& Let P C [0,1]" be a polytope, and x be a point
in P. Then, if for every & E(X) there is a set of points; & P with i-th coordinate in{0,1} such that
x € con(S), then xe P'.

Lemma 3.3 (LS/LS; Lemma ([20], Theorem 4.1)). The following holds for LS and LS Let P C
[0,1]" be a polytope, and x be a point in P. If, for every E(x), X0 x(:1) ¢ P, then xc P'.

Proof. Letxbe the vectofl,xi,...,%,)" and letA=xX". Ais certainly symmetric and positive semidef-
inite, but it hasx? instead ofx on the diagonalx@ is the vector whoséh coordinate i?). Let B be
the diagonal matrix witlx — X2 on the diagonal. Becausec [0,1]", B is positive semidefinite. Finally,
letY = A+ B; it is clearly symmetric and positive semidefinite. Notice that for eve¥g (projected
onto [xo = 1]) is x"Y and thatYe, — Yeg is x(9). These are both guaranteed to beéiby the lemma’s
hypothesis, sais in P'. O

3.2 Agame

Lemmas3.1, 3.2and3.3all conclude the same thing from different hypotheses. We now state a protec-
tion lemma that holds for all of the proof systems because it uses a hypothesis that is stronger than any
of those in the previous protection lemmas:

Lemma 3.4 (Game Lemma).The following holds for GC, LS LS and LS: Let PC [0,1]" be a
polytope, and x {0, 3, 1}"NP. If, for every i€ E(x), x"9 x0:) € P, then xc P'.

This lemma gives us the following Prover-Adversary game for showing a lower-bound on the rank
of a pointw € {0, %,1}” with respect toP. We think of the Prover as trying to show thathas high
rank, while the Adversary is trying to foil that proof. The game proceeds in rounds. During each round,
there is a current point € {0, %, 1}", whose initial value isv. At each round, the Prover either moves
or allows the Adversary to move:
Prover-move The Prover generates a set of poMts {0, ,1}" such thak is a convex combination of
those pointsX ¢ Y). The Adversary selects one poing Y to be the new.
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Adversary-move The Adversary selects a coordinasuch thatxe is % and a valuea € {0,1}. The
newx is x(&®,

The game ends whetis no longer irP orx € Z". The Prover gets one reward-point (as distinguished
from geometric points) for each Adversary-move.

Lemma 3.5. If a Prover has a strategy to earn m reward-points against every adversary, then the (GC,
LSy, LS, or LS )-rank of w with respect to P is at least m.

Proof. Letr = r(w,P) be the maximum, over all adversaries, of the number of rounds in the Prover-
Adversary game for the given prover, the poinand the polytop®. We proceed by induction an If

r =0, thenm= 0, but the rank ofv can never be less than 0. For arbitrary 0, the Prover can start

by making a Prover-move or an Adversary-move. If itis a Prover-move, then the Prover piésents

no matter whicty € Y the Adversary chooses(y,P) < r(w,P) and the Prover has a strategy to earn
reward-points. Hence, by induction, each Y has rank at leash. By convexity, the rank ofv, which

is a convex combination of points ¥ is at leastn. If it is an Adversary-move, then, no matter whieh
anda the Adversary chooses(w(®® P) < r(w,P) and the Prover has a strategy to eara 1 reward-
points. Again, by inductiony®® has rank at leash— 1 for all possiblg(e, a), so byLemma 3.4w has

rank at leasmn. O

4 Expanding Constraints

In what follows, we deal with-, a set of mod-2 equations ovewrariables. That is, each equationkn
is of the formycsx =a (mod 2, whereSc [n] anda € {0,1}. Notice that each such equation can be
represented by the conjunction 0f21 clauses, each of which can be represented as a linear inequality.
We denote by: the polytope bounded by these inequalities and by the inequalities & 1.

Let Gg be the bipartite graph from the detto the set of variables where each equation is connected
to the variables it contains. We prove a rank lower boundPfoas a function of the expansion GE.

We will need the following notions of expansion:

Definition 4.1. Lete(V1,V,) be the number of edgés,, v2) with v; € Vi. The edge-expansion of a graph
G=(V,E)is
e(SV\9S

mn —————=
scvils=ivi2 |
Definition 4.2. A bipartite graph fromV to U is an (r,&)-expander if, for all subset c V where

IX| <r, we have (X) > g|X|. Theexpansiorof a setX C V, e(X), is the valudl' (X)|/|X].
Definition 4.3. Let G be a bipartite graph frori to U. The boundary of a s&X C V is 8Xi{u €

U : [F(unX|=1}. Gis an(r,)-boundary expander if for all subsetsc V where|X| <r, we have
|0X| > €|X|. Theboundary expansioaf a setX C V is the valugdX|/|X]|.

The following fact relates bipartite expansion with boundary-expansion.
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Fact 4.4. If G is a bipartite graph fronv to U whereV has maximal degred and if G is an(r, €)-
expander, thes is a(r, 2e — d)-boundary expander.

The reason that we requif&- to be a good expander is that it allows us to satisfy subsdts of

Lemma 4.5. Consider a set F of m mod-2 equations over n variables. Assume that for every variable
v and every value & {0,1}, there is a solution to F where v assumes the value a. Then all the 0-1
solutions to F average to the ag-assignment.

Proof. Let S,5 be a solution td~ in which variablev is set toa. It is easy to see that the mapping
S— S+ §,1 — S0 mod 2 is a one-to-one mapping from solutions witk 0 onto solutions witly = 1.
Therefore the average over all solutiongtds 3 onv. O

Lemma 4.6. Let F be a set of m mod-2 equations over n variables. Assugrie & (m, d)-boundary
expander for somé& > 0. Then F has a 0-1 solution.

Proof. We begin by pairing each equationknto a variable it includes. Fowith 0 <i < massume we
have a pairing f1,v1),...,(f,v) such thatv,...,v; are not in the boundary d¥ \ {f4,..., fi}. Since
i<m F\{f1,..., fi} is not empty, so there must be some; ¢ {v1,...,vi} in d(F\{f1,...,fi}). Itis
connected to some equatiéns in F\ {fy,..., fi} and to no other equations in that set. Add 1,Vi+1)
to the set of pairs. Eventually we have the set of p@ifsvi), ..., (fm, vm). To satisfyF, set all variables
notin{vs,...,vm} arbitrarily. Now, fori = mto 1, setv; so that it satisfies equatidi(notice that in this
order,y; is the last unassigned variable BY. O

We now use the game to show a rank lower bound for expanding sets of equatiorns. {Rl)r%, 13",
say an equatiori € F is fixedwith respect tox if x sets all the variables df to 0/1 andf is satisfied
by x. Let Gg(x) be the subgraph d&g induced by the set of variablés(x) and the set of non-fixed
equations.

Theorem 4.7. Lete > 0 and let we {0, %, 13" If Ge(w) is an(r,2+ €)-boundary expander, then w has

(GC, LY, LS, LS)-rank at least e with respect to P.

Proof. We start the game witk = w. Clearlyx € B= since each equatioh € F is either fixed or has

two underlying variables set l%)by the expansion requirement. In the latter case, each linear inequality
representing is satisfied byProposition 2.1 Let I'x(R) be the neighbor set & C F in Gg(X). Let/
initially be set tor. The Prover’s strategy is as follows:

1. Let the Adversary move as long as all subdets F in Gg(x) of size at most have boundary
expansiorn> 2 in Gg (X). Note that after such a move we have P- since all equations i (X)
have degree at least 2.

2. Let B be a maximal subset of equationsGa (x) with boundary expansiog 2 such thatB| < /.
Only one variable has been set (by an Adversary move) $nlsad boundary expansian 2,
so nowB must have boundary expansionl. Now the Prover moves. L&t be the set of all
assignments satisfying that are 0- 1 only(B) and that agree witk elsewhere. To see th¥t
is nonempty and that it does indeed average twnsider an arbitrary variablein 'y(B) and an
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arbitrary valuea € {0,1}. By Lemma 4.5t is enough to show that there is a pointYirin which
vis set toa. Notice thatB still has boundary-expansion greater than 0 on the g&gx) minus
v, and sd_emma 4.aGmplies that, regardless of the settingwthere exists a 8 1 assignment on
'x(B)\ {v} satisfyingB. The Adversary selects oryec Y to be the newx.

Set/to ¢ — |B|. If £ =0, stop the game. Otherwise, we argue thatP:-. Indeed, in that case
|B| is strictly smaller tharf, and it is always the case that every equatiomot in B has at least
two neighbors inGe (x) since otherwis®|J{ f } would also have boundary-expansion at most 2
contradicting the maximality dB.

3. Repeat until the game is over.

Now we will show that the Prover always earns at leasteward-points. Assume the game ends
afterk rounds of the strategy. For any round k, let B; be the set of vertices designated in step 2 and
let S= U'J-‘Zl Bj. The size ofSisr, soShad a boundary of size at leg&+ ¢)r in Ge. At the end of
the gameShas no boundary (in fact it has no neighborsBin(x). At most 2 of these boundary nodes
were removed by the Prover: at the beginning of step 2 of ropBdhas at most [B;| boundary nodes
and every boundary node &fis a boundary node for exactly ofg. Hence at leastr of Ss original
boundary nodes were removed by the AdversaryLByma 3.5w has the required rank. O

It turns out that many common formulas are examples of boundary-expanding mod-2 equations.

Definition 4.8 ([39]). The Tseitin tautology for an odd-size gragh= (V,E), denotedl SG), is the
following: given a boolean variabl¥,, for each edgéu,v) € E, there exists no assignment to all the
variables satisfying

5 Xw=1 (mod2

vel (u)
foreveryue V.

Definition 4.9. There are @) linear, mod-2 equations overvariables that contain exactkydifferent

variables. Le®V&" be the probability distribution induced by choosimgpf these equations uniformly
and independently. There ar‘é(g) clauses oven variables that contain exactkdifferent variables. Let

NS be the probability distribution induced by choosimgf these clauses uniformly and independently.
Theorem 4.fnables us to prove our main result:
Corollary 4.10. The following holds for GC, L&SLS and LS:

(1) The Tseitin tautology on a graph H has rank at le@st 2)n/2, where c is the edge-expansion of
H;

(2) Let k> 5. There exists a constant ¢ such that, forali> c, F ~ Mzrr]' requires rankQ(n) with
high probability;

(3) Letk> 5. There exists a constant ¢ such that, foratb c, C~ Nz}? requires rankQ(n) with high
probability.
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Proof. Throughout, letv be the all% point.
(1) The edge-expansion of a graph= (V,E) is the density of the sparsest cut:

eSV\9

scvs<ivi/2 - |§

Itis easy to see th&r ) (W) is an(n/2,c)-boundary-expander: consider any subset of nodes in
H, ScV and look at the corresponding $&of equations irT SH). Every variable corresponding

to an edge across the c(8V \ §) is in the boundary oR in the bipartite graptGrgy). Now
simply applyTheorem 4.7

(2) Itis well-known thatGg (w) is an excellent expanderl{]): for any constant\, €k, there exists
a constanix > 0 such thatGg (w) is almost always arioen, k — 1 — €)-expander. ByFact 4.4
every(r,0) bipartite expander graph qi,U) whereV has maximal degreé is an(r,26 —d)-
boundary-expander. HenGg (w) is an(an,k— 2 — 2¢)-boundary-expander. F&r> 5 and small
g, the boundary-expansion is more than 2ynauas rankQ(n) by Theorem 4.7 Lastly, we need to
fix ¢ such that, whenevek > ¢, F is unsatisfiable with high probability (otherwide,might not
have high rank, despite the fact tivatloes). The corollary follows.

(3) Gc(w), the bipartite graph associated with the clause€,ofs the same a&g (w) for random
F. Generat&C’ by adding, for eacle € C, the following clauses: i€ has an even (odd) number
of positive literals, all clauses on the same variableg #sat have an even (odd) number of
positive literals. Clearlyw's rank with respect td%- is at least its rank with respect &y, but
C' is equivalent to a set d€| mod-2 equations such th& (w) is an(an,k— 2 — 2¢)-boundary
expander (with high probability, give, €, k, o as in (2)). Again, fixc so that, whenevek > ¢, C
is unsatisfiable with high probability.

O]

5 Integrality Gaps from Rank Lower Bounds

The problem MAXk-SAT (MAX-k-LIN) is the following: given a set ok-clauses (mod-2 equations),
determine the maximum number of clauses (equations) that can be satisfied simultaneously. This prob-
lem is well-studied in the theory of approximation algorithms and optimal inapproximation results are
known under the assumption thatz NP [28]. Here we show optimal inapproximation results (that
are unconditional) for a restricted class of approximation algorithms that involve applying GC or LS
procedures to a relaxation of the standard integer program. These algorithms are not necessarily poly-
time. Similar results have been shown for LS-relaxations of vertex cofkrsge also the improve-
ments B, 37]) and maximum independent set§]). Both show that a large integrality gap remains after
Q(logn) rounds ofLS.

Given a set ok-mod-2 equation§ = {f4,..., fm} over variablesq,...,X,, add a new set of vari-
ablesys,...,ym. Foreachfi: 3., xj =a (mod 2, let f/ be the equatiogi + ¥ j, Xj =& +1 (mod 2.
LetF’ be the set of’s. If y; is 1, thenf/ is satisfied if and only iff; is satisfied. Hence we want to max-
imize the linear functiory ", y; over the constraints’ within the boolean cube. Convert these mod-2
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equations into linear constraints, and call the resulting linear proggarfihe integrality gap of this LP

is at most 2 since, given any set of mod-2 equations, there must be a boolean assignment satisfying at
least half of them. Am-round GC- (respectively, L3, LS-, LS, -) relaxation of (the integer version of)

Lr (or any linear program) is a linear program with the same optimization function but with all addi-
tional constraints that can be generated in degdtbm the original constraints using GC (respectively,

LSy, LS, LS,).

Theorem 5.1. Let k> 5. For every constant > 0, there are constantd, 8 > 0 such that if F~ MZR
then the integrality gap of eve§n-round GC- (resp., L, LS-, LS -) relaxation of ¢ is at least2 —
with high probability.

Proof. Givene, fix A > 8In2/¢"?, Where(% +¢')(2—¢) = 1. An arbitrary assignment satisfies each of
F’s equations with probabilit)%, so the expected number of satisfied equatio@i&; The probability

that it satisfies more tha(r% +¢’)An equations is at moaaxp(—%f”) by Chernoff. Given the choice of
A, this expression is much less than"2so with high probability no assignment satisfies more than a
% + ¢'-fraction of F’s equations.

On the other hand, consider an assignnvetitat sets the variablgs, . ..,yan to 1 and setgy, . .., X,
to % Clearly, w satisfies all of the equations &. Furthermore, it is well-known thaBg/(w) is
almost surely arfan,2+ d)-boundary expander for sonwe 6 > O that depend odk. Let 8 = ad.
Hence, byTheorem 4.7w remains a feasible solution for evey-round GC- (resp., L&, LS-, LS;-)
relaxation ofLg. O

We can form a linear prograin: for a set ofk-clause<C in an analogous manner. Similarly,

Theorem 5.2. Let k> 5. For everye > 0, there existg\, B > 0 such that if C~ Nz’r?, then the integrality
gap of evenfn-round relaxation of k is at Ieastzkz—i1 — & with high probability.

Again, this inapproximation result is optimal since, given any sdt-ofauses, there is a boolean
. . g k .
assignment that satisfies at Iea§t§?’;11 fraction of them.

6 Separating GC, LS and Resolution Ranks

We consider the following generalization of PHRhe Pigeonhole Principle om+ 1 pigeons anadh
holes, first suggested i8]} Let G = (U,V,E) be a bipartite graph, whefd| = n+1 and|V| =n. The
tautology PHRG) is the statement th& doesn’t have a perfect matching. The formal statement of this
is (1) Foreach € U, Yjcrgy%i,j > 1; (2) Forallj eV, i,i" € [(j), suchthai #i’, x j +xvj < 1. The
standard PHPis just PHRK, 1), whereKy, 1 » is the completen+ 1, n bipartite graph.

In this section we show the following separations: RHR, has LS-rankn but GC-rankO(logn);
(2) For an expander graph with constant degred, the Resolution-rank d®HP(G) is Q(n), while its
LS-rank and GC-rank ar®(d).

The Resolution-rank lower bound is proven B];[it is implied by their size lower bound. The
LS- and GC-rank upper bounds are very similar to each other: for gvery, it is possible to derive
Yier(jX.j < 1inrankO(d) in both systems (Corollary 3.1.1 027] and Corollary 2.8 of 83]). The
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point is that the polytope defined by adding these new inequalities is the empty polytope, and therefore
we can get the desired contradiction in one LS or GC step.

For the separation result of the GC and LS ranks, we start with the upper bound on the GC-rank of
PHR,. This result was proved independently B}.[Actually, the theorem follows almost immediately
from Theorem 3.1.1 off7], which preceeds both works. We include its proof for illustrative purposes.

Theorem 6.1. The GC-rank of PHRis O(logn).

Proof. For a subseScC {1,2,...,n+1} and 1< j <nlet fg; be the inequalityy;.sxj < 1. We claim

that it is possible to deduce, froffigj for everySof sizek, any fr j with T of size< 2k in one GC-cut.

In other words, iffs; are valid forPH P (recall the notation obefinition 2.6 for everySof sizek and
everyj, thenfr  is valid for PHP"*L) for everyT of size< 2k. This means that for ajl, s "' x; < 1is

valid for PHP(C(am) - On the other hand, no solution that satisfies these inequalities can satisfy all the
axiomsy"_, x;j > 1 for everyi. ThereforePHP(C(°3") = @, and the Chatal -rank ofPHR, is O(logn).

To see the claim, take arjyandT of sizel < 2k, and sum up with coefficients/{; 1) the inequalities
fsj over all subset§ C T of sizek. After rounding the deduced inequality is

ZNJ_{HJ [1/k] < (6.1)

namely,fr ;. A good way to think of §.1) is that when using the symmetric sum, we care only about the
average threshold for a single variable.fly itis 1/|S], and so basically all we do is take the threshold
X <1/|§ and turnitintoycr x < |T|/|S, and if | T| < 2|5 we getyir < [|T|/|F] < 1. O

In fact, this bound is tight byg]. Again, Theorem 3.1.1 of)7] proves something very similar.

[24] prove that the PHP has constant-rank proofs in L$his fact also follows immediately from
Corollary 2.15 of B3]. In light of this, LS, is separated from GC with respect to rank.

A linear lower bound for the LS-rank d*HR, was given by 23]. See Corollary 2.8 0f33] for a
very similar proof. We will give a proof for the Lgsrank using a protection lemma, which we think is
simple and illuminating.

Theorem 6.2. ([23]) The LS-rank of PHR is n— 1.

Proof. The proof proceeds by induction on PHR consists of a single point, and its §-8ank is
therefore 1. FOPHR,, we argue that the a||/11 point has rank — 1 Given1<i<n+land 1</ <n,

let X! be the following point: XI/ =1; xlz, =0 for all ¢ # ¢; x,(, =0 foralli’#i; X' is 1/(n— 1)
everywhere else. For every coordingig)), let Sj be the set ok’ for 1 < ¢ < n. Note that for every
point in §j, the coordinati, j) has value in{0,1}. Furthermore, the average of all pointsSy is

the all I/n point. By Lemma 3.2 the all 1/n point has rank one more than the minimum rank of the
points inS;. But each such point is the al/(n— 1) point for PHR,_1, so it must have rank — 2 by
induction. O

The PHP has polynomial-size (tree-like) d-froofs. The fact that LS requires ragkn) for the
PHP shows that for both LS and g.$roofs, large rank is not a good indicator of large size (even in the
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tree-like systems). Since GC and L$rove the PHP in small rank, and since Resolution requires large
proofs, the PHP does not resolve this question for these proof systems. In the next section, we give a
different formula which shows that GC and Resolution can have large rank and small size. In fact, it
is not difficult to see that tree-like Resolution can have large rank and small size. The open questions,
then, are whether large rank implies large size in tree-like GC or in (i®e-like or not).

7 GC Proofs with Large Rank and Small Size

In Theorem 6.1 of 11] and Theorem 4 off], it is shown that the size of a GC proof of a tautology
is O(n") wheren is the number of variables andis the GC-rank of the polytope associated with the
tautology. Here we show an example where this bound is very far from being tight. Specifically, we show
an example of a tautology which has a quadratic-size GC proof (in fact even a Resolution proof with
that size) and linear GC-rank. It turns out that such a separation between size and rank can be witnessed
by any formula that has polysize GC refutations, but requires exponential tree-like GC refutdjpns ([

The unsatisfiable formula we take is GWhich is the negation of the property that every total order-
ing onn elements has a maximal element (alternatively, that a directed graph closed under transitivity
and with no cycles of size two has a source node). More formally, given the set of boolean variables

{Xj :i,je[n,i#j}, assert
(1) Xij = —X;|; for eachi # | (totality),
(2) Xij AXjx — X for eachi # | # k (transitivity),
(3) Vi Xij for eachi (no maximal element).

The formula was introduced b3¥®] and is formulated using(n— 1) variables. The natural way to state

it uses widthn clauses, but it can be encoded with constant-width. Staln®jkshows thatGT, has
polynomial-size Resolution refutations, but Bonet and Gasiljow that it requires widt(n) (even

when stated with narrow clauses). Since Resolution-width is at most Resolution-rank (the length of the
path from a widthw clause to the empty clause in a Resolution refutation is at W@ashe Resolution-

rank is alsaQ(n). Since GC polynomially simulates resolutiod]), there is a also a polynomial size

GC proof of the formula. It remains to show:

Theorem 7.1. The GC-rank and the LgSrank of the polytope associated with G3 Q(n).

We associate a partial orderingon [n] with a vectorx, € {0, 3,1}""=D py the assignment; =
0, 1,% wheni is smaller than, bigger than, or incomparablg tcespectively.

Definition 7.2. A (partial) order< is calleds-scaledf there is a partition ofn] into setsAg, Ay, ..., As,
such that< is a total ordering within each of th’s and is not defined between elements in different

A/'S.
Claim 7.3. If < is s-scaled with s> 2, then x, remains after s- 3 rounds of GC or L&cuts.
The claim immediately provides a lower boundrof- 2 for the rank ofP = GT, since the vector

associated with the empty order (whichiscaled) has that rank.
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Proof of Claim 7.3 By induction ons. Suppose< is 3-scaled. We need to show that € P = P,
Transitivity inequalities clearly hold for three elements in the sa@meA transitivity inequality that
involves more than on& must contain at least two variables with va%Jand therefore must be satisfied
by Proposition 2.1 The “no maximal element” inequalities also hold, because for every element there
are at least two others to which it is not comparable, and the two assoéia‘addes alone satisfy the
inequality. For a genera we letx = x.. Notice thatE(x) is a set of all edges connecting different
components of the graph when we associatsith a graph which is a union afcomplete graphs. We
partition the edges i&(x) to (;) sets by the components they connect and arguetiad this partition
satisfy the conditions ofemma 3.1 Indeed, for a choice of componerisand B we denote by<a
the order which is the same asexcept all the elemens éf are bigger than those & Similarly we
define<g. Itis easy to see that= (X<, +X~;)/2. Since<a, <g are(s— 1)-scaled we inductively have
thatrank(x.,),rank(xx;) > s— 3, and byLemma 3.Irank(x) > s— 2. Notice that sinckemma 3.1is
strictly weaker thaiemma 3.2the proof is valid for Lg in addition to GC. O

8 Automatizability of the LS-systems for Small-Rank CNF Formulas

In this section, we show thatH € [0,1]" is a polytope that can be described by a polynomial number of
halfspaces each with polynomial-length coefficients, then there is a procedureR®)téster-th round

of LS or L) for emptyness in tim@®"). This is important since it means thatffis a polytope that
comes from an unsatisfiable CNF or set of mod-2 equation®dras small rank, then its unsatisfiability
can be efficiently withessed. The general idea of this theorem is evideBB]irbyt it is not explicitly
stated in this form. Also, we rely heavily on the techniques explaineg5h [

It is important to note that the ability to optimize over a polytope does not imply the ability to
test it for emptyness. Indeed, optimization procedures generally assume non-emptyness. In particular,
when B3] shows that it is possible to efficiently optimize ovelf) in LS, for smallr, this does not
seem to imply anything about testing for emptyness. See the end of this section for further explanation
of this point.

A strong separation oracléor a convex body’ C R" is a procedure, that givenc R", either states
thatx € P or supplies a hyperplane separatiigom P.

We say that a convex body C R" hasfacet-complexityp if it can be represented as a set of linear
inequalities (with rational coefficients) such that each of the inequalities can be encoded indength

Theorem 8.1. Assume we are given a strong separation oracle for a polytoge [@ 1]" of facet-
complexityp. Then, there is an algorithm for the LS andgli8oof systems that checks if Pis empty
with running time polyn, ¢)".

Note that for a polytope arising from CNF formulas= O(n), and consequently the running time
is n°("). The claim follows for LS from the following lemmas. For p,3he argument is very similar.

Lemma 8.2. Let PC [0,1]" be a polytope with facet-complexity Given a strong separation oraclé
for P, there is a strong separation oracle fof'Pthat makes polin, ¢) calls to A.

Lemma 8.3. If a polyt