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Matrix Approximation and Projective
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Abstract: Frieze, Kannan, and Vempala (JACM 2004) proved that a small sample of rows
of a given matrixA spans the rows of a low-rank approximationD that minimizes‖A−D‖F

within a small additive error, and the sampling can be done efficiently using just two passes
over the matrix. In this paper, we generalize this result in two ways. First, we prove
that the additive error drops exponentially by iterating the sampling in an adaptive manner
(adaptive sampling). Using this result, we give a pass-efficient algorithm for computing a
low-rank approximation with reduced additive error. Our second result is that there exist
k rows of A whose span contains the rows of a multiplicative(k+ 1)-approximation to
the best rank-k matrix; moreover, this subset can be found by samplingk-subsets of rows
from a natural distribution (volume sampling). Combiningvolume samplingwith adaptive
samplingyields the existence of a set ofk+k(k+1)/ε rows whose span contains the rows
of a multiplicative(1+ ε)-approximation. This leads to a PTAS for the following NP-hard
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projective clustering problem: Given a setP of points inRd, and integersj andk, find
subspacesF1, . . . ,Fj , each of dimension at mostk, that minimize∑p∈Pmini d(p,Fi)2.

1 Introduction

1.1 Motivation

Let the rows of a matrix be points in a high-dimensional space. It is often of interest to find a low-
dimensional representation. The subspace spanned by the topk right singular vectors of the matrix
is a good choice for many applications. The problem of efficiently finding an approximation to this
subspace has received much attention in the past decade [19, 15, 1, 14, 16]. In this paper, we give new
algorithms for this problem and show existence of subspaces lying in the span of a small set of rows
with better additive approximation as well as multiplicative approximation. At the heart of our analysis
are generalizations of previous sampling schemes [19]. We apply these results to the general problem of
finding j subspaces, each of dimension at mostk, so as to minimize the sum of squared distances of each
point to its nearest subspace, a measure of the “error” incurred by this representation; as a result, we
obtain the first polynomial-time approximation scheme for thisprojective clusteringproblem [5, 32, 6, 3]
when j andk are fixed.

The case ofj = 1, i. e., finding a singlek-dimensional subspace, is an important problem in itself
and can be solved efficiently (forj ≥ 2, the problem is NP-hard [30], even fork = 1 [15]). The optimal
projection is given by the rank-k matrix Ak = AYYT where the columns ofY are the topk right singular
vectors ofA and can be computed using the Singular Value Decomposition. Note that among all rank-k
matricesD, Ak is the one that minimizes‖A−D‖2

F = ∑i, j(Ai j −Di j )2. The running time of this algorithm,
dominated by the SVD computation of anm×n matrix, isO(min{mn2,nm2}). Although polynomial,
this is still too high for some applications.

For problems on data sets that are too large to store/process in their entirety, one can view the
data as a stream of data items arriving in arbitrary order, and the goal is to process a subset chosen
judiciously on the fly and then extrapolate from this subset. Motivated by the question of finding a faster
algorithm, Frieze et al. [19] showed that any matrixA hask/ε rows whose span contains the rows of a
rank-k approximation toA within additive errorε‖A‖2

F . In fact, the subset of rows can be obtained as
independent samples from a distribution that depends only on the norms of the rows. (In what follows,
A(i) denotes theith row ofA.)

Theorem 1.1 ([19]). Let S be a sample of s rows of an m×n matrix A, each chosen independently from
the following distribution: row i is picked with probability

Pi =
‖A(i)‖2

‖A‖2
F

.

If s≥ k/ε, thenspan(S) contains the rows of a matrix̃Ak of rank at most k for which

ES(‖A− Ãk‖2
F)≤ ‖A−Ak‖2

F + ε‖A‖2
F .
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This can be turned into an efficient algorithm based on sampling [15].1 The algorithm makes one
pass throughA to figure out the sampling distribution and another pass to sample and compute the
approximation. Its complexity isO(min{m,n}k2/ε4). These results lead us to the following questions:
(1) Can the error be reduced significantly by using multiple passes through the data? (2) Can we get
multiplicative(1+ε)-approximations? (3) Do these sampling algorithms have any consequences for the
general projective clustering problem?

1.2 Our results

We begin with the observation that the additive error term dropsexponentiallywith the number of passes
when the sampling is done adaptively. Thus, low-rank approximation is a natural problem for which
multiple passes through the data are highly beneficial.

The idea behind the algorithm is quite simple. As an illustrative example, suppose the data consists
of points along a 1-dimensional subspace ofRn except for one point. The best rank-2 subspace has zero
error. However, one round of sampling will most likely miss the point far from the line. So we use a
two-round approach. In the first pass, we get a sample from the squared norm distribution. Then we
sample again, but adaptively—we sample with probability proportional to the squared distance to the
span of the first sample. We call this procedureadaptive sampling. If the lone far-off point is missed
in the first pass, it will have a high probability of being chosen in the second pass. The span of the full
sample now contains the rows of a good rank-2 approximation. In the theorem below, for a setSof rows
of a matrixA, we denote byπS(A) the matrix whose rows are the projection of the rows ofA to the span
of S.

Theorem 1.2. Let S= S1∪ ·· · ∪St be a random sample of rows of an m×n matrix A where, for j=
1, . . . , t, each set Sj is a sample of s rows of A chosen independently from the following distribution: row
i is picked with probability

P( j)
i =

‖E(i)
j ‖2

‖E j‖2
F

where E1 = A, Ej = A−πS1∪···∪Sj−1(A). Then for s≥ k/ε, span(S) contains the rows of a matrix̃Ak of
rank at most k such that

ES(‖A− Ãk‖2
F)≤ 1

1− ε
‖A−Ak‖2

F + ε
t‖A‖2

F .

The proof ofTheorem1.2 is given inSection2.1. The resulting algorithm, described inSection2.2
uses 2t passes through the data. Although the sampling distribution is modifiedt times, the matrix itself
is not changed. This is especially significant whenA is sparse as the sparsity of the matrix is maintained.

Theorem1.2raises the question of whether we can get a multiplicative approximation instead of an
additive approximation. To answer this question, we generalize the sampling approach. For a setSof k
points inRn, let ∆(S) denote thek-dimensional simplex formed by them along with the origin. We pick
a randomk-subsetS of rows of A with probability proportional to vol(∆(S))2. This procedure, which

1Frieze et al. [19] go further to show that there is ans× s submatrix fors= poly(k/ε) from which the low-rank approxi-
mation can be computed in poly(k,1/ε) time in an implicit form.
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we callvolume sampling, is a generalization of the earlier sampling approach which picks single rows
according to their squared norms.

Theorem 1.3. Let S be a random k-subset of rows of a given matrix A chosen with probability

PS =
vol(∆(S))2

∑T:|T|=k vol(∆(T))2 .

ThenÃk, the projection of A to the span of S, satisfies

ES(‖A− Ãk‖2
F)≤ (k+1)‖A−Ak‖2

F .

We prove this theorem inSection1.4. Moreover, the factor ofk + 1 is the best possible for a
k-subset (Proposition3.3). By combiningTheorem1.3 with the adaptive sampling idea fromThe-
orem 1.2, we show that there existO(k2/ε) rows whose span contains the rows of a multiplicative
(1+ ε)-approximation.

Theorem 1.4. For any m×n matrix A, there exist k+k(k+1)/ε rows whose span contains the rows of
a rank-k matrixÃk such that

‖A− Ãk‖2
F ≤ (1+ ε)‖A−Ak‖2

F .

The existence of a small number of rows containing a good multiplicative approximation is the key
ingredient in our last result—a polynomial-time approximation scheme (PTAS) for the general projec-
tive clustering problem. This result makes a connection between matrix approximation and projective
clustering. A key idea in the matrix approximation work of [14, 15, 19] is that, for any matrix, there
is a small subset of its rows whose span contains a good approximation to the row space of the entire
matrix. This is similar to the idea of core-sets [2], which have been studied in computing extent mea-
sures in computational geometry (and applied to a variant of the projective clustering problem [24]).
Roughly speaking, a core-set is a subset of a point-set such that computing the extent measure on the
core-set provides an approximation to the extent measure on the entire point set. An extent measure is
just a statistic on the point set (for example, the diameter of a point set, or the radius of the minimum
enclosing cylinder); typically, it measures the size of the point set or the minimum size of an object that
encloses the point set [2].

We state the projective clustering problem using the notation from computational geometry: Let
d(p,F) be the orthogonal distance of a pointp to a subspaceF . Given a setP of n points inRd, find j
subspacesF1, . . . ,Fj , each of dimensionk, such that

C(F1, . . . ,Fj) = ∑
p∈P

min
i

d(p,Fi)2 (1.1)

is minimized. When subspaces are replaced by flats, the casek = 0 corresponds to the “j-means prob-
lem” in computational geometry.

Theorem1.4 suggests an enumerative algorithm. The optimal set ofk-dimensional subspaces in-
duces a partitionP1∪ ·· · ∪Pj of the given point set. Each setPi contains a subset of sizeO(k2/ε) in
whose span lies a multiplicative(1+ε)-approximation to the optimalk-dimensional subspace forPi . So
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we consider all possible combinations ofj subsets each of sizeO(k2/ε), and aδ -net ofk-dimensional
subspaces in the span of each subset. Theδ -net depends on the points in each subset and is not just a
grid, as is often the case. Each possible combination of subspaces induces a partition and we output the
best of these. Since the subset size is bounded (and so is the size of the net), this gives a PTAS for the
problem (seeSection4) when j andk are taken to be fixed constants.

Theorem 1.5. Given n points inRd and parameters B andε, in time

d
(n

ε

)O( jk3/ε)

we can find a solution to the projective clustering problem which is of cost at most(1+ ε)B provided
there is a solution of cost B.

1.3 Related work

The work of Frieze et al. [19] and Drineas et al. [15] introduced matrix sampling for fast low-rank ap-
proximation. Subsequently, an alternative sampling-based algorithm was given by Achlioptas and Mc-
Sherry [1]. That algorithm achieves somewhat different bounds (see [1] for a detailed comparison) using
only one pass. It does not seem amenable to the multipass improvements presented here. Bar-Yossef [9]
has shown that the bounds of these algorithms for one or two passes are optimal up to polynomial factors
in 1/ε.

These algorithms can also be viewed in thestreamingmodel of computation [25]. In this model,
we do not have random access to data; the data comes as a stream of data items in arbitrary order and
we are allowed one or a few sequential passes over the data. Algorithms for the streaming model have
been designed for computing frequency moments [7], histograms [22], etc. and have mainly focused
on what can be done in one pass. There has been some recent work on what can be done in multiple
passes [14, 18]. The “pass-efficient” model of computation was introduced in [25]. Our multipass
algorithms fit this model and relate the quality of approximation to the number of passes. Feigenbaum et
al. [18] show such a relationship for computing the maximum unweighted matching in bipartite graphs.

The Lanczos method is an iterative algorithm that is used in practice to compute the Singular Value
Decomposition [20, 26]. An exponential decrease in an additive error term has also been proven for
the Lanczos method under a different notion of additive error ([20, 26]). However, the exponential
decrease in error depends on the gap between singular values. In particular, the following is known for
the Lanczos method: afterk iterations, each approximate singular valueθ 2

i obeys:

θ
2
i ≥ σ

2
i −ckC (1.2)

whereσi is theith singular value. Both constantsc andC depend on the gap between singular values; in
particular,c is proportional to(σ2

2 −σ2
r )/(2σ2

1 −σ2
2 −σ2

r ) andC = σ2
1 −σ2

r . The guarantee (1.2) can
be transformed into an inequality:

‖A− Ãk‖2
F ≤ ‖A−Ak‖2

F +ckC (1.3)

very similar toTheorem1.2, but without the multiplicative error term for‖A−Ak‖2
F . However, note that

whenσ2
1 = σ2

2 , successive rounds of the Lanczos method fail to converge toσ2
i . In the Lanczos method,
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each iteration can be implemented in one pass overA, whereas our algorithm requires two passes over
A in each iteration. Kuczýnski and Wózniakowski [27] prove that the Lanczos method, with a randomly
chosen starting vector, outputs a vectorv with Ã1 = πspan(v)(A) such that‖Ã1‖2

F ≥ (1− ε)‖A1‖2
F in

log(n)/
√

ε iterations. However, this does not imply a multiplicative(1+ ε) error to‖A−A1‖2
F .

While the idea of volume sampling appears to be new, in [21] it is proved that, using the rows
and columns that correspond to thek× k submatrix of maximal volume, one can compute a rank-k
approximation to the original matrix which differs in each entry by at most(k+1)σk+1 (leading to much
weaker

√
mnapproximations for the Frobenius norm).

The results of our paper connect two previously separate fields: low-rank approximation and pro-
jective clustering. Algorithms and systems based on projective clustering have been applied to facial
recognition, data-mining, and synthetic data [5, 32, 6], motivated by the observation that no single
subspace performs as well as a few different subspaces. It should be noted that the advantage of a low-
dimensional representation is not merely in the computational savings, but also the improved quality of
retrieval. In [3], Agarwal and Mustafa consider the same problem as in this paper, and propose a variant
of the j-means algorithm for it. Their paper has promising experimental results but does not provide any
theoretical guarantees. There are theoretical results for special cases of projective clustering, especially
the j-means problem (findj points). Drineas et al. [15] gave a 2-approximation toj-means using SVD.
Subsequently, Ostrovsky and Rabani [31] gave the first randomized polynomial time approximation
schemes forj-means (and also thej-median problem). Matoǔsek [29] and Effros and Schulman [17]
both gave deterministic PTAS’s forj-means. Fernandez de la Vega et al. [11] describe a randomized
algorithm with a running time ofn(logn)O(1). Using the idea of core-sets, Har-Peled and Mazumdar [23]
showed a multiplicative(1+ε)-approximation algorithm that runs in linear time for fixedj,ε. Kumar et
al. [28] give a linear-time PTAS that uses random sampling. There is a PTAS fork= 1 (lines) as well [4].
Other objective functions have also been studied, e. g. sum of distances (j-median whenk = 0, [31, 23])
and maximum distance (j-center whenk = 0, [10]). For generalk, Har-Peled and Varadarajan [24] give
a multiplicative(1+ ε)-approximation algorithm for the maximum distance objective function. Their
algorithm runs in timednO( jk6 log(1/ε)/ε5) and is based on core-sets (see [2] for a survey).

1.4 Previous versions of this paper

This paper is a journal version of the paper by the same set of authors presented at the 17th Annual
Symposium on Discrete Algorithms (SODA 2006) [12]. This paper contains the same major results, but
additionally provides more intuition and more complete proofs. A previous version [33] of this paper
by a subset of three of the authors (L. Rademacher, S. Vempala, G. Wang) appeared as an MIT CSAIL
technical report. That version contained a subset of the results in this paper. In particular, the notion of
volume sampling and related results did not appear in the technical report.

1.5 Notation and preliminaries

Any m×n real matrixA has a singular value decomposition, that is, it can be written in the form

A =
r

∑
i=1

σiu
(i)v(i)T
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wherer is the rank ofA andσ1 ≥ σ2 ≥ ·· · ≥ σr ≥ 0 are called the singular values;{u(1), . . . ,u(r)} ∈Rm,
{v(1), . . . ,v(r)} ∈ Rn are sets of orthonormal vectors, called the left and right singular vectors, respec-
tively. It follows thatATu(i) = σiv(i) andAv(i) = σiu(i) for 1≤ i ≤ r.

The Frobenius norm of a matrixA∈ Rm×n having elements(ai j ) is denoted‖A‖F and is given by

‖A‖2
F =

m

∑
i=1

n

∑
j=1

a2
i j .

It satisfies‖A‖2
F = ∑r

i=1 σ2
i .

For a subspaceV ⊆Rn, letπV,k(A) denote the best rank-k approximation (under the Frobenius norm)
of A with its rows inV. Let

πk(A) = πRn,k(A) =
k

∑
i=1

σiu
(i)v(i)T

be the best rank-k approximation ofA. Also πV(A) = πV,n(A) is the orthogonal projection ofA ontoV.
When we say “a set (or sample) of rows ofA” we mean a set of indices of rows, rather than the actual
rows. For a setSof rows ofA, let span(S) ⊆ Rn be the subspace generated by those rows; we use the
simplified notationπS(A) for πspan(S)(A) andπS,k(A) for πspan(S),k(A).

For subspacesV,W ⊆ Rn, their sum is denotedV +W and is given by

V +W = {x+y∈ Rn : x∈V,y∈W} .

The following elementary properties of the operatorπV will be used:

• πV is linear, that is,πV(λA+B) = λ πV(A)+πV(B) for anyλ ∈ R and matricesA,B∈ Rm×n.

• If V,W ∈ Rn are orthogonal linear subspaces, thenπV+W(A) = πV(A)+ πW(A), for any matrix
A∈ Rm×n.

For a random vectorv, its expectation, denotedE(v), is the vector having as components the expected
values of the components ofv.

2 Improved approximation via adaptive sampling

2.1 Proof that adaptive sampling works

We will proveTheorem1.2 in this section. It will be convenient to formulate an intermediate theorem
as follows, whose proof is quite similar to one in [19].

Theorem 2.1. Let A∈ Rm×n, and V⊆ Rn be a vector subspace. Let E= A− πV(A) and let S be a
random sample of s rows of A from a distribution D such that row i is chosen with probability

Pi =
‖E(i)‖2

‖E‖2
F

. (2.1)

Then, for any nonnegative integer k,

ES(‖A−πV+span(S),k(A)‖2
F)≤ ‖A−πk(A)‖2

F +
k
s
‖E‖2

F .
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Proof. We define vectorsw(1), . . . ,w(k) ∈V +span(S) such thatW = span{w(1), . . . ,w(k)} and show that
W is a good approximation to span{v(1), . . . ,v(k)} in the sense that

ES(‖A−πW(A)‖2
F)≤ ‖A−πk(A)‖2

F +
k
s
‖E‖2

F . (2.2)

Recall thatπk(A) = πspan{v(1),...,v(k)}(A), i. e., span{v(1), . . . ,v(k)} is the optimal subspace upon which to
project. Proving (2.2) proves the theorem, sinceW ⊆V +span(S).

To this end, defineX( j)
l to be a random variable such that fori = 1, . . . ,m andl = 1, . . . ,s,

X( j)
l =

u( j)
i

Pi
E(i) =

u( j)
i

Pi

(
A(i)−πV(A(i))

)
with probabilityPi .

Note thatX(i)
l is a linear function of a row ofA sampled from the distributionD. Let X( j) = 1

s ∑s
l=1X( j)

l ,
and note thatES(X( j)) = ETu( j).

For 1≤ j ≤ k, define:
w( j) = πV(A)Tu( j) +X( j) . (2.3)

Then we have thatES(w( j)) = σ jv( j). We seek to bound the second central moment ofw( j), i. e.,
ES(‖w( j)−σ jv( j)‖2). We have that

w( j)−σ jv
( j) = X( j)−ETu( j) ,

which gives us

ES(‖w( j)−σ jv
( j)‖2) = ES(‖X( j)−ETu( j)‖2)

= ES(‖X( j)‖2)−2ES(X( j)) ·ETu( j) +‖ETu( j)‖2

= ES(‖X( j)‖2)−‖ETu( j)‖2 . (2.4)

We evaluate the first term in (2.4),

ES(‖X( j)‖2) = ES

(∥∥∥1
s

s

∑
l=1

X( j)
l

∥∥∥2)
=

1
s2

s

∑
l=1

ES(‖X( j)
l ‖2)+

2
s2 ∑

1≤l1<l2≤s

ES(X
( j)
l1

·X( j)
l2

)

=
1
s2

s

∑
l=1

ES(‖X( j)
l ‖2)+

s−1
s

‖ETu( j)‖2 . (2.5)

In (2.5) we used thatX( j)
l1

andX( j)
l2

are independent. From (2.4) and (2.5) we have that

ES(‖w( j)−σ jv
( j)‖2) =

1
s2

s

∑
l=1

ES(‖X( j)
l ‖2)− 1

s
‖ETu( j)‖2 . (2.6)

THEORY OFCOMPUTING, Volume 2 (2006), pp. 225–247 232

http://dx.doi.org/10.4086/toc


MATRIX APPROXIMATION AND PROJECTIVECLUSTERING VIA VOLUME SAMPLING

The definition ofPi gives us

ES(‖X( j)
l ‖2) =

m

∑
i=1

Pi
‖u( j)

i E(i)‖
P2

i

≤ ‖E‖2
F . (2.7)

Thus, we have obtained a bound on the second central moment ofw( j):

ES(‖w( j)−σ jv
( j)‖2)≤ 1

s
‖E‖2

F . (2.8)

With this bound in hand, we can complete the proof. Lety( j) = w( j)/σ j for 1≤ j ≤ k, and consider
the matrixF = A∑k

i=1v(i)y(i)T
. The row space ofF is contained inW = span{w(1), . . . ,w(k)}. Therefore,

‖A−πW(A)‖2
F ≤ ‖A−F‖2

F . We will useF to bound the error‖A−πW(A)‖2
F .

By decomposingA−F along the left singular vectorsu(1), . . . ,u(r), we can use the inequality (2.8)
to bound‖A−F‖2

F :

ES(‖A−πW(A)‖2
F)≤ ES(‖A−F‖2

F) =
r

∑
i=1

ES(‖(A−F)Tu(i)‖2
F)

=
k

∑
i=1

ES(‖σiv
(i)−w(i)‖2)+

r

∑
i=k+1

σ
2
i

≤ k
s
‖E‖2

F +‖A−πk(A)‖2
F . (2.9)

We can now proveTheorem1.2 inductively usingTheorem2.1.

Proof ofTheorem1.2. We will prove the inequality by induction ont. Theorem1.1 gives us the base
caset = 1.

For the inductive step, letE = A−πS1∪···∪St−1(A). By means ofTheorem2.1with s≥ k/ε we have
that

ESt (‖A−πS1∪···∪St ,k(A)‖2
F)≤ ‖A−πk(A)‖2

F + ε‖E‖2
F .

Combining this inequality with the fact that‖E‖2
F ≤ ‖A−πS1∪···∪St−1,k(A)‖2

F we get

ESt (‖A−πS1∪···∪St ,k(A)‖2
F)≤ ‖A−πk(A)‖2

F + ε‖A−πS1∪···∪St−1,k(A)‖2
F . (2.10)

Taking the expectation overS1, . . . ,St−1, and using the induction hypothesis fort−1 gives the result:

ES(‖A−πS1∪···∪St ,k(A)‖2
F)≤ ‖A−πk(A)‖2

F + ε ES1,...,St−1

(
‖A−πS1∪···∪St−1,k(A)‖2

F

)
(2.11)

≤ ‖A−πk(A)‖2
F + ε

(
1

1− ε
‖A−πk(A)‖2

F + ε
t−1‖A‖2

F

)
(2.12)

=
1

1− ε
‖A−πk(A)‖2

F + ε
t‖A‖2

F . (2.13)
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2.2 Algorithm

In this section, we present the multipass algorithm for low-rank approximation. We first describe it at a
conceptual level and then give the details of the implementation.

Informally, the algorithm will find an approximation to the best rank-k subspace (the span of
v(1), . . . ,v(k)) by first choosing a sampleT of srandom rows with probabilities proportional to the squared
norms of the rows (as inTheorem1.1). Then we focus on the space orthogonal to the span of the chosen
rows, that is, we consider the matrixE = A−πT(A), which represents the error of our current approx-
imation, and we samples additional rows with probabilities proportional to the squared norms of the
rows of E. We consider the union of this sample with our previous sample, and we continue adding
samples in this way, up to the number of passes that we have chosen.Theorem1.2gives a bound on the
error of this procedure.

Fast Approximate SVD

Input: A∈ Rm×n, integers k≤ m, t, error parameter ε > 0.
Output: A set of k vectors in Rn.

1. Let S= /0, s= k/ε.

2. Repeat t times:

(a) Compute the probabilities Pi = ‖E(i)‖2/‖E‖2
F for i = 1, . . . ,m. (One pass.)

(b) Let T be a sample of s rows of A according to the distribution that assigns probability
Pi to row i. (Another pass.)

(c) Let S= S∪T.

3. Let h1, . . . ,hk be the top k right singular vectors of πS(A).

In what follows, letM be the number of non-zeros ofA.

Theorem 2.2. In 2t passes over the data, where in each pass the entries of the matrix arrive in arbitrary
order, the algorithm finds vectors h1, . . . ,hk ∈ Rn such that with probability at least3/4 their span V
satisfies

‖A−πV(A)‖2
F ≤

(
1+

4ε

1− ε

)
‖A−πk(A)‖2

F +4ε
t‖A‖2

F . (2.14)

The running time is O
(

M kt
ε

+(m+n)k2t2

ε2

)
.

Proof. For the correctness, observe thatπV(A) is a random variable with the same distribution asπS,k(A)
as defined inTheorem1.2. Also,‖A−πS,k(A)‖2

F −‖A−πk(A)‖2
F is a nonnegative random variable and

Theorem1.2gives a bound on its expectation:

ES(‖A−πS,k(A)‖2
F −‖A−πk(A)‖2

F)≤ ε

1− ε
‖A−πk(A)‖2

F + ε
t‖A‖2

F . (2.15)
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Markov’s inequality applied to this variable gives that with probability at least 3/4

‖A−πV(A)‖2
F −‖A−πk(A)‖2

F ≤
4ε

1− ε
‖A−πk(A)‖2

F +4ε
t‖A‖2

F , (2.16)

which implies inequality (2.14).
We will now bound the running time. We maintain a basis of the rows indexed byS. In each iteration,

we extend this basis orthogonally with a new setY of vectors, so that it spans the new sampleT. The
residual squared norm of each row,‖E(i)‖2, as well as the total,‖E‖2

F , are computed by subtracting
the contribution ofπT(A) from the values that they had during the previous iteration. In each iteration,
the projection ontoY needed for computing this contribution takes timeO(Ms). In iteration i, the
computation of the orthonormal basisY takes timeO(ns2i) (Gram-Schmidt orthonormalization ofs
vectors inRn with reference to an orthonormal basis of size at mosts(i + 1)). Thus, the total time
in iteration i is O(Ms+ ns2i); with t iterations, this isO(Mst+ ns2t2). At the end ofStep2 we have
πS(A) in terms of our basis (anm× st matrix). Finding the topk singular vectors inStep3 takes time
O(ms2t2). Bringing them back to the original basis takes timeO(nkst). Thus, the total running time is
O(Mst+ns2t2 +ms2t2 +nkst) or, in other words,O

(
Mkt/ε +(m+n)k2t2/ε2

)
.

3 Volume sampling and multiplicative approximation

We begin with a proof ofTheorem1.3, namely that volume sampling leads to a multiplicative(k+1)-
approximation (in expectation).

Proof ofTheorem1.3. For everyS⊆ {1, . . . ,m}, let ∆S be the simplex formed by{A(i) : i ∈ S} and the
origin. We wish to boundES(‖A− Ãk‖2

F) which can be written as follows:

ES(‖A− Ãk‖2
F) =

1

∑S,|S|=k volk(∆S)2 ∑
S,|S|=k

volk(∆S)2‖A−πS(A)‖2
F . (3.1)

For any(k+1)-subsetS= {i1, . . . , ik+1} of rows ofA, we can express volk+1(∆S)2 in terms of volk(∆T)2

for T = {i1, . . . , ik}, along with the squared distance fromA(ik+1) to HT , whereHT is the linear subspace
spanned by{A(i) : i ∈ T}:

volk+1(∆S)2 =
1

(k+1)2 volk(∆T)2d(A(ik+1),HT)2 . (3.2)

Summing over all subsetsSof sizek+1:

∑
S,|S|=k+1

volk+1(∆S)2 =
1

k+1 ∑
T,|T|=k

m

∑
j=1

1
(k+1)2 volk(∆T)2 d(A( j),HT)2

=
1

(k+1)3 ∑
T,|T|=k

volk(∆T)2
m

∑
j=1

d(A( j),HT)2

=
1

(k+1)3 ∑
T,|T|=k

volk(∆T)2‖A−πT(A)‖2
F , (3.3)
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where in the last step we noted that∑m
j=1d(A( j),HT)2 = ‖A−πT(A)‖2

F . By substituting this equality in
(3.1) and applyingLemma3.1(proved next) twice, we have:

ES(‖A− Ãk‖2
F) =

1

∑T,|T|=k volk(∆T)2

(
(k+1)3 ∑

S,|S|=k+1

volk+1(∆S)2

)

=
1

∑T,|T|=k volk(∆T)2

(
(k+1)
(k!)2 ∑

1≤t1<···<tk+1≤n

σ
2
t1 · · ·σ

2
tk+1

)

≤ 1

∑T,|T|=k volk(∆T)2

(
(k+1)
(k!)2 ∑

1≤t1<···<tk≤r

σ
2
t1 · · ·σ

2
tk

r

∑
j=k+1

σ
2
j

)
(3.4)

=
(k+1)

∑T,|T|=k volk(∆T)2

(
∑

T:|T|=k

volk(∆T)2
r

∑
j=k+1

σ
2
j

)
= (k+1)‖A−Ak‖2

F .

Lemma 3.1.

∑
S,|S|=k

volk(∆S)2 =
1

(k!)2 ∑
1≤t1<t2<···<tk≤r

σ
2
t1σ

2
t2 · · ·σ

2
tk

whereσ1,σ2, · · · ,σr > 0 = σr+1 = · · ·= σn are the singular values of A.

Proof. Let AS be the sub-matrix ofA formed by the rows{A(i) : i ∈ S}. Then we know that the volume

of thek-simplex formed by these rows is given by volk(∆S) = 1
k!

√
det(ASAT

S). Therefore,

∑
S,|S|=k

volk(∆S)2 =
1

(k!)2 ∑
S,|S|=k

det(ASAT
S) =

1
(k!)2 ∑

B: principal
k-minor ofAAT

det(B) . (3.5)

Let det(AAT −λ I) = (−1)mλ m+ cm−1λ m−1 + · · ·+ c0 be the characteristic polynomial ofAAT . From
basic linear algebra we know that the roots of this polynomial are precisely the eigenvalues ofAAT , i. e.,
σ2

1 ,σ2
2 , . . . ,σ2

r and 0 with multiplicity(m− r). Moreover the coefficientcm−k can be expressed in terms
of these roots as:

cm−k = (−1)m−k ∑
1≤t1<t2<···<tk≤r

σ
2
t1σ

2
t2 · · ·σ

2
tk . (3.6)

But we also know thatcm−k is the coefficient ofλ m−k in det(AAT −λ I), which means

cm−k = (−1)m−k ∑
B: principal

k-minor ofAAT

det(B) (3.7)

(see e. g., [8]; we prove it next asProposition3.2). This gives us our desired result.
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Proposition 3.2. Let the characteristic polynomial of M∈ Rm×m be

det(M−λ Im) = λ
m+cm−1λ

m−1 + · · ·+c0 .

Then
cm−k = (−1)m−k ∑

B: principal
k-minor of AAT

det(B) for 1≤ k≤ m .

Proof. First, it is clear thatc0 = det(M). Next, letM′ = M−λ I , andSm be the set of permutations of
{1,2, . . . ,m}. The sign of a permutation sgn(τ), for τ ∈ Perm([m]), is equal to 1 if it is a product of an
even number of transpositions and−1 otherwise. For a subsetS of rows, we denote the submatrix of
entries(Mi, j)i, j∈S by MS.

det(M−λ Im) = det(M′) = ∑
τ∈Perm([m])

sgn(τ)M′
1,τ(1)M

′
2,τ(2) · · ·M

′
m,τ(m) . (3.8)

The termcm−kλ m−k is the sum overτ which fix some setS⊆ [m] of size (m− k), and the elements
∏i∈SM′

i,i contribute(−1)m−kλ m−k and the coefficient comes from the constant term in

∑
τ∈Perm([m]−S)

sgn(τ)∏
i /∈S

M′
i,τ(i) .

Each term in this sum is thec0 term of a principal minor ofM and so the sum is equal to

∑
S,|S|=m−k

det(M[m]−S) .

Hence
cm−k = (−1)m−k ∑

S,|S|=m−k

det(M[m]−S) = (−1)m−k ∑
B: principal

k-minor ofAAT

det(B) . (3.9)

The bound proved inTheorem1.3 is in fact asymptotically tight:

Proposition 3.3. Given anyε > 0, there exists a(k+1)× (k+1) matrix A such that for any k-subset S
of rows of A,

‖A−πS,k(A)‖2
F ≥ (1− ε) (k+1) ‖A−Ak‖2

F .

Proof. The tight example consists of a matrix withk+ 1 rows which are the vertices of a regulark-
dimensional simplex lying on the affine hyperplane{Xk+1 = α} in Rk+1. Let A(1), A(2), . . . , A(k+1)

be the vertices with the pointp = (0,0, . . . ,0,α) as their centroid. Forα small enough, the bestk
dimensional subspace for these points is given by{Xk+1 = 0} and

‖A−Ak‖2
F = (k+1)α2 . (3.10)
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Consider anyk-subset of rows from these, sayS= {A(1),A(2), . . . ,A(k)}, and letHS be the linear subspace
spanning them. Then,

‖A−πS,k(A)‖2
F = d(A(k+1),HS)2 . (3.11)

We claim that for anyε > 0, α can be chosen small enough so that

d(A(k+1),HS)≥
√

(1− ε)(k+1)α . (3.12)

Chooseα small enough so thatd(p,HS)≥
√

(1− ε)α. Now

d(A(k+1),HS)
d(p,HS)

=
d(A(k+1),conv(A(1), . . . ,A(k)))

d(p,conv(A(1), . . . ,A(k)))
= k+1 (3.13)

since the points form a simplex andp is their centroid. The claim follows. Hence,

‖A−πS,k(A)‖2
F = d(A(k+1),HS)2 ≥ (1− ε) (k+1)2

α
2 = (1− ε) (k+1) ‖A−Ak‖2

F . (3.14)

Next, we proveTheorem1.4. This theorem follows by interpretingTheorem1.3 as an existence
theorem and applyingTheorem2.1.

Proof ofTheorem1.4. By Theorem1.3, there exists ak-subsetS1 of rows ofA such that

‖A−πS1(A)‖2
F ≤ (k+1)‖A−Ak‖2

F . (3.15)

Now, applyingTheorem2.1 with V = span(S1) ands= k(k+1)/ε we get that a random sampleS2 of
the rows ofA (according to the specified distribution) satisfies

ES2(‖A−πV+span(S2),k(A)‖2
F)≤ (1+ ε)‖A−Ak‖2

F (3.16)

so there exists a subset of the rows achieving the expectation. SinceV +span(S2) = span(S1∪S2), and
|S1∪S2|= k+k(k+1)/ε, we have the desired result.

4 Application: Projective clustering

In this section, we give a polynomial-time approximation scheme for the projective clustering problem
described inSection1.2. We note that a simple multiplicative(k + 1)-approximation follows from
Theorem1.3 with running timeO(dnjk). Let V1, . . . ,Vj be the optimal subspaces partitioning the point
set intoP1∪ ·· · ∪Pj , wherePi is the subset of points closest toVi . Theorem1.3 tells us that eachPi

contains a subsetSi of k points whose spanV ′
i is a(k+1)-approximation, i. e.,

∑
p∈Pi

d(p,V ′
i )

2 ≤ (k+1) ∑
p∈Pi

d(p,Vi)2 .

We can find theSi ’s by simply enumerating all possible subsets ofk points, consideringj of them at a
time, and taking the best of these. This leads to the complexity ofdnjk.
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Getting a PTAS will be a bit more complicated.Theorem1.4 implies that there exists a setP̂i ⊆ Pi

of sizek+k(k+1)/ε in whose span lies an approximately optimalk-dimensional subspaceWi . We can
enumerate over all combinations ofj subsets, each of sizek+ k(k+1)/ε to find theP̂i , but we cannot
enumerate the infinitely manyk-dimensional subspaces lying in the span ofP̂i . One natural approach to
solve this problem would be to put a finite grid down in a unit ball in the span ofP̂i . The hope would be
that there arek grid points whose spanG is “close” toWi , since each basis vector forWi is close to a grid
point. However, this will not work; consider a pointp very far from the origin. Although the distance
between a basis vector and a grid point might be small, the error induced by projectingp onto a grid
point is proportional to its distance to the origin, which could be too large.

The problem described above suggests that a grid construction must be dependent on the point setPi .
Our grid construction considers grid points in the span ofP̂i , but instead of a uniform grid in a unit ball,
we consider grid points at bounded distance from eachp∈ πspan(P̂i)(Pi), i. e., the points inPi projected

to the span ofP̂i . This avoids the problem of points far from the origin, since there are grid points
around each point. Note that we only put grid points around projected points. This is because we seek
a subspace “close” toWi , which itself lies in the span of̂Pi ; Wi and any subspace lying in the span ofP̂i

incur the same error for the component of a point orthogonal to the span ofP̂i . In Lemma4.1, we show
that there exists a subspace spanned byk points in our grid that is not much worse thanWi . The lemma
is stated for a general point set, but we apply it to the projected points inTheorem1.5.

The algorithm is given below.

Algorithm Cluster

Input: P⊆ Rd, error parameter 0 < ε < 1, and upper bound B on the optimal cost.
Output: A set {F1, . . . ,Fj} of j k-dimensional subspaces.

1. Set δ = ε
√

B
16jk

√
(1+ ε

2)n
, R=

√
(1+ ε

2)B+2δk.

2. For each subset T of P of size j(k+2k(k+1)/ε):

(a) For each equipartition T = T1∪·· ·∪Tj :

i. For each i, construct a δ -net Di with radius R for the projection of P to the span
of Ti .

ii. For each way of choosing j subspaces F1, . . . ,Fj , where Fi is the span of k points
from Di , compute the cost C(F1, . . . ,Fj).

3. Report the subspaces F1, . . . ,Fj of minimum cost C(F1, . . . ,Fj).

In Step2(a)i, we construct aδ -netDi . A δ -netD with radiusR for S is a set such that for any point
q for which d(q, p)≤ R, for somep∈ S, there exists ag∈ D such thatd(q,g)≤ δ . The size of aδ -net
is exponential in the dimension ofS. This is why it is crucial that we construct theδ -net forP projected
to the span ofTi . By doing so, we reduce the dimension fromd to O(k2/ε). The correctness of the
algorithm relies crucially on the next lemma.
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Lemma 4.1. Let δ > 0. Let P be a point set, with|P| = n and W be a subspace of dimension k. Let D
be aδ -net with radius R for P, satisfying

R≥
√

∑
p∈P

d(p,W)2 +2δk .

Then there exists a subspace F spanned by k points in D such that:

∑
p∈P

d(p,F)2 ≤ ∑
p∈P

d(p,W)2 +4k2nδ
2 +4kδ ∑

p∈P

d(p,W) . (4.1)

Proof. We construct the subspaceF in k steps. LetF0 = W. Inductively, in stepi, we choose a pointpi

and rotateFi−1 so that it includes a grid pointgi aroundpi . The subspace resulting from the last rotation,
Fk, is the subspaceF with the bound promised by the lemma. To prove that (4.1) holds, we prove the
following inequality for any pointp∈ P going fromFi−1 to Fi

d(p,Fi)≤ d(p,Fi−1)+2δ . (4.2)

Summing over thek steps, squaring, and summing overn points, we have the desired result.
Let G1 = {~0}. Gi will be the span of the grid points{g1,g2, . . . ,gi−1}. We describe how to construct

the rotationRi . Let pi ∈ P maximize‖πG⊥
i
(πFi−1(pi))‖ and letgi ∈ D minimize d(πFi−1(pi),gi). The

point pi is chosen as the furthest point from the origin in the subspace ofFi−1 orthogonal toGi . The grid
pointgi is the point closest topi in Fi−1. Consider the planeZ defined by

πG⊥
i
(gi), πG⊥

i
(πFi−1(pi)), and~0 .

Let θ be the angle betweenπG⊥
i
(gi) andπG⊥

i
(πFi−1(pi)). Let Ri be the rotation in the planeZ by the

angleθ , and defineFi = RiFi−1. SetGi+1 = Gi + span{gi}. By choosing the rotation dependent onpi ,
we ensure that no point moves more thanpi . This allows us to prove (4.2) for all pointsp.

Now we prove inequality (4.2). We do so by proving the following inequality by induction oni for
any pointp:

d(πFi−1(p),Ri πFi−1(p))≤ 2δ . (4.3)

Note that this proves (4.2) by applying the triangle inequality, since:

d(p,Fi)≤ d(p,Fi−1)+d(πFi−1(p),πFi (p)) (4.4)

≤ d(p,Fi−1)+d(πFi−1(p),Ri πFi−1(p)) . (4.5)

The base case of the inequality,i = 1, is trivial. Consider the inductive case; here, we are bounding the
distance betweenπFi−1(p) andRi πFi−1(p). It suffices to bound the distance between these two points in
the subspace orthogonal toGi , since the rotationRi is chosen orthogonal toGi . That is,

d(πFi−1(p),Ri πFi−1(p))≤ d(πG⊥
i
(πFi−1(p)),Ri πG⊥

i
(πFi−1(p))) . (4.6)

Now, consider the distance between a pointπG⊥
i
(πFi−1(p)) and its rotation,Ri πG⊥

i
(πFi−1(p)). This dis-

tance is maximized when‖πG⊥
i
(πFi−1(p))‖ is maximized, so we have, by construction, that the maxi-

mum value is achieved bypi :

d(πG⊥
i
(πFi−1(p)),Ri πG⊥

i
(πFi−1(p)))≤ d(πG⊥

i
(πFi−1(pi)),Ri πG⊥

i
(πFi−1(pi))) . (4.7)
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By the triangle inequality we have:

d(πG⊥
i
(πFi−1(pi)),Ri πG⊥

i
(πFi−1(pi)))≤ d(πG⊥

i
(πFi−1(pi)),πG⊥

i
(gi))+d(πG⊥

i
(gi),Ri πG⊥

i
(πFi−1(pi))) .

To bound the first term,d(πG⊥
i
(πFi−1(pi)),πG⊥

i
(gi)), note that

d(πG⊥
i
(πFi−1(pi)),πG⊥

i
(gi))≤ d(πFi−1(pi),gi) .

We show thatπFi−1(pi) is within a ball of radiusRaroundpi ; this implies

d(πFi−1(pi),gi)≤ δ (4.8)

by construction of theδ -net aroundpi . We have:

d(pi ,πFi−1(pi))≤ d(pi ,F0)+
i−2

∑
j=1

d(πFj (pi),πFj+1(pi))

≤
√

∑
p∈P

d(p,W)2 +
i−2

∑
j=1

d(πFj (pi),Rj+1 πFj (pi))

≤
√

∑
p∈P

d(p,W)2 +2δk≤ R .

The third line uses the induction hypothesis.
Now we bound the second term,d(πG⊥

i
(gi),Ri πG⊥

i
(πFi−1(pi))). Note thatRi πG⊥

i
(πFi−1(pi)) is just a

rescaling ofπG⊥
i
(gi) and that‖πG⊥

i
(πFi−1(p∗))‖= ‖Ri πG⊥

i
(πFi−1(p∗))‖, since rotation preserves norms.

The bound on the first term implies that‖πG⊥
i
(gi)‖ ≥ ‖πG⊥

i
(πFi−1(p∗))‖−δ , so

d(πG⊥
i
(gi),Ri πG⊥

i
(πFi−1(pi)))≤ δ . (4.9)

Combining (4.8) and (4.9), we have proved (4.3).

Now, we are ready to proveTheorem1.5, which includes the correctness of the algorithm.

Proof ofTheorem1.5. Assume that the optimal solution is of value at mostB. Let V1, . . . ,Vj be the
optimal subspaces, and letP1, . . . ,Pj be the partition ofP such thatPi is the subset of points closest to
Vi . Theorem1.4 implies that there existsSi ⊆ Pi of size at mostk+ 2k(k+ 1)/ε such that there is a
k-dimensional subspaceWi in the span ofSi with

∑
p∈Pi

d(p,Wi)2 ≤
(

1+
ε

2

)
∑
p∈Pi

d(p,Vi)2 ≤
(

1+
ε

2

)
B . (4.10)

Considerπspan(Si)(Pi), the projection ofPi to span(Si). We want to applyLemma4.1 to πspan(Si)(Pi) and
Wi with radiusR andδ as in the algorithm. Note that the optimal solution is of value at mostB, so we
have that:√

∑
p∈πspan(Si )(Pi)

d(p,Wi)2 +2δk≤
√

∑
p∈Pi

d(p,Wi)2 +2δk≤
√(

1+
ε

2

)
B+2δk = R . (4.11)
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Let Fi be the subspace spanned byk points from theδ -netDi for πspan(Si)(Pi) promised byLemma4.1.
For everyi, we have that:

∑
p∈πspan(Si )(Pi)

d(p,Fi)2 ≤ ∑
p∈πspan(Si )(Pi)

d(p,Wi)2 +4k2nδ
2 +4kδ ∑

p∈πspan(Si )(Pi)
d(p,Wi)

≤ ∑
p∈πspan(Si )(Pi)

d(p,Wi)2 +
ε

4 j
B+4kδ

(
n ∑

p∈πspan(Si )(Pi)
d(p,Wi)2

)1/2

≤ ∑
p∈πspan(Si )(Pi)

d(p,Wi)2 +
ε

2 j
B . (4.12)

Now, for any pointp∈ Pi , we can decompose the squared distance fromp to Fi as follows:

d(p,Fi)2 = d(πspan(Si)(p),Fi)2 +d(πspan(Si)⊥(p),Fi)2 .

The same decomposition can be done ford(p,Wi)2. Now, sinceFi andWi both lie in the span ofSi , we
have the following for any pointp ∈ Pi : d(πspan(Si)⊥(p),Fi)2 = d(πspan(Si)⊥(p),Wi)2. Applying this to
(4.12) and (4.10), we have:

∑
p∈Pi

d(p,Fi)2 ≤
(

1+
ε

2

)
∑
p∈Pi

d(p,Vi)2 +
ε

2 j
B .

Let S=
⋃

i Si . The algorithm will enumerateS in Step2a, and it will enumerate the partitionS1∪·· ·∪Sj

in Step2a. In Step2(a)i, the algorithm will, for eachi, construct aδ -netDi for πspan(Si)(P). Lastly, in
Step2(a)ii it will consider the subspacesF1, . . . ,Fj whose existence is proven above. The cost associated
with this solution is:

C(F1, . . . ,Fj)≤
j

∑
i=1

∑
p∈Pi

d(p,Fi)2 ≤
(

1+
ε

2

) j

∑
i=1

∑
p∈Pi

d(p,Vi)2 +
ε

2
B = (1+ ε)B .

The number of subsets of sizek+2k(k+1)/ε enumerated by the algorithm is at most
( n

2(k+1)2/ε

) j
.

A δ -net D with radiusR for a point setQ of dimensiond is implemented by putting a box with side
length 2R of grid width δ/

√
d around each point inQ. Let X be the set of grid points in the box around

a pointp. The number of subspaces in eachδ -netDi is therefore at most the number ofj subspaces that
one can choose for a partitionT1∪ ·· ·∪Tj is (n|X|) jk. The computation for projecting points, finding a
basis, and determining the cost of a candidate family of subspaces takes timeO(nd jk). The cardinality
of X is (for ε < 1):

|X|=

(
2R

δ/
√

2(k+1)2/ε

)2(k+1)2/ε

≤
(

O
(

jk

√
n
ε

))2(k+1)2/ε

. (4.13)

Therefore, the running time of the algorithm is at mostO(nd jk) n2 j(k+1)2/ε (n|X|) jk = d
(

n
ε

)O( jk3/ε)
.
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5 Conclusions and subsequent work

Theorem1.4was further improved in [13] to show that for any real matrix, there existO(k/ε +k logk)
rows whose span contains the rows of a multiplicative(1+ ε)-approximation to the best rank-k matrix.
Using this subset ofO(k/ε +k logk) rows, the exponent in the running time of the projective clustering
algorithm decreases fromO( jk3/ε) to O( jk2/ε). It would be interesting to know if we can compute this
set ofO(k/ε + k logk) rows efficiently in a small number of passes. It would also be nice to see other
applications of volume sampling.

In a recent result, Sarlos [34] proved that, using random linear combinations of rows instead of a
subset of rows, we can compute a multiplicative(1+ ε)-approximation using only 2 passes.
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