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Abstract: We study the maximization version of the fundamental graph coloring problem. Here
the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction
of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring
properly colors an expected fraction 1− 1

k of edges. We prove that given a graph promised to be
k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ≈ 1− 1

33k
of edges. Previously, only a hardness factor of 1−O

( 1
k2

)
was known. Our result pins down the

correct asymptotic dependence of the approximation factor on k. Along the way, we prove that
approximating the Maximum 3-colorable subgraph problem within a factor greater than 32

33 is
NP-hard.

Using semidefinite programming, it is known that one can do better than a random coloring
and properly color a fraction 1− 1

k +
2lnk

k2 of edges in polynomial time. We show that, assuming
the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1− 1

k +

O
( lnk

k2

)
of edges of a k-colorable graph.
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1 Introduction
1.1 Problem statement

A graph G = (V,E) is said to be k-colorable for some positive integer k if there exists a k-coloring χ : V →
{1,2, . . . ,k} such that for all edges (u,v) ∈ E, χ(u) 6= χ(v). For k > 3, finding a k-coloring of a k-colorable
graph is a classic NP-hard problem. The problem of coloring a graph with the fewest number of colors
has been extensively studied. In this paper, our focus is on hardness results for the following maximization
version of graph coloring: Given a k-colorable graph (for some fixed constant k > 3), find a k-coloring that
maximizes the fraction of properly colored edges. Throughout this paper, for a given coloring, we say an edge
is miscolored by this coloring if both of its endpoints receive the same color and properly colored otherwise.
If no such edge exists, we call the coloring proper. Note that for k = 2 the problem is trivial — one can find a
proper 2-coloring in polynomial time when the graph is bipartite (2-colorable).

We will call this problem Max k-Colorable Subgraph. The problem is equivalent to partitioning the
vertices into k parts so that a maximum number of edges are cut. This problem is more popularly referred to
as Max k-Cut in the literature; however, in the Max k-Cut problem the input is an arbitrary graph that need
not be k-colorable. To highlight this difference, we use Max k-Colorable Subgraph to refer to this variant.
We stress that we will use this convention throughout the paper: Max k-Colorable Subgraph always refers to
the “perfect completeness” case, when the input graph is k-colorable.1 Since our focus is on hardness results,
we note that this restriction only makes our results stronger.

A factor α = αk approximation algorithm for Max k-Colorable Subgraph is an efficient algorithm that
given as input a k-colorable graph outputs a k-coloring that properly colors at least a fraction α of the
edges. We say that Max k-Colorable Subgraph is NP-hard to approximate within a factor β if no factor β

approximation algorithm exists for the problem unless P = NP. The goal is to determine the approximation
threshold of Max k-Colorable Subgraph: the largest α as a function of k for which a factor α approximation
algorithm for Max k-Colorable Subgraph exists.

1.2 Previous results

The algorithm which simply picks a random k-coloring, without even looking at the graph, properly colors
an expected fraction 1− 1/k of edges. Frieze and Jerrum [4] used semidefinite programming to give a
polynomial time factor 1− 1/k+ 2lnk/k2 approximation algorithm for Max k-Cut, which in particular
means the algorithm will color at least this fraction of edges in a k-colorable graph. This remains the
best approximation guarantee for Max k-Colorable Subgraph known to date. Khot, Kindler, Mossel, and
O’Donnell [11] showed that obtaining an approximation factor of 1−1/k+2lnk/k2 +Ω(ln lnk/k2) for Max
k-Cut is Unique Games-hard, thus showing that the Frieze-Jerrum algorithm is essentially the best possible.
However, due to the “imperfect completeness” inherent to the Unique Games conjecture, this hardness result
does not hold for Max k-Colorable Subgraph when the input is required to be k-colorable.

For Max k-Colorable Subgraph, the best hardness known prior to our work was a factor 1−Θ(1/k2).
This is obtained by combining an inapproximability result for Max 3-Colorable Subgraph due to Petrank [15]
with a reduction from Papadimitriou and Yannakakis [14]. It is a natural question whether is an efficient
algorithm that could properly color a fraction 1−1/k1+ε of edges given a k-colorable graph for some absolute
constant ε > 0. The existing hardness results do not rule out the possibility of such an algorithm.

For Max k-Cut, an NP-hardness factor was shown by Kann, Khanna, Lagergren, and Panconesi [9] —
for some absolute constants β > α > 0: They showed that it is NP-hard to distinguish graphs that have a

1While a little non-standard, this makes our terminology more crisp, as we can avoid repeating the fact that the hardness holds for
k-colorable graphs in our statements.
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k-cut in which a fraction (1−α/k) of the edges cross the cut from graphs whose Max k-Cut value is at most
a fraction (1−β/k) of edges. This hardness result was proven by reduction from MaxCut. Since MaxCut is
easy when the graph is 2-colorable, this reduction does not yield any hardness for Max k-Colorable Subgraph.

1.3 Our results

Petrank [15] showed the existence of a γ0 > 0 such that it is NP-hard to find a 3-coloring that properly colors
more than a fraction (1− γ0) of the edges of a 3-colorable graph. The value of γ0 in [15] was left unspecified
and would be very small if calculated. The reduction in [15] was rather complicated, involving expander
graphs and starting from the weaker hardness bounds for bounded occurrence satisfiability (as opposed to,
say, problems for which deciding between perfect completeness and 1

2 soundness is hard). We prove that the
NP-hardness holds with γ0 =

1
33 . In other words, it is NP-hard to obtain an approximation ratio bigger than

32
33 for Max 3-Colorable Subgraph. The reduction is from the constraint satisfaction problem corresponding
to the adaptive 3-query PCP with perfect completeness from [6]. Note that we are interested in making the
constant γ0 as large as possible, which is the reason why we went through a different reduction than simply
re-using Petrank’s hardness result [15].

By a reduction from Max 3-Colorable Subgraph, we prove that for every k > 3, the Max k-Colorable
Subgraph is NP-hard to approximate within a factor greater than ≈ 1− 1

33k (Theorem 2.9). This identifies the
correct asymptotic dependence on k of the best possible approximation factor for Max k-Colorable Subgraph.
The reduction is similar to the one in [9], though some crucial changes have to be made in the construction and
some new difficulties overcome in the soundness analysis when reducing from Max 3-Colorable Subgraph
instead of MaxCut. Furthermore the constant in front of 1

k is the same with constant γ0 of 3-coloring case.
Any improvement for 3-coloring hardness will immediately apply to general k-coloring case as well.

In the quest for pinning down the exact approximability of Max k-Colorable Subgraph, we prove the
following conditional result. Assuming the so-called 2-to-1 conjecture (see Definition 3.4, Section 3.1),
it is hard to approximate Max k-Colorable Subgraph within a factor 1− 1

k +O
( lnk

k2

)
. In other words, the

Frieze-Jerrum algorithm is optimal up to lower order terms in the approximation ratio even for instances of
Max k-Cut where the graph is k-colorable.

Unlike the Unique Games Conjecture (UGC), the 2-to-1 conjecture allows perfect completeness, i.e., the
hardness holds even for instances where an assignment satisfying all constraints exists. The 2-to-1 conjecture
was used by Dinur, Mossel, and Regev [3] to prove that for every constant c > 4, it is NP-hard to color a
4-colorable graph with c colors. We analyze a similar reduction for the k-coloring case when the objective is
to maximize the fraction of edges that are properly colored by a k-coloring. Our analysis uses some of the
machinery developed in [3], which in turn extends the invariance principle of [12]. The hardness factor we
obtain depends on the spectral gap of a certain k2× k2 stochastic matrix.

Remark 1.1. In general it is far from clear which Unique Games-hardness results can be extended to hold
with perfect completeness by assuming, say, the 2-to-1 (or some related) conjecture. In this vein, we also
mention the result of O’Donnell and Wu [13] who showed a tight hardness for approximating satisfiable
constraint satisfaction problems on three Boolean variables assuming the d-to-1 conjecture for any fixed d.
While the UGC assumption has led to a nearly complete understanding of the approximability of constraint
satisfaction problems [16], the approximability of satisfiable constraint satisfaction problems remains a
mystery to understand in any generality.
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2 Unconditional Hardness Results for Max k-Colorable Subgraph

We will first prove a hardness result for Max 3-Colorable Subgraph, and then reduce this problem to Max
k-Colorable Subgraph.

2.1 Inapproximability result for Max 3-Colorable Subgraph

Petrank [15] showed that Max 3-Colorable Subgraph is NP-hard to approximate within a factor of (1− γ0)
for some constant γ0 > 0. This constant γ0 is presumably very small, since the reduction starts from bounded
occurrence satisfiability and uses expander graphs. We prove a much better inapproximability factor below,
via a simpler proof.

Theorem 2.1 (Max 3-Colorable Subgraph Hardness). The Max 3-Colorable Subgraph problem is NP-hard
to approximate within a factor of 32

33 + ε for every constant ε > 0.

Remark 2.2. In a recent work, Austrin et al. [1] improved the hardness of approximation factor in our
Theorem 2.1 to 16

17 + ε .

For the proof of this theorem, we will reduce from a hard to approximate constraint satisfaction problem
(CSP), stated below. This CSP is related to the adaptive 3-query PCP (with perfect completeness and
soundness 1/2+ ε for any desired constant ε) given in [6], which in turn is based on Håstad’s PCP for
showing tight inapproximability of Max 3SAT on satisfiable instances.

Definition 2.3 (The GLST CSP). An instance of the GLST constraint satisfaction problem will have variables
partitioned into three parts X,Y and Z. Each constraint will be of the form (xi∨ (Yj = zk))∧ (xi∨ (Yj = zl)),
where xi ∈ X, zk,zl ∈ Z are variables (unnegated) and Yj is a literal (Yj ∈ {y j,y j} for some variable y j ∈ Y).
The goal is to find a Boolean assignment to the variables in X∪Y∪Z that satisfies as many constraints as
possible.

The following hardness result will be our starting point in the reduction establishing Theorem 2.1.

Proposition 2.4. For all constants ε > 0, given an instance of the GLST CSP, it is NP-hard to distinguish
between the following two cases:

• YES instances: There is a Boolean assignment to the variables that satisfies all the constraints.

• NO instances: Every Boolean assignment to the variables satisfies at most a fraction (1/2+ ε) of the
constraints.

Remark 2.5. Without the restriction that the instance is tripartite (i.e., the x, Y , and z variables come from
disjoint parts) and that the z-variables never appear negated, the above hardness result follows immediately
from [6]. However, these extra structural restrictions can be ensured by an easy modification to the PCP
construction in [6]. The PCP in [6] has a bipartite structure: the proof is partitioned into two parts called the A-
tables and B-tables, and each test consists of probing one bit A( f ) from an A table and 3 bits B(g),B(g1),B(g2)
from the B table, and checking (A( f )∨ (B(g) = B(g1))∧ (A( f )∨ (B(g) = B(g2)). Further these tables are
folded, meaning that A( f ) =−A(− f ) and B(g) =−B(−g) are enforced by construction, and this leads to
the occurrence of negations when the PCP checks are viewed as constraints in the CSP world. In fact, as
argued in [5], one does not need the B-table to be folded if one makes a slight change to the predicate and
checks the condition (A( f )∨ (B(g) = B(−g1))∧ (A( f )∨ (B(g) = B(−g2)). Not folding the B-table gives
further control to how negations appear in the constraints.

4



The proof of Proposition 2.4 is based on the observation that the analysis of the PCP construction in [6]
goes through with minor changes, even if (i) the queries at locations g1 and g2 are made in a parallel C-table
instead of also being made in the B table, and (ii) the C-table is not required to be folded (though the A and
B tables are still folded). 2 We skip a full formal proof of this as it will take us too far afield into the inner
Fourier-analytic workings of the analysis of [6]. However, in Appendix A, we indicate the main changes
needed in the analysis when a C-table is used. This should suffice to convince those generally familiar with
Håstad’s work [8] about the claim of Proposition 2.4.
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Figure 1: Global gadget for truth value assign-
ments. Blocks Xi, Yj and Zl are replicated for all
vertices in X, Y and Z. Edge weights are shown
next to each edge.

TF

xi zk zlYj

A′ B′

A B

Figure 2: Local gadget for each constraint of the
form (xi∨Yj = zk)∧ (xi∨Yj = zl). All edges have
unit weight. Labels A,A′,B,B′ refer to the local
nodes in each gadget.

Proof. Let I be an instance of the GLST CSP with m constraints of the above form on variables V=X∪Y∪Z.
Let X= {x1,x2, . . . ,xn1}, Y= {y1,y2, . . . ,yn2} and Z= {z1,z2, . . . ,zn3}. From the instance I we create a graph
G for the Max 3-Colorable Subgraph problem as follows. There is a node xi for each variable xi ∈ X, a node
zl for each zl ∈ Z, and a pair of nodes {y j,y j} for the two literals corresponding to each y j ∈ Y. There are
also three global nodes {R,T,F} representing boolean values which are connected in a triangle with edge
weights m/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadget specific to that constraint shown in Figure 2.
Note that there are 10 edges of unit weight in this gadget. The nodes y j,y j are connected to node R by a
triangle whose edge weights equal w j =

∆(y j)+∆(y j)
2 . Here ∆(X) denotes the total number of edges going from

node X into all the local gadgets. Note that ∆(xi) equals twice the total number of occurrences of xi in all
constraints, and similarly for ∆(y j) and ∆(y j). For the z-variables, ∆(zl) equals the number of occurrences of
zl in constraints of the CSP. The nodes xi and zl connected to R with an edge of weight ∆(xi)/2 and ∆(zl)/2
respectively.

Remark 2.6. It has been shown by Crescenzi, Silvestri and Trevisan [2] that any hardness result for weighted
instances of Max k-Cut carries over to unweighted instances assuming the total edge weight is polynomially
bounded. In fact, their reduction preserves k-colorability, so an inapproximability result for the weighted Max
k-Colorable Subgraph problem also holds for the unweighted version. Therefore all our hardness results hold
for the unweighted Max k-Colorable Subgraph problem.

2Note that these restrictions in the PCP world exactly correspond to the structural restrictions of the CSP instance in Definition
2.3.
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Let us now prove the completeness and soundness properties of the reduction.

Lemma 2.7 (Completeness). Given an assignment of variables σ : V→{0,1} which satisfies at least c of
the constraints, we can construct a 3-coloring of G with at most m− c improperly colored edges (each of
weight 1).

Proof. We define the coloring χ : V (G)→ [3] in the obvious way, with nodes T , R and F fixed to different
colors. Then define

χ(xi) =

{
χ(T ) if σ(xi) = 1,
χ(F) else.

and similarly for the nodes y j, zl . Define

χ(yi) =

{
χ(F) if σ(y j) = 1,
χ(T ) else.

Now, for the constraints satisfied by this assignment, (xi ∨ (Yj = zk))∧ (xi ∨ (Yj = zl)), consider the
corresponding gadget. Let Sugg(A) = [3]\{χ(xi),χ(T )} and Sugg(B) = [3]\{χ(Yj),χ(zk)} be the available
colors to A and B which can properly color all edges incident to variables. Notice that none of these sets are
empty and since xi∨ (Yj = zk) is true, at least one of these sets Sugg(A) and Sugg(B) has two elements in it.
Hence there exists a coloring of A and B from sets Sugg(A) and Sugg(B) such that χ(A) 6= χ(B). The same
argument also holds for A′ and B′, therefore all edges in this gadget are properly colored.

For the violated constraints, either Sugg(A) or Sugg(A′) has one element. Augmenting that set with the
color χ(xi) will cause only one edge to be violated.

Lemma 2.8 (Soundness). Given a 3-coloring of G, χ , such that the total weight of edges that are not properly
colored by χ is at most τ < m/2, we can construct an assignment σ ′ : V→{0,1} to the variables of the CSP
instance that satisfies at least m− τ constraints.

Proof. Since τ < m/2, the coloring χ must give three different colors to the nodes T , F , and R. If χ(xi) =
χ(R), then randomly choosing χ(xi) from {χ(T ),χ(F)} will, in expectation, make at most half of the local
gadget edges going out of xi improperly colored, which is exactly the value ∆(xi)/2 gained. So we can
assume that χ(xi) ∈ {χ(T ),χ(F)} for each xi. A similar argument holds for the nodes zl . Now consider
the nodes y j and y j for a variable in Y . If χ(y j) = χ(R), χ(y j) = χ(R) or χ(y j) = χ(y j), then randomly
choosing (χ(y j),χ(y j)) from {(χ(T ),χ(F)),(χ(F),χ(T ))} will, in expectation, make at most half of the
local gadget edges going out of nodes y j and y j improperly colored, which is exactly the value w j gained.

To summarize, we can assume that nodes T ,F and R are colored differently, χ(xi),χ(Yj),χ(zl) ∈
{χ(T ),χ(F)} and χ(y j) 6= χ(y j). Thus all edges other than the edges inside the local gadgets are properly
colored by χ , and by assumption at most τ edges are miscolored by χ .

Now define the natural assignment σ ′ that assigns a variable of V the value 1 if the associated variable
received the color χ(T ), and the value 0 if its color is χ(F).

Consider a local gadget, with all edges properly colored, corresponding to the constraint (xi ∨ (Yj =
zk))∧ (xi∨ (Yj = zl)). Assume σ ′(xi) = 0, which implies χ(A) = χ(R). Then both neighbors of B besides A
must have the same color, therefore σ(Yj) = σ(zk). The other case when σ ′(xi) = 1 is similar. Hence the
assignment σ ′ will satisfy this constraint.

Since the local gadgets corresponding to different constraints have disjoint sets of edges, it follows that
the number of constraints violated by the assignment σ ′ is at most τ .
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Returning to the proof of Theorem 2.1, the total weight of edges in G is

10m+
3m
2

+
n1

∑
i=1

∆(xi)

2︸ ︷︷ ︸
m

+
n2

∑
j=1

3w j +
n3

∑
l=1

∆(zl)

2︸ ︷︷ ︸
m

=
27
2

m+
3
2

n2

∑
j=1

(∆(yi)+∆(y j))︸ ︷︷ ︸
2m

=
33
2

m .

By the completeness lemma, YES instances of the CSP are mapped to graphs G that are 3-colorable. By
the soundness lemma, NO instances of the CSP are mapped to graphs G such that every 3-coloring miscolors
at least a fraction (1/2−ε)

33/2 = 1−2ε

33 of the total weight of edges. Since ε > 0 is an arbitrary constant, the proof
of Theorem 2.1 is complete.3

2.2 Max k-Colorable Subgraph Hardness

Theorem 2.9. For every fixed integer k > 3 and every ε > 0, it is NP-hard to approximate Max k-Colorable
Subgraph within a factor of 1− 1

33(k+ck)+ck
+ ε where ck = k mod 3 6 2.

Remark 2.10. The hardness factor in Theorem 2.9 can be improved to 1− 1
17(k+ck)+ck

+ ε using the earlier
mentioned improved hardness of approximation result for Max 3-Colorable Subgraph due to Austrin et
al. [1].

Proof. We will reduce Max 3-Colorable Subgraph to Max k-Colorable Subgraph and then apply Theorem 2.1.
Throughout the proof, we will assume k is divisible by 3. At the end, we will cover the remaining cases
also. The reduction is inspired by the reduction from MaxCut to Max k-Cut given by Kann et al. [9] (see
Remark 2.13). Some modifications to the reduction are needed when we reduce from Max 3-Colorable
Subgraph, and the analysis has to handle some new difficulties. The details of the reduction and its analysis
follow.

Let G = (V,E) be an instance of Max 3-Colorable Subgraph. By Theorem 2.1, it is NP-hard to tell if G
is 3-colorable or every 3-coloring miscolors a fraction 1

33 − ε of edges. We will construct a graph H such that
H is k-colorable when G is 3-colorable, and a k-coloring which miscolors at most a fraction µ of the total
weight of edges of H implies a 3-coloring of G with at most a fraction µk of miscolored edges. Combined
with Theorem 2.1, this gives us the claimed hardness of Max k-Colorable Subgraph.

Let K′k/3 denote the complete graph including loops on k/3 vertices. Let G′ be the tensor product
graph between Kk/3 and G, G′ = K′k/3⊗G as defined by the following: Identify each node in G′ with
(u, i),u∈V (G), i∈ {1,2, . . . ,k/3}. The edges of G′ are ((u, i),(v, i′)) for (u,v)∈E and any i, i′ ∈ {1, . . . ,k/3}.

We construct another graph H by making three copies of G′, and identifying the nodes with (u, i, j),(u, i)∈
V (G′), j ∈ {1,2,3}. The edge set of this new graph is defined in the following way: There are edges between
all nodes of the form (u, i, j) and (u, i′, j′) with weight 2

3 du if either i 6= i′ or j 6= j′. Here du is degree of node
u.

The total weight of edges in this new graph, H, is equal to

∑
u∈V

((
k
2

)
2
3

du +
3
2

(
k
3

)2

du

)
6 k2m .

Lemma 2.11. If G is 3-colorable, then H is k-colorable.

3Our reduction produced a graph with edge weights, but by Remark 2.6, the same inapproximability factor holds for unweighted
graphs as well.
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Proof. Let χG : V (G) → {1,2,3} be a 3-coloring of G. Consider the following coloring function for
H, χH : V (H)→ {1,2, . . . ,k}. For node (u, i, j), let χH((u, i, j)) = π j(χG(u)) + 3(i− 1). Here π is the

permutation
(

1 2 3
2 3 1

)
, and π j(x) = π(. . .(π(︸ ︷︷ ︸

j times

x))). Equivalently π(x) = x mod 3+1.

First let us consider edges of the form {(u, i, j),(v, i′, j)}. If i 6= i′, then colors of the endpoints belong
to different windows of size 3 and are therefore different. If i = i′, we have χ((u, i, j))− χ((v, i, j)) ≡
χ(u)−χ(v) 6≡ 0 mod 3 since χ is a proper 3-coloring of G.

Let us now consider edges of the form {(u, i, j),(u, i′, j′)}. Once again, if i 6= i′, the two endpoints receive
different colors. When i = i′, j 6= j′, χ((u, i, j))−χ((u, i, j′))≡ π j(u)−π j′(u)≡ j− j′ 6≡ 0 mod 3.

Lemma 2.12. If H has a k-coloring that properly colors a set of edges with at least a fraction (1−µ) of the
total weight for some µ ∈ [0,1], then G has a 3-coloring which colors at least a fraction (1−µk) of its edges
properly.

Proof. Here we only handle the case of k being divisible by 3. We defer the proof for the case of k being not
divisible by 3 to Section 2.3.

Let χH be the coloring of H, Sugg j
u = {χH((u, i, j)) | 1 6 i 6 k/3} and Suggu =

⋃
j Sugg

j
u. The total

weight of uncut edges in this solution can be written as

Ctotal = ∑
u∈V (G)

2
3

duCwithin
u +Cbetween, (2.1)

where Cwithin
u and Cbetween denotes the number of improperly colored (unordered) edges within the copies of

node u and between copies of different vertices u,v ∈V (G) respectively. We have the following relations:

Cbetween =
3

∑
j=1

∑
{u,v}∈E(G)

∑
16i,i′6k/3

1χH((u,i, j))=χH((v,i′, j))

>
3

∑
j=1

∑
{u,v}∈E(G)

|Sugg j
u∩Sugg j

v|. (2.2)

Cwithin
u = ∑c∈Suggu

(|χ−1
H (c)∩Bu|

2

)
(Bu = {(u, i, j)|∀i, j})

= 1
2

(
∑c∈Suggu

|Bu,c|2
)
− k

2 (Bu,c = Bu∩χ
−1
H (c))

> 1
2|Suggu|

(
∑c∈Suggu

|Bu,c|
)2− k

2 (Cauchy-Schwarz)

= k
2

(
k

|Suggu|
−1
)
= k

2
|Suggu|
|Suggu|

> |Suggu|
2 .

(2.3)

Now we will find a (random) 3-coloring χG for G. Pick c from {1,2, . . . ,k} uniformly at random. If c /∈ Suggu,
select χG(u) uniformly at random from {1,2,3}. If c ∈ Suggu, set χG(u) = j if j is the smallest index for
which c ∈ Sugg j(u). With this coloring χG(u), the probability that an edge {u,v} ∈ E(G) will be improperly
colored is:

Pr [χG(u) = χG(v)] 6

(
3

∑
j=1

Prc
[
c ∈ Sugg j

u∩Sugg j
v
])

+
1
3
Prc
[
c ∈ Suggu,c ∈ Suggv

]
+

1
3
Prc
[
c ∈ Suggu,c ∈ Suggv

]
+

1
3
Prc
[
c ∈ Suggu,c ∈ Suggv

]
6

(
3

∑
j=1

|Sugg j
u∩Sugg j

v|
k

)
+
|Suggu|

3k
+
|Suggv|

3k
.
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We can thus bound the expected number of miscolored edges in the coloring χG as follows.

E

[
∑

{u,v}∈E(G)

1χG(u)=χG(v)

]
6 ∑

{u,v}∈E

[( 3

∑
j=1

|Sugg j
u∩Sugg j

v|
k

)
+
|Suggu|

3k
+
|Suggv|

3k

]

6
1
k

(
Cbetween + ∑

u∈V (G)

du

3
|Suggu|

)
(using (2.2))

6
1
k

(
Cbetween + ∑

u∈V (G)

2du

3
Cwithin

u

)
=

Ctotal

k
.

This implies that there exists a 3-coloring of G for which the number of improperly colored edges in G is at
most Ctotal

k . Therefore if H has a k-coloring which improperly colors at most a total weight µk2m of edges,

then there is a 3-coloring of G which colors improperly at most a fraction µk2m
km = µk of its edges.

This completes the proof of Theorem 2.9 when k is divisible by 3. The other cases are easily handled by
adding k mod 3 extra nodes connected to all vertices by edges of suitable weight, which we describe in the
following section.

Remark 2.13 (Comparison to [9]). The reduction of Kann et al [9] converts an instance G of MaxCut to the
instance G′ = K′k/2⊗G of Max k-Cut. Edge weights are picked so that the optimal k-cut of G′ will give a set
Su of k/2 different colors to all vertices in each k/2 clique (u, i), 1 6 i 6 k/2. This enables converting a k-cut
of G′ into a cut of G based on whether a random color falls in Su or not. In the 3-coloring case, we make
3 copies of G′ in an attempt to enforce three “translates” of Su, and use those to define a 3-coloring from a
k-coloring. But we cannot ensure that each k-clique is properly colored, so these translates might overlap and
a more careful soundness analysis is needed.

2.3 Handling k not divisible by 3

Proof for the case of k not divisible by 3 in Theorem 2.9. We now argue how to handle the case when k mod
3 6= 0 in the statement of Theorem 2.9. Assume k is of the form K +L, where K ≡ 0 (mod 3) and L =
k mod 3 ∈ {1,2}. We will give a reduction from Max K-Colorable Subgraph, which we already showed to
be NP-hard to approximate within a factor 1− 1

33K + ε , to Max k-Colorable Subgraph.
Let GK be an (unweighted) instance of Max K-Colorable Subgraph with M edges. Construct a graph

H by adding L new vertices u1, . . . ,uL to GK . Each ui is connected by an edge of weight dv
K to each vertex

v ∈V (GK), where dv is the degree of v in GK . If L > 1, (u1,u2) is an edge in H with weight M
33K . The total

weight of edges in H equals

M′ = M+
2LM

K
+

M(L−1)
33K

.

Clearly if GK is K-colorable, then H is k-colorable. For the soundness part, suppose every K-coloring of
GK miscolors at least

(
1

33K −ε

)
M edges. Let χ be an optimal k-coloring of H. We will prove that χ miscolors

edges with total weight at least M( 1
33K − ε). This will certainly be the case if L > 1 and χ(u1) = χ(u2). So

we can assume χ uses L colors for the newly added vertices ui. If χ(v) = χ(ui) for some v ∈V (GK), we can
change χ(v) to one of the K colors not used to color {u1, . . . ,uL} so that the weight of miscolored edges does
not increase. Therefore, we can assume that χ uses only K colors to color the GK portion of H. But this
implies at least M( 1

33K − ε) edges are miscolored by χ , as desired.

9



Thus every k-coloring of H miscolors at least a fraction

M(1/(33K)− ε)

M′
=

(1/(33K)− ε)

1+2L/K +(L−1)/(33K)
>

1
33(k+L)+(L−1)

− ε

of the total weight of edges in H. Since L = k mod 3, the bound stated in Theorem 2.9 holds.

3 Conditional Hardness Results for Max k-Colorable Subgraph

We will first review the 2-to-1 Conjecture, and then construct a noise operator, which allows us to preserve
k-colorability. Then we will bound the stability of coloring functions with respect to this noise operator. In
the last section, we will give a PCP verifier which concludes the hardness result.

3.1 Preliminaries

We begin by reviewing some definitions and the d-to-1 conjecture.

Definition 3.1. An instance of a bipartite Label Cover problem represented as L= (U,V,E,W,RU ,RV ,Π)
consists of a weighted bipartite graph over node sets U and V with edges e = (u,v) ∈ E of non-negative real
weight we ∈W . RU and RV are integers with 1 6 RU 6 RV . Π is a collection of projection functions for each
edge: Π = {πvu : {1, . . . ,RV}→ {1, . . . ,RU}

∣∣u ∈U,v ∈V}. A labeling ` is a mapping ` : U →{1, . . . ,RU},
` : V →{1, . . . ,RV}. An edge e = (u,v) is satisfied by the labeling ` if πe(`(v)) = `(u). We define the value
of a labeling as the sum of weights of edges satisfied by this labeling normalized by the total weight. Opt(L)
is the maximum value over any labeling.

Definition 3.2. A projection π : {1, . . . ,RV} → {1, . . . ,RU} is called d-to-1 if for each i ∈ {1, . . . ,RU},
|π−1(i)|6 d. It is called exactly d-to-1 if |π−1(i)|= d for each i ∈ {1,2, . . . ,RU}.

Definition 3.3. A bipartite Label-Cover instance L is called d-to-1 Label-Cover if all projection functions,
π ∈Π are d-to-1.

The following conjecture was first introduced in a seminal paper by Khot [10]. We use a slight refinement
of it due to Dinur et al. [3].

Conjecture 3.4 (d-to-1 Conjecture, as stated in [3]). For every constant γ > 0, the following decision problem
is NP-hard. Given an exactly d-to-1 Label-Cover instance L with RV = R(γ) and RU = dRV many labels:

• Yes: Opt(L) = 1,

• No: Opt(L)6 γ .

Using the reductions from [3], it is possible to show that the above conjecture still holds given that the
graph (U ∪V,E) is left-regular and unweighted, i.e., we = 1 for all e ∈ E.

10



3.2 Noise Operators

For a positive integer M, we will denote by [M] the set {0,1, . . . ,M−1}. We will identify elements of [M2]
with [M]× [M] in the obvious way, with the pair (a,b) ∈ [M]2 corresponding a+Mb ∈ [M2].

Definition 3.5. A Markov operator T is a linear operator which maps probability measures to other probability
measures. In a finite discrete setting, it is defined by a stochastic matrix whose (x,y)’th entry T (x→ y) is
the probability of transitioning from x to y. Such an operator is called symmetric if T (x→ y) = T (y→ x) =
T (x↔y).

Definition 3.6. Given ρ ∈ [−1,1], the Beckner noise operator, Tρ on [q] is defined as Tρ(x→ x) = 1
q +(

1− 1
q

)
ρ and Tρ(x→ y) = 1

q(1−ρ) for any x 6= y.

Observation 3.7. All eigenvalues of the operator Tρ are given by 1 = λ0(Tρ)> λ1(Tρ) = . . .= λq−1(Tρ) = ρ .
Any orthonormal basis α0,α1, . . . ,αq−1 with α0 being constant vector, is also a basis for Tρ .

Lemma 3.8. For an integer q > 6, there exists a symmetric Markov operator T on [q]2 whose diagonal
entries are all 0 and with eigenvalues 1 = λ0 > λ1 > . . . > λq2−1 such that the spectral radius ρ(T ) =
max{|λ1|, |λq2−1|} is at most 4

q−1 .

Proof. Consider the symmetric Markov operator T on [q]2 such that, for x = (x1,x2),y = (y1,y2) ∈ [q]2,

T (x↔y) =


α if {x1,x2}∩{y1,y2}= /0 and x1 6= x2,y1 6= y2,
β if x1 6∈ {y1,y2} and x1 = x2,y1 6= y2,
β if y1 6∈ {x1,x2} and x1 6= x2,y1 = y2,
0 else,

where α = 1
(q−1)(q−3) and β = 1

(q−1)(q−2) . It is clear that T is symmetric and doubly stochastic.
To bound the spectral radius of T , we will bound the second largest eigenvalue λ1(T 2) of T 2. Notice

that T 2 is also a symmetric Markov operator. Moreover the set of eigenvalues of T 2, {λi(T 2)}i is equal to
{λi(T )

2}i. Therefore λ1(T 2)> max(λ 2
1 (T ),λ

2
q2−1(T ))> ρ(T )2.

Notice that T 2(x↔y)> 0 for all pairs x,y ∈ [q]2. Consider the variational characterization of 1−λ1(T 2)
[17]:

min
ψ

∑x,y(ψ(x)−ψ(y))2π(x)T 2(x↔y)

∑x,y(ψ(x)−ψ(y))2π(x)π(y)
> min

ψ
min
x,y

π(x)(ψ(x)−ψ(y))2T 2(x↔y)
(ψ(x)−ψ(y))2π(x)π(y)

= min
x,y

q2T 2(x↔y)

where π corresponds to the stationary distribution for Markov operator T 2.
For any two pairs (x1,x2),(y1,y2) ∈ [q]2, let l = |[q]\{x1,x2,y1,y2}|. Then we have

T 2((x1,x2)↔(y1,y2)) =


l(l−1)β 2 > (q−2)(q−3)β 2 if x1 = x2 and y1 = y2,
l(l−1)αβ > (q−3)(q−4)αβ if x1 6= x2 and y1 = y2,
l(l−1)αβ > (q−3)(q−4)αβ if x1 = x2 and y1 6= y2,
l(l−1)α2 + lβ 2 > (q−4)(q−5)α2 +(q−4)β 2 if x1 6= x2 and y1 6= y2.

>
(q−5)(q−4)

(q−3)2(q−2)(q−1)

So ρ(T )6
√

λ1(T 2)6
√

1− (q−5)(q−4)q2

(q−3)2(q−2)(q−1) 6
4

q−1 for q > 6.
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3.3 q-ary Functions, Influences, Noise stability

We define inner product on space of functions from [q]N to R as 〈 f ,g〉 = Ex∼[q]N [ f (x)g(x)]. Here x ∼ D

denotes sampling from distribution D and D= [q]N denotes the uniform distribution on [q]N .
Given a symmetric Markov operator T and x = (x1, . . . ,xN) ∈ [q]N , let T⊗Nx denote the product distribu-

tion on [q]N whose ith entry yi is distributed according to T (xi↔yi). Therefore T⊗N f (x) = Ey∼T⊗Nx [ f (y)].

Definition 3.9. Given x ∈ [q]N and a ∈ [q], let |x|a be the number of coordinates equal to a, a = |{i | xi = a}|.
We will use |x| to denote the number of non-zero coordinates of x, |x|= ∑a6=0 |x|a.

Definition 3.10. Let α0,α1, . . . ,αq−1 be an orthonormal basis of Rq such that α0 is all constant vector. For
x ∈ [q]N , we define αx ∈ RqN

as
αx = αx1⊗ . . .⊗αxN .

Definition 3.11 (Fourier coefficients). For a function f : [q]N → R, define f̂ (αx) = 〈 f ,αx〉.

Definition 3.12. Let f : [q]N → R be a function. The influence of ith variable on f , Inf i( f ) is defined by

Inf i( f ) = E [Var [ f (x)|x1, . . . ,xi−1,xi+1, . . . ,xN ]]

where x1, . . . ,xN are uniformly distributed.

Observation 3.13. Inf i( f ) = ∑x:xi 6=0 f̂ 2(αx).

Definition 3.14. Let f : [q]N → R be a function. The low-level influence of ith variable of f is defined by

Inf6t
i ( f ) = ∑

x:xi 6=0, |x|6t
f̂ 2(αx).

Observation 3.15. For every function f : [q]N → R,

∑
i
Inf6t

i ( f ) = ∑
x:|x|6t

f̂ 2(αx)|x|6 t ∑
x

f̂ 2(αx) = t‖ f‖2
2.

If f : [q]N → [0,1], then ‖ f‖2
2 6 1, so ∑i Inf

6t
i ( f )6 t.

Definition 3.16 (Noise stability). Let f be a function from [q]N to R, and let −1 6 ρ 6 1. Define the noise
stability of f at ρ as

Sρ( f ) = 〈 f ,T⊗n
ρ f 〉= ∑

x
ρ
|x| f̂ 2

i (αx)

where Tρ is the Beckner operator as in Definition 3.6.

A natural way to think about a q-coloring function is as a collection of q-indicator variables summing to
1 at every point. To make this formal:

Definition 3.17. Define the unit q-simplex as ∆q = {(x1, . . . ,xq) ∈ Rq | ∑xi = 1,xi > 0}.

Observation 3.18. For positive integers Q,q and any function f = ( f1, . . . , fq) : [Q]N → ∆q, ∑i Inf
6t
i ( f ) =

∑i ∑ j Inf
6t
i ( f j)6 t ∑ j ‖ f j‖2 6 t.

We want to prove a lower bound on the stability of q-ary functions with noise operators T . The following
proposition is generalization of Proposition 11.4 in [11] to general symmetric Markov operators T with small
spectral radii.
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Definition 3.19. Let ρ ∈ [0,1] and µ ∈ [0,1]. Let X and Y denote normal random variables with mean 0 and

covariance matrix
(

1 ρ

ρ 1

)
. We define

Λρ(µ) = Prob [X > t and Y > t] .

where t is chosen so that Prob[X > t] = µ .

Following is a restatement of the famous Majority is stablest theorem:

Theorem 3.20 (Majority is Stablest, [11]). Fix q > 2 and ρ ∈ [0,1). Then for any ε > 0 there exists a small
enough δ = δ (ε, p,q)> 0 such that if f : [q]n→ [0,1] is any function satisfying E[ f ] = µ and Inf i( f )6 δ

for all i = 1, . . . ,n then
Sρ( f )6 Λρ(µ)+ ε.

Proposition 3.21. For integers Q,q > 3, and a symmetric Markov operator T on [Q] with spectral radius
ρ(T )6 c

q−1 , for some c > 0, there exists t = t(q)> 0 and a small enough δ = δ (q)> 0 such that any function

f = ( f1, . . . , fq) : [Q]N → ∆q with Inf6t
i ( f )6 δ , for all i, satisfies

q

∑
j=1
〈 f j,T⊗N f j〉> 1/q−2c lnq/q2−C ln lnq/q2

for some universal constant C < ∞.

Proof. Let t = 4, fi : [Q]N→ [0,1] denote the ith coordinate function of f , and let µi =E [ fi]. Let α0, . . . ,αQ−1
be an orthonormal set of eigenvectors for T with corresponding eigenvalues λ0 > . . .> λQ−1, with ρ =
ρ(T )6 c

q−1 being the spectral radius of T . Notice that T is symmetric so λ0 = 1 and α0 is a constant vector.
Therefore E [ fi] = f̂i(α0) = µi. Then (using the notation from [3]):

T⊗N
αx = (∏

a6=0
λ
|x|a
a )αx

and hence
T⊗N fi = ∑

x
(∏

a6=0
λ
|x|a
a ) f̂i(αx)αx.

At this point, consider the Beckner operator, Tρ on [Q]. Since α0 is the uniform distribution α0,α1, . . . ,αQ−1
is also an orthonormal basis for Tρ by Observation 3.7. Thus

〈 fi,T⊗N fi〉 = f̂ 2
i (α0)− f̂ 2

i (α0)+∑
x

(∏
a6=0

λ
|x|a
a )︸ ︷︷ ︸>−ρ |x| if |x| 6= 0,

= 1 else.

f̂ 2
i (αx)

> 2µ
2
i −∑

x
ρ
|x| f̂ 2

i (αx) = 2µ
2
i − ∑

x:|x|64
ρ
|x| f̂ 2

i (αx)− ∑
x:|x|>4

ρ
|x| f̂ 2

i (αx)

> 2µ
2
i − ∑

x:|x|64
ρ
|x| f̂ 2

i (αx)−ρ
4

> 2µ
2
i − ∑

x:|x|64
ρ
|x| f̂ 2

i (αx)−q−3
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At this point, let f̃i(x) = ∑x:|x|64(∏a6=0 λ
|x|a
a ) f̂i(αx)αx be the function having the same low-level coefficients

with fi(x) and 0 for the higher-levels. It is easy to verify that E
[

f̃i
]
= µi, Inf i( f j) > Inf i( f̃ j) = Inf64

i ( f j)

and Sρ( f̃ j) = ∑x:|x|64 ρ |x| f̂ 2
i (αx). In particular, our assumption ∑ j Inf

6t
i ( f j) = ∑ j Inf

64
i ( f j) 6 δ implies

∑ j Inf i( f̃ j)6 δ .
Let δ be a small enough constant such that S c

q−1
( f̃i) 6 Λ c

q−1
(µi)+ ε for some small ε 6 1

q3 , from the
Majority is Stablest Theorem [12]. Below, for a real x, [x]+ denotes max{x,0}. Then

∑
i
〈 fi,T⊗N fi〉 > ∑

i

[
2µ

2
i −Sρ( f̃i)

]
−q−2

> ∑
i

[
2µ

2
i −S c

q−1
( f̃i)
]
−q−2

> ∑
i

[
2µ

2
i −Λ c

q−1
(µi)

]+
−2q−2

>
1
q
− 2c lnq

q2 −O
(

ln lnq
q2

)
The last inequality is proved in the same way as Proposition 11.4 in [11]. The only difference is that we have

F(µi) = µ
2
i +

c
q−1

2µ
2
i ln(1/µi) ·

(
1+C

ln lnq
lnq

)
and

q

∑
i=1

[
2µ

2
i −Λ c

q−1
(µi)

]+
>

q

∑
i=1

(2µ
2
i −F(µi))

which is convex because µi 6 (1/q)1/10 and minimized at µi = 1/q. In this case, we have

q

∑
i=1

(2µ
2
i −F(µi))> q

(
q−2−2cq−3 lnq(1+C ln lnq/ lnq

)
from which the above claim follows.

Definition 3.22 (Moving between domains). For every x = (x1, . . . ,x2N) ∈ [q]2N , denote x ∈ [q2]N as

x = ((x1,x2), . . . ,(x2N−1,x2N)) .

Similarly for y = (y1, . . . ,yN) ∈ [q2]N , denote y ∈ [q]2N as

y = (y1,1,y1,2, . . . ,yN,1,yN,2),

where yi = yi,1 + yi,2q such that yi,1,yi,2 ∈ [q]. For a function f on [q]2N , define f on [q2]N as f (y) = f (y).

The relationship between influences of variables for functions f and f are given by the following claim
(Claim 2.7 in [3]).

Claim 3.23. For every function f : [q]2N→R, i∈ {1, . . . ,N} and any t > 1, Inf6t
i ( f )6 Inf62t

2i−1( f )+ Inf62t
2i ( f ).
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3.4 PCP Verifier for Max k-Colorable Subgraph

This verifier uses ideas similar to the Max k-Cut verifier given in [11] and the 4-coloring hardness reduction
in [3]. Let L= (U,V,E,R,2R,Π) be a 2-to-1 bipartite, unweighted and left regular Label-Cover instance as
in Conjecture 3.4. Assume the proof is given as the Long Code over [k]2R of the label of every vertex v ∈V .
Below for a permutation σ on {1, . . . ,n} and a vector x ∈ Rn, x ◦σ denotes (xσ(1),xσ(2), · · · ,xσ(n)). For a
function f on Rn, f ◦σ is defined as f ◦σ(x) = f (x◦σ).

• Pick u uniformly at random from U , u∼U .

• Pick v,v′ uniformly at random from u’s neighbors. Let π,π ′ be the associated projection functions,
χv,χv′ be the (supposed) Long Codes for the labels of v,v′ respectively.

• Let T be the Markov operator on [k]2 given in Lemma 3.8. Pick x∼ [k2]R and y∼ T⊗Rx. Let σv,σv′

be two permutations of {1, . . . ,2R} such that π(σ−1
v (2i− 1)) = π(σ−1

v (2i)) = π ′(σ−1
v′ (2i− 1)) =

π ′(σ−1
v′ (2i)) (both π and π ′ are exactly 2-to-1, so such permutations exist).

• Accept iff χv ◦ σv(x) and χv′ ◦ σv′(y) are different.

Lemma 3.24 (Completeness). If the original 2-to-1 Label-Cover instance L has a labeling which satisfies
all constraints, then there is a proof which makes the above verifier always accept.

Proof. Let ` : V →{1, . . . ,2R} be a labeling for L satisfying all constraints in Π. Pick χv as the Long Code
encoding of `(v). Given any pair of vertices v,v′ ∈V which share a common neighbor u ∈U , and x,y ∈ [k]2R

pairs such that
Pr
[
y∼ T⊗R(x)

]
= ∏

i
T ((x2i−1,x2i)↔(y2i−1,y2i))> 0 ,

let π,π ′ be the projection functions and σv,σv′ be the permutations as defined in the description of the
verifier. We have χv(x ◦ σv) = xσ(`(v)) and χv′(y ◦ σv′) = yσ ′(`(v′)). Since π(`(v)) = π ′(`(v′)), this implies
σv(`(v)),σv′(`(v′)) ∈ {2i−1,2i} for some i 6 R. But

T ((x2i−1,x2i)↔(y2i−1,y2i))> 0 =⇒ {x2i−1,x2i}∩{y2i−1,y2i}= /0 ,

therefore χv ◦σv(x) = xσv(`(v)) 6= yσv′ (`(v′)) = χv′ ◦σv′(y). So the verifier always accepts.

Lemma 3.25 (Soundness). There is a constant C such that, if the above verifier passes with probability
exceeding 1− 1/k +O(lnk/k2), then there is a labeling of L which satisfies γ ′ = γ ′(k) fraction of the
constraints independent of label set size R.

Proof. For each node v ∈V , let f v : [k]2R→ ∆k be the function f v(x) = eχv(x) where ei is the indicator vector
of the ith coordinate. Let Γ(u) denote the set of vertices adjacent to u in the Label Cover graph.

After arithmetizing, we can write the verifier’s acceptance probability as

Pr [acc] = Eu,v,v′
[
1−∑ j〈 f v

j ◦ σv,T⊗R( f v′
j ◦ σv′)〉

]
= 1−Eu

[
∑ j Ev,v′

[
〈 f v

j ◦ σv,T⊗R( f v′
j ◦ σv′)〉

]]
= 1−Eu

[
∑ j〈Ev

[
f v

j ◦ σv

]
,T⊗REv′

[
f v′

j ◦ σv′
]
〉
]

= 1−Eu

[
∑ j〈gu

j ,T
⊗Rgu

j〉
] (

gu
j = Ev∼Γ(u)

[
f v

j ◦σv

])
> 1−1/k+C lnk/k2
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where gu : [k2]R→ ∆k and some constant C. By averaging, for at least a fraction δ = (ε/2) lnk/k2 of vertices
in U , we have

∑
j
〈gu

j ,T
⊗Rgu

j〉6 1/k−C lnk/k2

Let these be “good” vertices. For a good vertex, by Proposition 3.21, there exist constants δ = δ (k),
t = t(k) and i such that Inf6t

i (gu)> δ . Let Suggu = {i|i ∈ {1, . . . ,R}∧ Inf6t
i (gu)> δ}, so |Suggu|> 1. By

Observation 3.18, |Suggu|6 t/δ . For a good vertex u, and j ∈ Suggu:

δ 6 Inf6t
j (gu) = Ev∼Γ(u)

[
Inf6t

j

(
f v ◦σv

)]
Therefore, for at least a fraction δ/2 of neighbors v of u, Inf6t

j ( f v ◦σv) > δ/2. For such v and j, by
Claim 3.23, Inf62t

2 j−1( f v ◦σv)+ Inf62t
2 j ( f v ◦σv) > δ/2. Therefore for some j ∈ [2R], Inf62t

j ( f v) > δ/4. Let
Suggv = { j| j ∈ {1, . . . ,2R}∧ Inf62t

j ( f v)> δ/4}. Again, Suggv is not empty and |Suggv|6 8t/δ .
Following the decoding procedure in [11], we deduce that it is possible to satisfy a fraction γ ′ = γ ′(δ , t) =

γ ′(k) of the constraints.

Note that our PCP verifier makes “k-coloring” tests. By the standard conversion from PCP verifiers to
CSP hardness, and Remark 2.6 about conversion to unweighted graphs with the same inapproximability
factor, we conclude the main result of this section by combining Lemmas 3.24 and 3.25.

Theorem 3.26. For every constant k > 3, assuming the 2-to-1 Conjecture, it is NP-hard to approximate Max
k-Colorable Subgraph within a factor of 1−1/k+O(lnk/k2).

A Details about “tripartite” PCP

We now briefly discuss the (minor) changes in analysis needed to make the PCP in [6] have the properties
claimed in Remark 2.5. The discussion assumes substantial familiarity with Håstad-style PCP construc-
tions [8], and is intended as an aid for an expert to check our claim.

The crux in PCP constructions is a procedure to test that two tables A,B are the legal long code encodings
of two labels a,b which satisfy some projection constraint π(b) = a. (In the overall construction, this
projection constraint is between two nodes u,v of a Label Cover instance, and A,B supposedly encodes
labels to u,v respectively.) Here π : [M]→ [N], where we denote [m] = {1,2, . . . ,m}, A : FN →{1,−1} and
B : FM → {1,−1} with Fm denoting the set of Boolean functions [m]→ {1,−1}. (It is convenient to use
±1 to denote truth values, with −1 being true.) We say A is the long code of a ∈ [N] if A( f ) = f (a) for all
f ∈ FN , and similarly for B being the long code of b ∈ [M]. Note that a long code has the following “folded”
property: A(− f ) =−A( f ). We can assume that the tables A,B are folded, by inferring the value A(− f ) from
the value A( f ) for half the functions.

The specific nature of the test must correspond to the predicate of the CSP for which inapproximability is
sought. Specifically, for the PCP of [6], which checks the predicate

(A( f )∨ (B(g) = B(g1))∧ (A( f )∨ (B(g) = B(g2)) , (A.1)

one would pick functions f ,g,g1,g2 such that for (a,b) ∈ [N]× [M] with π(b) = a, we have

(( f (a) = 1) =⇒ (g(b) = g1(b)))∧ (( f (a) =−1) =⇒ (g(b) = g2(b))) .
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This would ensure that the test has perfect completeness, i.e., accepts A,B which are long codes of a,b
with π(b) = a with probability 1. The actual test picks f ,g randomly, and defines g1 = ( f ◦π ∧ h)g and
g2 = (− f ◦π ∧h′)g for functions h,h′ being independent samples from some suitable distribution. It is easy
to see that the perfect completeness of the test holds for any choice of h.h′. The soundness claim relies on
picking h,h′ according to a carefully chosen distribution (see [6] or [8] for details), which in particular sets
those functions to −1 at each point with probability close to 1.

We note that the foldedness of A,B will imply negations in the constraint (A.1) above.
The structure of the soundness analysis in [6], which in fact is essentially identical to the analysis for

the PCP for satisfiable Max 3SAT from [8], is as follows. Assuming that the test accepts with probability
at least 1/2+ ε , one shows how to decode A and B into labels a and b respectively such that π(b) = a
holds with probability ε1(ε) > 0. When combined with the hardness of Label Cover, such a decoding
procedure immediately implies the construction of a PCP with soundness 1/2+ ε , which in turn implies the
inapproximability of satisfying a 1/2+ ε fraction constraints of a satisfiable instance of the associated CSP.

The change we make to the PCP in [6] is to make the queries g1,g2 into a C-table, that is distinct from B
and further is not assumed to be folded. Note that the perfect completeness of the test is maintained, as one
can simply choose C = B (or to be precise, the unfolded version of table B). Let us turn to how the soundness
analysis is affected.

The probability that the test (A.1) accepts (when the queries B(gi) are replaced by C(gi)) can be arithme-
tized as follows:

1−E f ,g,g1,g2

[(
1+A( f )

2

)(
1−B(g)C(g1)

2

)
+

(
1−A( f )

2

)(
1−B(g)C(g2)

2

)]
.

Using the fact that A is folded (so A(− f ) = −A( f ) and E f [A( f )] = 0), and the distribution of ( f ,g,g2) is
identical to that of (− f ,g,g1), the above expression simplifies to

1
2
+

1
2
E f ,g,g1 [B(g)C(g1)]+

1
2
E f ,g,g1 [A( f )B(g)C(g1)] .

The analysis in [8, Thm. 6.5] upper bounds E[B(g)B(g1)] by ε . Actually, this is not done for a fixed A table,
but rather when expectation is also taken over the projection π corresponding to a random neighbor u of the
node v whose label B is encoding. This part of the analysis is not affected by the change to a C-table, so we
ignore this complication in the description here.

The analysis proceeds by expanding E[B(g)B(g1)] by Fourier analysis and upper bounds

∑
β

B̂2
β ∏

x∈π(β )

(−1)sx +(1−2ε)sx

2
(A.2)

where sx = |π−1(x)∩β | (this is eq. (36) in [8]). To bound (A.2), Håstad proceeds by dividing the sum
into three parts, small |β |, medium |β |, and large |β | (see Lemma 6.7 of [8]). The sum for small and large
sized β is bounded by a small δ , and the contribution of the medium terms is amortized over the different
choices of the bias in the distribution of the function h in the choice of g1. We can mimic his analysis
essentially verbatim: the only change we need to do is replace B̂2

β
by |B̂β ||Ĉβ |. In the analysis of the medium

and large |β | terms, wherever Håstad uses the upper bound ∑β B̂2
β
6 1 in the analysis, we can instead use

∑β |B̂β ||Ĉβ |6 1 which follows from Parseval’s identity and Cauchy-Schwarz inequality. The bound for small
β (Lemma 6.8 in [8]) uses the fact that terms with even |β | contribute 0 to (A.2) by virtue of B being folded.
This remains true for us — even though C may not be folded, for |B̂β ||Ĉβ | to be nonzero, we must have |β | to
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be odd as B is still folded. Thus, in the end, we can upper bound E[B(g)C(g1)] by the same bound Håstad got
for E[B(g)B(g1)].

Let us now turn to the E[A( f )B(g)C(g1)] term. Once again the analysis is similar to that of the
E[A( f )B(g)B(g1)] term in [8], where it is shown that if E[A( f )B(g)B(g1)] > δ , then one can decode la-
bels a,b such that π(b) = a with probability δ1 = δ1(δ )> 0. For us, using Fourier expansion the assumption
E[A( f )B(g)C(g1)]> δ gives ∣∣∣∣E[ ∑

β ,α⊆π(β )

Âα B̂βĈβ p(α,β )
]∣∣∣∣> δ ,

similar to Equation (42) of [8] (where p(α,β ) is also defined). The only change compared to [8] is that B̂βĈβ

replaces B̂2
β

. One can check that the rest of the analysis in the proof of Lemma 6.11 of [8] goes through
unaltered if we replace B̂2

β
by |B̂β ||Ĉβ | everywhere. Once again all uses of the key fact ∑β B̂2

β
6 1 can be

replaced by the valid inequality ∑β |B̂β ||Ĉβ | 6 1. A minor change we make in the decoding procedure is
that the “clause prover” P1 picks a random subset β with probability proportional to |B̂β ||Ĉβ | instead of
probability equal to B̂2

β
, and then returns a random y ∈ β . As the B-table is folded, we have B̂ /0 = 0, and so

the decoding procedure will always pick a nonempty β and is thus well defined. Since ∑β |B̂β ||Ĉβ |6 1, the
probability of picking β is at least |B̂β ||Ĉβ |, so replacing B̂2

β
by |B̂β ||Ĉβ | still gives a lower bound on the

success of the label-decoding procedure, which is what we seek.
Thus, with these changes we can complete the soundness analysis of the tripartite PCP where the B table

is split into two tables B and C, and without requiring the C table to be folded (though we necessarily require
the B table to be folded). This gives the PCP underlying the inapproximability result claimed in Proposition
2.4.
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