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Majority is Stablest: Discrete and SoS
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Abstract: The “Majority is Stablest” Theorem has numerous applications in hardness of
approximation and social choice theory. We give a new proof of the “Majority is Stablest”
Theorem by induction on the dimension of the discrete cube. Unlike the previous proof, it
uses neither the “invariance principle” nor Borell’s result in Gaussian space. Moreover, the
new proof allows us to derive a proof of “Majority is Stablest” in a constant level of the Sum
of Squares hierarchy. This implies in particular that the Khot-Vishnoi instance of Max-Cut
does not provide a gap instance for the Lasserre hierarchy.
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1 Introduction

The “Majority is Stablest” Theorem [45] affirmed a conjecture in hardness of approximation [30] and
in social choice theory [27]. The result has since been extensively used in the two areas. One of the
surprising features of the proof of [45] is the crucial use of deep results in Gaussian analysis [8] and an
“Invariance Principle” that connects the discrete result to the Gaussian one.

Since the statement of the “Majority is Stablest” Theorem [45] deals with functions on the discrete
cube, it is natural to ask (as many have) if there is a “discrete proof” of the statement that “Majority
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is Stablest.” In this paper we answer this question affirmatively and provide a short general proof of
the “Majority is Stablest” Theorem. The proof does not rely on Borell’s result, nor does it rely on
the “Invariance Principle.” One advantage of our new proof of “Majority is Stablest” is that it can be
turned into a constant level “Sum of Squares” proof [3]. This shows that Khot-Vishnoi instance of
MAX-CUT [33] does not provide an integrality gap instance for MAX-CUT in the Lasserre hierarchy [36].

1.1 Functions with low-influence variables

In discrete Fourier analysis, special attention is devoted to functions f : {−1,1}n → {0,1} with low
influences. The ith influence of f is defined by

Infi( f ) = P[ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) 6= f (x1, . . . ,xi−1,−xi,xi+1, . . . ,xn)] , (1.1)

where the probability is taken over the uniform distribution on the discrete cube.
Functions with low influences have played a crucial role in the development of the theory of discrete

Fourier analysis. Starting with Kahn, Kalai, and Linial [26], the use of hyper-contractive estimates applied
to low-influence variables has become one of the main techniques in discrete Fourier analysis [57, 17].

Of particular interest are functions all of whose influences are low. The work of Friedgut and
Kalai [17] shows that such functions have sharp thresholds. Central work in theoretical computer
science [9, 14, 52] also pointed to the importance of low-influence functions, including in the context of
the “Unique Games Conjecture” [29, 30]. Such functions have also attracted much interest in the theory
of social choice, see, e. g., [16, 28].

In the context of voting it is natural to exclude voting schemes that give individual voters too much
power. The same is true in the theory of hardness of approximation where a central concept is to
distinguish between functions that really depend on many variables versus those which have a strong
dependency on a small number of variables, see, e. g., [22, 29, 14]. In this context, it is helpful to recall
the definitions of two standard families of Boolean functions. The dictator functions { fi}i∈[n] are defined
as fi(x) = xi. On the other hand the majority function, MAJ(x) = SIGN(∑xi). The dictator functions are
at one end of the spectrum where any of these functions depend on exactly one variable. On the other end
is the majority function, where all variables have o(1) influence.

The “Majority is Stablest” Theorem considers the correlation between f (x) and f (y) where x,y ∈
{−1,1}n are ρ-correlated vectors with ρ > 0. Assuming E[ f ] = 1/2, the function that maximizes
E[ f (x) f (y)] is a dictator function. The “Majority is Stablest” theorem states that for functions with low
influences the value of E[ f (x) f (y)] cannot be much larger than the corresponding value for the majority
function. More formally,

Definition 1.1. For ρ ∈ (−1,1), the noise stability of f : {−1,1}n→ R at ρ is defined to be

Stabρ( f ) := E[ f (x) f (y)] ,

when (x,y) ∈ {−1,1}n×{−1,1}n is chosen so that (xi,yi) ∈ {−1,1}2 are independent random variables
with E[xi] = E[yi] = 0 and E[xiyi] = ρ .
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Theorem 1.2 (“Majority Is Stablest” [45]). Let 0≤ ρ ≤ 1 and ε > 0 be given. Then there exists τ > 0
such that if f : {−1,1}n→ [0,1] satisfies E[ f ] = 1/2 and Infi( f )≤ τ for all i, then

Stabρ( f )≤ 1− arccosρ

π
+ ε .

By Sheppard’s Formula [54], the quantity

1− arccosρ

π

is precisely limn→∞ Stabρ(Majn), where

Majn(x1, . . . ,xn) = sign
( n

∑
i=1

xi

)
.

In particular, the “Majority is Stablest” Theorem shows that no low-influence function can be much more
noise stable than the majority function.

We also remark here that Theorem 1.2 readily generalizes to the case when E[ f ] 6= 1/2, with the right
hand side replaced by the corresponding quantity for the shifted majority with the same expectation. This
statement of “Majority is Stablest” was conjectured in [30] in the context of hardness of approximation
for MAX-CUT. By assuming that Theorem 1.2 holds, the authors showed that it is UNIQUE-GAMES

hard1 to approximate the maximum cut in graphs to within a factor greater than .87856. . . . This result is
optimal, since the efficient algorithm of Goemans and Williamson [19] is guaranteed to find partitions
that cut a .87856. . . fraction of the maximum. A closely related conjecture (for ρ =−1/3) was made by
Kalai in the context of Arrow’s Impossibility Theorem [27]. The results of [45] imply Kalai’s conjecture
and show that Majority minimizes the probability of Arrow’s paradox in ranking 3 alternatives using a
balanced ranking function f . See [27, 45] for more details.

The statement of Theorem 1.2 deals with Boolean functions, yet the proof of [45] crucially relies on
Gaussian analysis as (a) it uses a deep result of Borell [8] on noise stability in Gaussian space and (b) it
uses the invariance principle developed in [45] that allows to deduce discrete statements from Gaussian
statements. This raises the following natural (informal) question:

Question: Is there a “discrete” proof of “Majority is Stablest”?

In other words, does there exist a proof of “Majority is Stablest” not using Borell’s result? or any
other result in Gaussian space? We note that almost all prior results in discrete Fourier analysis do
not use Gaussian results. In particular, the classical hyper-contractive estimates [7, 5] are proved by
induction on dimension in the discrete cube. Moreover, most of the results in the area starting from KKL
including [26, 57, 17, 9] do not require sophisticated results in Gaussian geometry.

In our main result we provide a positive answer to the question above. Informally we show that

1A decision problem P is said to be UNIQUE-GAMES hard, if given an instance G of Unique Games, the problem of deciding
whether VAL(G)≤ ε or VAL(G)≥ 1− ε reduces to P for any ε > 0.
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Main Result: There is a proof of “Majority is Stablest” by induction on dimension.

Our proof is short and elegant and involves only elementary calculus and hyper-contractivity. The
main difficulty in the proof is finding the right statement to prove by induction. The induction statement
involves a certain function J, which was recently used in the derivation of a robust version of Borell’s
result and “Majority is Stablest” [44] using Gaussian techniques and the invariance principle.

In a way, our results here are an analogue of Bobkov’s famous inequality in the discrete cube [6].
Bobkov proved by induction a discrete functional inequality that at the limit becomes the Gaussian
isoperimetric inequality. Moreover, the functional that Bobkov studied was later used by Bakry and
Ledoux [2] to give a semi-group proof of the Gaussian isoperimetric inequality. Moving from isoperimetry
to noise sensitivity, the order is reversed: [44] developed a certain functional in order to give a semi-group
proof of Borell’s result. Here we use the same functional to give a discrete proof by induction.

It is well known that the “Majority is Stablest” Theorem implies Borell’s result. Here we show
how this can be done by elementary methods only (our proof of Borell’s result does not even require
hyper-contractivity!). Our proof of Borell’s result joins a number of recent proofs of the result including
using spherical symmetrization [24], sub-additivity [34] and a semi-group proof [44]. It is the simplest
proof of Borell’s result using elementary arguments only ([24] uses sophisticated spherical re-arrangement
inequalities, [34] only works for sets of measure 1/2 and certain noise values and [44] requires basic
facts on the Orenstein-Uhlenbeck process).

Since it was proved, Theorem 1.2 was generalized a number of times including in [13, 42]. The
results and their generalization have been used numerous times in hardness of approximation and social
choice theory including in [1, 48, 43, 18]. Our simple proof extends to cover all of the generalizations
above. It also enables to prove a Sum-of-Squares version of the statement of “Majority is Stablest,” thus
answering the main open problem of [49] as we discuss next.

1.2 Sum of Squares proof system

We now discuss an application of our new proof of “Majority is Stablest” to hardness of approximation.
To discuss the application, we will first need to introduce the “Sum of Squares” (SoS) proof system. In a
nutshell, the SoS proof system is an algebraic proof system where constraints are encoded by polynomial
(in)equalities and the deduction rules are specified by a restricted class of polynomial operations. Viewing
this proof system as a refutation system for polynomial inequalities, the goal is to show that the given
system of constraints is infeasible by using the allowed polynomial operations to arrive at a polynomial
constraint which is “obviously” infeasible.

Without further ado, we introduce the following notation: let X = (X1, . . . ,Xn) be a sequence of
variables and let R[X ] be the ring of polynomials on X . For polynomials p1, . . . , pm ∈ R[X ], let A =
{p1 ≥ 0, . . . , pm ≥ 0} be a set of constraints (on X = (X1, . . . ,Xn)). Also, let M[X ] ⊂ R[X ] be the set
of polynomials which can be expressed as sums-of-squares. In other words, q ∈M[X ] if and only if
q = r2

1 + · · ·+ r2
` for some r1, . . . ,r` ∈ R[X ]. For S⊆ [m], we use pS to denote ∏i∈S pi with p /0 = 1. Now,

suppose that there exists {qS}S⊆[m] such that for all S⊆ [m], qS ∈M[X ] and

−1 = ∑
S⊆[m]

pS ·qS .
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Then, it is clear that the constraint set A is infeasible over Rn. The surprisingly powerful theorem
of Stengle [56] (and a slightly weaker version proven earlier by Krivine [35]) shows that whenever
A is infeasible, such a certificate of infeasibility always exists. This theorem is known as Stengle’s
Positivstellensatz. Hence, given an infeasible system of constraints A, we can consider a proof system
where the proof of infeasibility is given by the set {qS : S ⊆ [m]}. We shall refer to this as the Sum of
Squares (SoS) proof system. In fact, provided a certain compactness condition holds, the certificate of
infeasibility (i. e., the set {qS : S⊆ [m]}) can always be assumed to have qS = 0 for |S|> 1; this is due to
Putinar [25].

While the results in [35, 56, 25] were well-known in the algebraic geometry community and are
intimately tied to Hilbert’s seventeenth problem [23], the interest in the theoretical computer science
community is relatively new. In the late 1980s, Shor [55] introduced the idea of replacing “positivity
constraints” by “sum-of-squares constraints” in optimization problems and also noted that the latter type
of constraints (for a fixed degree d) can be enforced using semidefinite programming. Subsequently, this
idea appeared in other works in optimization (for example, see Nesterov [46]). The first paper to view
Stengle’s Positivstellensatz as a proof system for refutation was Grigoriev and Vorobjov [21]. It should
be mentioned that an earlier paper by Lombardi, Mnev and Roy [38] also considered the proof theoretic
aspects of Positivstellensatz but no attempt was made to quantify the complexity of such proofs. While
the degree of the proofs in the SoS proof system can be potentially unbounded, from the point of view of
complexity theory, it is also interesting to consider a restricted form of the SoS proof system where one
only looks at proofs of refutation where maxdeg(pS ·qS)≤ d. The resulting hierarchy of proof systems
where level d corresponds to proofs of refutation of degree at most d, is referred to as the SoS hierarchy.

Besides the obvious motivation from proof complexity, another reason to consider this restricted
version is that while one loses completeness (i. e., infeasible constraint sets A may not have a proof of
refutation in the degree-d SoS hierarchy for any fixed d), for any fixed d, the restricted proof system is
effective in the following sense: If the set A has a proof of infeasibility of degree d, then it can be found in
time O(m ·nO(d)) using semidefinite programming. As we have mentioned, while Shor [55] was the first
to observe this, the hierarchy was first systematically treated as a tool for optimization by two concurrent
but independent works by Jean Lasserre [36] and by Pablo Parrilo (in his Ph. D. thesis) [50]. Strictly
speaking, the semidefinite programming hierarchy considered by Lasserre is the dual of the SoS hierarchy
considered by Parrilo. Roughly, the dual of the dth level of the Lasserre hierarchy corresponds to the 2dth

level of the SoS hierarchy. However, in this paper, we will be mainly concerned with the hierarchy at level
d = O(1) vs. d = ω(1) and hence we will interchangeably use the terms “SoS hierarchy” and “Lasserre
hierarchy.” We remark that while the works of Lasserre and Parrilo were concurrent, Lasserre was the
first to connect this hierarchy with the existing lift-and-project hierarchies such as the Lovász-Schrijver
hierarchy [40].

Given that the degree-d SoS hierarchy is automatizable, several researchers have tried to understand
the limitations of its power. Grigoriev [20] showed linear lower bounds for proofs of refutation of Tseitin
tautologies and the mod 2 principle. The latter result was essentially rediscovered by Schoenebeck in the
Lasserre world independently [53].

Applications to hardness of approximation. While the results of Parillo [50] and Lasserre [36] have
been known for more than a decade, there were only a few works in the theoretical computer science
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community which harnessed the algorithmic power of [50, 36] (see [4, 10]). In fact, for the results which
did use Lasserre hierarchy, it was not clear if the full power of Lasserre hierarchy was required, or whether
weaker hierarchies, like the one of Lovász and Schrijver [40], would have sufficed.

However, in a recent exciting paper, Barak et al. [3] used the degree-8 SoS hierarchy to refute the
known integrality gap instances for Unique Games [33, 51, 31]. In other words, there are degree-8 SoS
proofs which can be used to certify that the true value of the integrality gap instances is o(1). This is
interesting for two reasons. The first is that even after a decade of intense investigation, these integrality
gaps remained one of the strongest evidence towards the truth of the Unique Games Conjecture (UGC).
Thus, the SoS hierarchy discredits these instances as evidence towards the truth of the UGC. The second
reason is that these integrality gaps were known to survive Ω((log logn)1/4) rounds of weaker hierarchies
like “SDP + Sherali Adams” [51] or “Approximate Lasserre” [32]. Thus, this showed a big gap between
the Lasserre/SoS hierarchy and the weaker hierarchies like “SDP+Sherali Adams” or “Approximate
Lasserre.”

We now mention the main idea behind showing that the degree-8 SoS hierarchy refutes the known
integrality gap instances for Unique Games [33, 51, 31]. Analyzing the true optimum of these instances
uses tools from analysis like hypercontractivity [7, 5], the KKL theorem [26] etc. Hence, to show that the
degree d-SoS hierarchy can refute these instances, one essentially needs to prove SoS versions of these
statements in the degree-d SoS hierarchy. Note that so far we have only viewed the SoS as a refutation
system, but in fact, as we will see later in the paper, there is an easy extension of the earlier definition,
which formalizes the notion of proving a statement in the degree d-SoS hierarchy. In particular, [3] prove
SoS versions of results like hypercontractivity, small-set expansion etc.

Extending the results of [3], O’Donnell and Zhou [49] analyze the problems “upward” of unique
games (i. e., problems such that Unique Games reduces to these) like MAX-CUT and BALANCED-
SEPARATOR. In particular, [49] refutes the integrality gap instances of balanced separator from [12].
Since the key to analyzing the optimum of the BALANCED-SEPARATOR instances in [12] is the KKL
theorem [26], the authors provide a proof of the KKL theorem in the degree-4 SoS hierarchy. For MAX-
CUT, their results are somewhat less powerful. Again, here they analyze the instances of MAX-CUT

from [33]. More precisely, for any ρ ∈ (−1,0), [33] construct gap-instances of Max-Cut where the
true optimum is arccosρ/π + o(1) whereas the basic SDP-optimum is (1−ρ)/2+ o(1). The key to
analyzing the true optimum is the “Majority is Stablest” theorem of [45]. Thus, to refute these instances
completely—i. e., to show that the true optimum is arccosρ/π +o(1)—requires proving the “Majority is
Stablest” theorem in some constant degree-d SoS hierarchy. While O’Donnell and Zhou did not prove
that, they did prove the weaker “2/π” theorem from [30] in some constant degree of the SoS hierarchy.
The 2/π theorem states that for any balanced function whose maximum influence is o(1), the sum of
squares of degree-1 Fourier coefficients is bounded by 2/π +o(1). This implies that the SoS hierarchy
can certify that the true optimum is at most (1/2−ρ/π)− (1/2−1/π)ρ3. They left open the problem of
refuting this gap instances optimally, i. e., showing that constant number of rounds of the SoS hierarchy
can certify that the true optimum of these gap instances is arccosρ/π +o(1). In this paper, as the main
application of the new proof of “Majority is Stablest,” we resolve this problem.

It should be mentioned here that while the new proof of “Majority is Stablest” is more suitable
for the SoS hierarchy, several powerful theorems and techniques are needed to achieve this adaptation.
For example we use results from approximation theory [39] and a powerful matrix version of Putinar’s
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Positivstellensatz [37] to prove that a certain polynomial approximation preserves positiveness. We
mention here that unlike the previous two papers [3, 49] connecting SoS hierarchy with hardness of
approximation, we make essential use of Putinar’s Positivstellensatz (essentially, the completeness of the
SoS hierarchy). The next theorem shows the power of the SoS hierarchy on the instances of MAX-CUT

from [33].

Theorem (SoS-version of Max-Cut). For every δ ∈ (0,1) and ρ ∈ (−1,0), there exists d = d(δ ,ρ) such
that the degree-d SoS hierarchy can certify that the MAX-CUT instances from [33] with noise ρ have
true optimum less than arccosρ/π +δ .

Note that the true optimum for these instances is known to be at least arccosρ/π and hence the
degree-d SoS hierarchy refutes these instances optimally. Also, as a key intermediate step, we establish a
SoS version of the “Majority is Stablest” theorem.

Theorem (SoS-version of “Majority is Stablest”). For every δ ∈ (0,1) and ρ ∈ (−1,0), there are
constants c= c(δ ,ρ) and d = d(δ ,ρ) such that the following is true: let 0≤ f (x)≤ 1 for all x∈ {−1,1}n

and maxi Infi(f)≤ τ . There is a degree-d SoS proof of the statement

Stabρ( f )≥ 1− arccosρ/π−δ − c · τ .

Our proof can be easily modified to give the analogous statement of “Majority is Stablest” when
ρ ∈ (0,1). Of course, we have to change the direction of the inequality as well as impose the condition
that E[ f ] = 1/2 (this condition is not required when ρ ∈ (−1,0)).

As the reader can see, the theorem is stated very informally. This is because SoS proofs are heavy in
notation and it is difficult to express the precise statement without having the proper notation. However,
we do remark that the SoS version of MAX-CUT follows easily by composing the proof of refutation of
UNIQUE-GAMES instances of [33] (done in [3]) along with the [30] reduction (the proof of soundness of
this reduction is the step where we require the SoS version of “Majority is Stablest”).

2 Our tensorization theorem

In this section, we will prove our main tensorization inequality on the cube. In subsequent sections,
we will use it to give new proofs of the “Majority is Stablest” theorem of Mossel, O’Donnell and
Oleszkiewicz [45] and the Gaussian stability inequality of Borell [8]. We begin by recalling a function
from [44]: first, let Φ : R→ (0,1) denote the cumulative distribution function of a standard normal
variable:

Φ(x) =
1√
2π

∫ x

−∞

e−y2/2 dy .

Next, for every ρ ∈ [−1,1], define Jρ : (0,1)2→ [0,1] as

Jρ(x,y) = PrX ,Y [X ≤Φ
−1(x),Y ≤Φ

−1(y)] .

Here X ,Y are jointly normally distributed random variables with the covariance matrix

Cov(X ,Y ) =
(

1 ρ

ρ 1

)
.
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We note that [44] proved that in the Gaussian setup where f ,g : Rn→ [0,1], and X ,Y are jointly normal
random variables with covariance (

In ρIn

ρIn In

)
,

then
EJρ( f (X),g(Y ))≤ Jρ(E f ,Eg) . (2.1)

Applied to indicator functions, this reduces to Borell’s inequality [8]. To prove “Majority is Stablest,” we
would like to show an analogous inequality on the cube, with f ,g : {−1,1}n→ [0,1] and X ,Y correlated
points on {−1,1}n. Unfortunately, the inequality (2.1) is not true in this setup, but it is true with some
extra error terms on the right hand side. First, let us define the error term:

Definition 2.1. If Ω is a probability space and f : Ωn→ R, then for X ∈Ω, we define fX : Ωn−1→ R by

fX(X1, . . . ,Xn−1) = f (X1, . . . ,Xn−1,X) .

Definition 2.2. For a function f : Ω→ R, define

∆1( f ) = E | f −E f |3 .

For a function f : Ωn→ R, define ∆n( f ) recursively by

∆n( f ) = EXn [∆n−1( fXn)]+∆1(E[ fXn | Xn]) ,

where E[ fXn | Xn] : Ω→ R is defined as

E[ fXn | Xn](xn) = Ex1,...,xn−1 [ f (x1, . . . ,xn)] .

Note that the definition of ∆n( f ) measures the “Lipschitzness” of the function f . For example, if f is
L-Lipschitz in the sense that changing any one of the coordinates of input changes the output by at most
L, then ∆n( f ) is bounded by n ·L3. Next, we recall the notion of Rényi correlation. This definition will
allow us to state a result that applies somewhat more generally than just to correlated points on {−1,1}n.

Definition 2.3. Let Ω1 and Ω2 be two sets and µ be a probability measure on Ω1×Ω2. We say that
µ has Rényi correlation at most ρ if for every measurable (w. r. t. µ) f : Ω1→ R and g : Ω2→ R with
Eµ f = Eµ g = 0,

Eµ [ f g]≤ ρ

√
Eµ [ f 2]Eµ [g2] .

For example, suppose that Ω1 = Ω2 and suppose (X ,Y ) are generated by the following procedure:
first choose X according to some distribution ν . Then, with probability ρ , we set Y = X , and with
probability 1−ρ , Y is chosen to be an independent sample from ν . If µ is the distribution of (X ,Y ), then
it is easy to check that µ has Rényi correlation ρ .

We prove the following general theorem, which we will later use to derive both Borell’s inequality
and the “Majority is Stablest” theorem.

Theorem 2.4. For any ε > 0 and 0 < ρ < 1, there is C(ρ)> 0 such that the following holds. Let µ be a
ρ-correlated measure on Ω1×Ω2 and let (Xi,Yi)

n
i=1 be i. i. d. variables with distribution µ . Then for any

measurable functions f : Ωn
1→ [ε,1− ε] and g : Ωn

2→ [ε,1− ε],

EJρ( f (X),g(Y ))≤ Jρ(E f ,Eg)+C(ρ)ε−C(ρ)(∆n( f )+∆n(g)) .
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2.1 The base case

We prove Theorem 2.4 by induction on n. In this section, we will prove the base case n = 1:

Claim 2.5. For any ε > 0 and 0 < ρ < 1, there is a C(ρ) such that for any two random variables
X ,Y ∈ [ε,1− ε] with correlation in [0,ρ],

EJρ(X ,Y )≤ Jρ(EX ,EY )+C(ρ)ε−C(ρ)(E |X−EX |3 +E |Y −EY |3) .

The proof of Claim 2.5 essentially follows from Taylor’s theorem applied to the function Jρ ; the
crucial point is that Jρ satisfies a certain differential equation. Define the matrix Mρσ (x,y) by

Mρσ (x,y) =

 ∂ 2Jρ (x,y)
∂x2 σ

∂ 2Jρ (x,y)
∂x∂y

σ
∂ 2Jρ (x,y)

∂x∂y
∂ 2Jρ (x,y)

∂y2

 .

Claim 2.6. For any (x,y) ∈ (0,1)2 and 0≤ σ ≤ ρ , Mρσ (x,y) is a negative semidefinite matrix. Likewise,
if ρ ≤ σ ≤ 0, then Mρσ (x,y) is a positive semidefinite matrix.

We will also use the fact that the third derivatives of Jρ are bounded (at least, away from the boundary
of [0,1]2).

Claim 2.7. For any −1 < ρ < 1, there exists C(ρ)> 0 such that for any i, j ≥ 0, i+ j = 3,∣∣∣∣∂ 3Jρ(x,y)
∂xi∂y j

∣∣∣∣≤C(ρ)(xy(1− x)(1− y))−C(ρ) .

Further, the function C(ρ) can be chosen so that it is continuous for ρ ∈ (−1,1).

Claims 2.6 and 2.7 follow from elementary calculus, and we defer their proofs to the appendix (in
fact, Claim 2.6 is implicit in [44] and we include the proof here for the sake of completeness). Now we
will use them with Taylor’s theorem to prove Claim 2.5.

Proof of Claim 2.5. Fix ε > 0 and ρ ∈ (0,1). Now let C(ρ) be large enough so that all third derivatives
of Jρ are uniformly bounded by C(ρ)ε−C(ρ) on the square [ε,1− ε]2 (such a C(ρ) exists by Claim 2.7).
Taylor’s theorem then implies that for any a,b,a+ x,b+ y ∈ [ε,1− ε],

Jρ(a+ x,b+ y)≤ Jρ(a,b)+ x
∂Jρ

∂x
(a,b)+ y

∂Jρ

∂y
(a,b)

+
1
2
(x y)

 ∂ 2Jρ

∂x2 (a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂y2 (a,b)

(x
y

)
+C(ρ)ε−C(ρ)(|x|3 + |y|3) . (2.2)
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Now suppose that X and Y are random variables taking values in [ε,1− ε]. If we apply (2.2) with
a = EX , b = EY , x = X−EX , and y = Y −EY , and then take expectations of both sides, we obtain

EJρ(X ,Y )≤ Jρ(EX ,EY )+
1
2

E

(X̃ Ỹ )

 ∂ 2Jρ

∂x2 (a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂y2 (a,b)

(X̃
Ỹ

)
+C(ρ)ε−C(ρ)(E |X̃ |3 +E |Ỹ |3) , (2.3)

where X̃ = X−EX and Ỹ = Y −EY . Now, if X and Y have correlation σ ∈ [0,ρ] then

E X̃Ỹ = σ

√
E X̃2 EỸ 2 ,

and so

E

(X̃ Ỹ )

 ∂ 2Jρ

∂x2 (a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂y2 (a,b)

(X̃
Ỹ

) = (σX σY )

 ∂ 2Jρ

∂x2 (a,b) σ
∂ 2Jρ

∂x∂y(a,b)

σ
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂y2 (a,b)

(σX

σY

)
,

where σX =
√

E X̃2 and σY =
√

EỸ 2. By Claim 2.6.

(σX σY )

 ∂ 2Jρ

∂x2 (a,b) σ
∂ 2Jρ

∂x∂y(a,b)

σ
∂ 2Jρ

∂x∂y(a,b)
∂ 2Jρ

∂y2 (a,b)

(σX

σY

)
= (σX σY )Mρσ (a,b)

(
σX

σY

)
≤ 0 .

Applying this to (2.3), we obtain

EJρ(X ,Y )≤ Jρ(EX ,EY )+C(ρ)ε−C(ρ)(E |X̃ |3 +E |Ỹ |3) .

2.2 The inductive step

Next, we prove Theorem 2.4 by induction.

Proof of Theorem 2.4. Claim 2.5 proves the base case of the induction. Only the inductive case remains
to be proven. Assume that the theorem holds with n replaced by n−1. Consider f : Ωn

1→ [ε,1− ε] and
g : Ωn

2→ [ε,1− ε].
Conditioning on (Xn,Yn) and writing X̃ = (X1, . . . ,Xn−1), Ỹ = (Y1, . . . ,Yn−1), we have

EJρ( f (X),g(Y )) = EXn,Yn EX̃ ,Ỹ Jρ( fXn(X̃),gYn(Ỹ )) .

Applying the inductive hypothesis for n−1 conditionally on Xn and Yn,

EX̃ ,Ỹ Jρ( fXn(X̃),gYn(Ỹ ))≤ Jρ(E[ fXn | Xn],E[gYn | Yn])+C(ρ)ε−C(ρ)(∆n−1( fXn)+∆n−1( fYn)) . (2.4)

On the other hand, the base case for n = 1 implies that

EXn,Yn Jρ(E[ fXn | Xn],E[gYn | Yn])≤ Jρ(E f ,Eg)+C(ρ)ε−C(ρ)(∆1(E[ fXn | Xn])+∆1(E[gYn | Yn])) . (2.5)
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Taking the expectation of (2.4) over Xn and Yn and combining it with (2.5), we obtain

EJρ( f (X),g(Y )) ≤ Jρ(E f ,Eg)+C(ρ)ε−C(ρ)
(

EXn ∆n−1( fXn)+EYn ∆n−1( fYn)
)

+ C(ρ)ε−C(ρ)
(
∆1(E[ fXn | Xn])+∆1(E[gYn | Yn])

)
.

Finally, note that the definition of ∆n implies that the right-hand side above is just

Jρ(E f ,Eg)+C(ρ)ε−C(ρ)
(
∆n( f )+∆n(g)

)
.

3 Borell’s inequality

The most interesting special case of Theorem 2.4 is when Ω1 = Ω2 = {−1,1} and the distributions of
Xi, Yi satisfy EXi = EYi = 0, EXiYi = ρ . In this section and the next, we will focus on this special case.
As we will see in this section, even proving very crude bounds for this case implies Borell’s Gaussian
stability inequality. First, let us recall the functional version of Borell’s inequality that was given in [44].

Theorem 3.1. Let ρ ≥ 0 and G1 and G2 are Gaussian vectors with joint distribution

(G1,G2)∼N

(
0,
(

Id ρId
ρId Id

))
.

For any measurable f1, f2 : Rd → [0,1],

EJρ( f1(G1), f2(G2))≤ Jρ(E f1,E f2) .

We will prove Theorem 3.1 using Theorem 2.4 and a crude bound on ∆n( f ) (in the next section, we
will need a much better bound on ∆n( f ) to prove that “Majority is Stablest”).

Claim 3.2. For X ∈ {−1,1}n, define

X−i = (X1, . . . ,Xi−1,−Xi,Xi+1, . . . ,Xn) .

Then

∆n( f )≤
n

∑
i=1

E | f (X)− f (X−i)|3

8
.

Proof. The proof is by induction: the base case is trivial. The inductive step follows by conditioning on
Xn:

∆n( f ) = EXn [∆n−1( fXn)]+EXn |E[ fXn | Xn]−E f |3

≤
n−1

∑
i=1

E | f (X)− f (X−i)|3

8
+

EXn |E[ fXn | Xn]−E[ f−Xn | Xn]|3

8

≤
n−1

∑
i=1

E | f (X)− f (X−i)|3 +E | f (X)− f (X−n)|3

8
.

Here the first inequality uses the induction hypothesis while the second inequality uses Jensen’s inequality.
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Proof of Theorem 3.1. Let n = md and define

G1,n =
1√
m

(
m

∑
i=1

Xi,
2m

∑
i=m+1

Xi, . . . ,
md

∑
i=(d−1)m+1

Xi

)
.

Define G2,n similarly by using Y instead of X . In other words, G1,n and G2,n are vectors obtained by
averaging the vectors X and Y over consecutive blocks of size m. Define Z as

Z = (X1,Xm+1, . . . ,X(d−1)m+1,Y1,Ym+1, . . . ,Y(d−1)m+1) .

Observe that (G1,n,G2,n) is distributed as sum of m independent copies of Z scaled by 1/
√

m. Applying

the Lindeberg-Feller central limit theorem [15], we obtain (G1,n,G2,n)
d→ (G1,G2) as m→ ∞.

Suppose first that f1 and f2 are L-Lipschitz functions taking values in [ε,1− ε]. Define g1,g2 :
{−1,1}n→ R as

g j(z) = f j

(
1√
m

(
m

∑
i=1

zi,
2m

∑
i=m+1

zi, . . . ,
md

∑
i=(d−1)m+1

zi

))
.

By Theorem 2.4,

EJρ(g1(X),g2(Y ))≤ Jρ(Eg1,Eg2)+C(ρ)ε−C(ρ)(∆n(g1)+∆n(g2)) . (3.1)

Since fi is L-Lipschitz,

|gi(X)−gi(X− j)| ≤ 2L√
m
,

for every j, and so Claim 3.2 implies that

∆n(gi)≤
L3n
m3/2 =

L3d√
m
.

Applying this to (3.1),

EJρ(g1(X),g2(Y ))≤ Jρ(Eg1,Eg2)+C(ρ)ε−C(ρ) 2L3d√
m

,

and so the definition of gi implies

EJρ( f1(G1,n), f2(G2,n))≤ Jρ(E f1(G1,n),E f2(G2,n))+C(ρ)ε−C(ρ) 2L3d√
m

.

Taking m→ ∞, the multivariate central limit theorem implies that

EJρ( f1(G1), f2(G2))≤ Jρ(E f1(G1),E f2(G2)) . (3.2)

This establishes the theorem for functions f1 and f2 which are Lipschitz and take values in [ε,1− ε].
But any measurable f1, f2 : Rd → [0,1] can be approximated (say in Lp(Rd ,γd)) by Lipschitz functions
with values in [ε,1− ε]. Since neither the Lipschitz constant nor ε appears in (3.2), the general statement
of the theorem follows from the dominated convergence theorem.
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4 “Majority is Stablest”

By giving a bound on ∆n( f ) that is better than Claim 3.2, we can derive the “Majority is Stablest” theorem
from Theorem 2.4. Indeed, we can express ∆n( f ) in terms of the Fourier coefficients of f , and we can
bound ∆n( f ) in terms of the maximum influence of any variable in f . For this, we will introduce some
very basic Fourier analytic preliminaries below.

Fourier analysis

Consider the domain {−1,1}n equipped with the uniform measure. We start by defining the “character”
functions, i. e., for every S ⊆ [n], define χS(x) : {−1,1}n→ R as χS(x) = ∏i∈S xi. Now, every function
f : {−1,1}n→ R can be expressed as

f (x) = ∑
S⊆[n]

f̂ (S)χS(x) where f̂ (S) = E
x∈{−1,1}n

[ f (x) ·χS(x)] .

The coefficients f̂ (S) are called the Fourier coefficients of f and the expansion of f in terms of f̂ (S) is
called the Fourier expansion of f . It is easy to show that

∑
S⊆[n]

f̂ 2(S) = E
x∈{−1,1}n

[ f 2(x)] .

This is known in the literature as Parseval’s identity. For the sake of conciseness, we use f̂ (i) to denote
f̂ ({i}) for 1≤ i≤ n. Similarly, for any ρ ∈ [−1,1] and x ∈ {−1,1}n, we define y∼ρ x as the distribution
over {−1,1}n where every bit of y is independent and E[xiyi] = ρ . This immediately lets us define the
noise operator Tρ as follows: for any function f : {−1,1}n→ R,

Tρ f (x) = E
y∼ρ x

[ f (y)] .

The effect of the noise operator Tρ is particularly simple to describe on the Fourier spectrum: T̂ρ f (S) =
ρ |S| f̂ (S). The reader is referred to the excellent set of lecture notes by Ryan O’Donnell [47] for an
extensive reference on this topic.

It is also important to remark here that while we prove the “Majority is Stablest” theorem for the
hypercube with the uniform measure, one can easily derive analogues of this theorem for more general
product spaces by extending our machinery. Instead of using the Fourier expansion of the function,
one has to use the Efron-Stein decomposition (see the lecture notes by Mossel [41] for an extensive
reference on the Efron-Stein decomposition). All the statements that we prove here have analogues in the
Efron-Stein world. We leave it to the expert reader to fill in the details.

We start by extending the notation of Definition 2.1:

Definition 4.1. For disjoint sets S,T ⊂ [n], and elements x ∈ {−1,1}S,y ∈ {−1,1}T , we write x · y for
their concatenation in {−1,1}S∪T .

For a function f : {−1,1}n → R, a set S ⊂ [n], and an element x ∈ {−1,1}S, we define fx :
{−1,1}[n]\S→ R by fx(y) = f (x · y).
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Our first observation is that ∆n( f ) can be written in terms of Fourier coefficients of random restrictions
of f .

Claim 4.2. Let Si be defined as Si = {i+1, . . . ,n}, then

∆n( f ) =
n

∑
i=1

EX∈{−1,1}Si | f̂X(i)|3 .

Proof. The proof is by induction. The base case is just the fact that for a function f : {−1,1}→ R,

| f̂ (1)|3 =
∣∣∣ f (1)− f (−1)

2

∣∣∣3 = (E | f −E f |)3 .

For the inductive step, we have

∆n( f ) = EXn [∆n−1( fXn)]+∆1(E[ fXn | Xn]) = EXn [∆n−1( fXn)]+ | f̂ (n)|3

= EXn

[
n−1

∑
i=1

EXi+1,...,Xn−1

∣∣∣∣∣ f̂X(i)|3
]
+ | f̂ (n)|3 =

n

∑
i=1

EX∈{−1,1}Si | f̂X(i)|3 .

The first equality uses the definition of ∆n( f ) and the third equality uses the induction hypothesis. The
second equality follows simply from the definition of E[ fXn | Xn].

In order to control the Fourier coefficients of restrictions of f , we first express them in terms of the
Fourier coefficients of f :

Claim 4.3. For any disjoint S and U and any x ∈ {−1,1}S,

f̂x(U) = ∑
T⊂S

χT (x) f̂ (T ∪U) .

Proof. Fix S and x. Let g : {−1,1}n→ R be the function such that g(y) = 1 when yi = xi for all i ∈ S,
and g(y) = 0 otherwise. It is easy to check that the Fourier expansion of g is

g(y) = 2−|S| ∑
T⊂S

χT (x)χT (y) .

Then

f̂x(U) = EX[n]\S [ fx(X[n]\S) ·χU(X[n]\S)] = 2|S|EX [ f (X)g(X)χU(X)]

= EX

[
f (X) ∑

T⊂S
χT (x)χT (X)χU(X)

]
= ∑

T⊂S
χT (x) f̂ (T ∪U) .

In particular, the identity of Claim 4.3 allows us to compute second moments of f̂X :

Claim 4.4. For any function f : {−1,1}n→ R, any x ∈ {−1,1}S and any i ∈U ⊂ [n],

EX∈{−1,1}S | f̂X(U)|2 ≤ Infi( f ) .

Moreover, if Si = {i+1, . . . ,n} then
n

∑
i=1

EX∈{−1,1}Si | f̂X(i)|2 = Var( f ) .
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Proof. In view of Claim 4.3, we can write

| f̂X(U)|2 = ∑
T,T ′⊂S

χT (X)χT ′(X) f̂ (T ∪U) f̂ (T ′∪U) .

When we take the expectation with respect to XS, E χT (X)χT ′(X) = δT,T ′ (where δT,T ′ denotes the
indicator for the event T = T ′) and so the cross-terms vanish:

EXS | f̂X(U)|2 = ∑
T⊂S

f̂ 2(T ∪U) . (4.1)

Since Infi( f ) = ∑T3i f̂ 2(T ), the first part of the claim follows.
For the second part,

n

∑
i=1

EX∈{−1,1}Si | f̂X(i)|2 =
n

∑
i=1

∑
T⊂Si

f̂ 2(T ∪{i}) = ∑
U⊂[n],U 6= /0

f̂ 2(U) , (4.2)

where the last equality used the fact that every non-empty U ⊂ [n] can be written uniquely in the form
T ∪{i} for some T ⊂ {i+1, . . . ,n}. But of course the right-hand side of (4.2) is just Var( f ).

Next, we will consider f̂x(n− i) as a polynomial in x and apply hypercontractivity to the right hand
side of Claim 4.2. First, note that Tσ commutes (up to a multiplicative factor) with restriction:

Claim 4.5. For any 0 < σ < 1, if S,U ⊂ [n] are disjoint then, as polynomials in x = (xi)i∈S,

(̂Tσ f )x(U) = σ
|U |Tσ ( f̂x(U)) .

Proof. By Claim 4.3,
f̂x(U) = ∑

T⊂S
χT (x) f̂ (T ∪U) .

Since T̂σ f (T ∪U) = σ |T |+|U | f̂ (S) and Tσ χT (x) = σ |T |χT , it follows that

(̂Tσ f )x(U) = ∑
T⊂S

σ
|T |+|U |

χT (x) f̂ (T ∪U) = σ
|U |Tσ ( f̂x(U)) .

At this point, we recall the well-known Bonami-Beckner hypercontractive inequality:

Theorem 4.6 ([7, 5]). Let f : {−1,1}n→ R and 1≤ q≤ p. Then, for any ρ ≤
√

(q−1)/(p−1),

‖Tρ f‖p ≤ ‖ f‖q .

Now, set q = 2 and p = 1+σ−2 for some 0 < σ < 1. Let S and U be disjoint subsets of [n]. Defining the
function g : {−1,1}S→ R as g(x) = f̂x(U), we apply Theorem 4.6 to get

EX∈{−1,1}S |Tσ ( f̂X(U))|p ≤ (EX∈{−1,1}S | f̂X(U)|2)p/2 .
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Claim 4.5 then implies that

1
σ p|U | ·EX∈{−1,1}S |(̂Tσ f )X(U)|p ≤ (EX∈{−1,1}S | f̂X(U)|2)p/2 ,

and since 0≤ σ ≤ 1, we may remove it from the left hand side:

EX∈{−1,1}S |(̂Tσ f )X(U)|p ≤ (EX∈{−1,1}S | f̂X(U)|2)p/2 .

Specializing this to S = Si = {i+1, . . . ,n} and U =Ui = {i} (for any 1≤ i≤ n), we obtain

EX∈{−1,1}Si |(̂Tσ f )X(i)|p ≤ (EX∈{−1,1}Si | f̂X(i)|2)p/2 .

Applying Claim 4.4 to the right hand side, we get

EX∈{−1,1}Si |(̂Tσ f )X(i)|p ≤ Infi( f )
p−2

2 · (EX∈{−1,1}Si | f̂X(i)|2) .

Summing over from i = 1 to n, we get

n

∑
i=1

EX∈{−1,1}Si |(̂Tσ f )X(i)|p ≤
n

∑
i=1

Infi( f )
p−2

2 · (EX∈{−1,1}Si | f̂X(i)|2)≤
(
max

i
Infi( f )

) p−2
2 ·Var( f ) , (4.3)

where the last inequality uses the fact that

n

∑
i=1

(EX∈{−1,1}Si | f̂X(i)|2) = ∑
S 6=φ

f̂ 2(S) = Var( f ) .

As a consequence, we have the following claim:

Claim 4.7. If 1+σ−2 ≤ 3 then

∆n(Tσ f )≤ (max
i

Infi( f ))
1−σ2

2σ2 .

Proof. Using Range( f ) ⊆ [−1,1], we get that for any X ∈ {−1,1}Si and |(̂Tσ f )X(i)| ≤ 1. As a conse-
quence, using Claim 4.2, we get that for 2≤ p≤ 3,

∆n(Tσ f )≤
( n

∑
i=1

EX∈{−1,1}Si |(̂Tσ f )X(i)|p
)
.

Finally, using (4.3), we get the desired conclusion.

Now we are ready to prove the “Majority is Stablest” theorem. For this, we define Sρ( f ) as

Sρ( f ) = Ex∈{−1,1}n,y∼ρ x[ f (x) f (y)] .

Theorem 4.8. For any 0 < ρ < 1, there are constants 0 < c(ρ),C(ρ) < ∞ such that for any function
f : {−1,1}n→ [0,1] with maxi Infi( f )≤ τ ,

Sρ( f )≤ Jρ(E f ,E f )+C(ρ)
log log(1/τ)

log(1/τ)
.
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As remarked earlier, our proof extends to the generalizations of Theorem 4.8 such as those presented
by [42]. The extension of the proof uses the Efron-Stein decomposition instead of the Fourier decomposi-
tion. The only difference is that the hyper-contractivity parameter will now depend on the underlying
space. See [42] for more details.

Proof. Suppose f : {−1,1}n→ [ε,1− ε] satisfies maxi Infi( f ) ≤ τ , and let X ,Y be uniformly random
elements of {−1,1}n with EXiYi = ρ . By setting σ = 1−η for sufficiently small η > 0, Claim 4.7
implies that

∆n(T1−η f )≤ τ
η/2 .

Note that the range of T1−η f belongs to [ε,1− ε] because the range of f does. Hence, Theorem 2.4
applied to T1−η f implies that

EJρ(T1−η f (X),T1−η f (Y ))≤ Jρ(ET1−η f ,ET1−η f )+∆n(T1−η f )≤ Jρ(E f ,E f )+C(ρ)ε−C(ρ)
τ

cη .

Since Jρ(x,y)≥ xy, it follows that

Sρ(1−η)2( f ) = ET1−η f (X)T1−η f (Y )≤ Jρ(E f ,E f )+Cε
−C(ρ)

τ
cη .

This inequality holds for any 0 < ρ < 1; hence we can replace ρ(1−η)2 by ρ to obtain

Sρ( f ) = ET1−η f (X)T1−η f (Y )≤ Jρ(1−η)−2(E f ,E f )+Cε
−C(ρ)

τ
cη (4.4)

for any ρ ≤ (1−η)2.
Now, (4.4) holds for any f : {−1,1}n→ [ε,1−ε]. For a function f taking values in [−1,1], let f ε be

f truncated to [ε,1− ε]. Since |E f ε −E f | ≤ ε and (by the proof of Claim 2.6)

∂Jρ(x,y)
∂x

≤ 1

for any ρ ,
Jρ(1−η)−2(E f ε ,E f ε)≤ Jρ(1−η)−2(E f ,E f )+2ε .

On the other hand, | f − f ε | ≤ ε and so

Sρ( f ) = E f (X) f (Y )≥ Sρ( f ε)−2ε .

Thus, (4.4) applied to f ε implies that for any ρ ≤ (1−η)2 and any ε > 0,

Sρ( f )≤ Jρ(1−η)−2(E f ,E f )+2ε +Cε
−C(ρ)

τ
cη .

If we set ε = τcη/(2C(ρ)) then

Sρ( f )≤ Jρ(1−η)−2(E f ,E f )+Cτ
c(ρ)η .

Finally, some calculus on Jρ (see Claim A.1) shows that∣∣∣∣∂Jρ(x,y)
∂ρ

∣∣∣∣≤ (√1−ρ2
)−3/2
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for any x,y; hence

Sρ( f )≤ Jρ(1−η)−2(E f ,E f )+
(1−η)−2−1
(1−ρ2)3/2 +Cτ

c(ρ)η ≤ Jρ(E f ,E f )+C(ρ)(η + τ
c(ρ)η) .

Choosing

η =C(ρ)
log log(1/τ)

log(1/τ)

completes the proof as long as ρ ≤ (1−η)2. However, we can trivially make the theorem true for
(1−η)2 ≤ ρ by choosing C(ρ) and c(ρ) appropriately.

5 Sum of Squares hierarchy

In this section, we formally give an introduction to the Sum of Squares (hereafter abbreviated as SoS)
hierarchy. To define the SoS hierarchy, let X = (x1, . . . ,xn) and let R[X ] be the ring of real polynomials
over these variables. We also let R≤d [X ] denote the subset of R[X ] consisting of polynomials of total
degree bounded by d. As before, let M[X ]⊂ R[X ] be the set of polynomials which can be expressed as
sums-of-squares. For polynomials p1, . . . , pm and q1, . . . ,q`, consider two sets of constraints,

• Ae = {p1(X) = 0, p2(X) = 0, . . . , pm(X) = 0};

• Ag = {q1(X)≥ 0,q2(X)≥ 0, . . . ,q`(X)≥ 0}.

Before we go ahead, we define the set Mn,d [X ] as the set of monomials over x1, . . . ,xn of degree bounded
by d. Also, let M≤d [X ] denote the subset of M[X ] of polynomials of degree bounded by d. Further, if
A = Ae ∪Ag, define V(A) = {X ∈ Rn : A holds on X}. We next define the (degree d) closure of these
constraints:

Cd(Ae) = {ps(X) · p(X) : s ∈ [m], p(X) ∈Mn,d [X ] and deg(p)+deg(ps)≤ d} ;

Cd(Ag) =
{ m

∏
i=1

qai
i (X) : a1, . . . ,am ∈ Z+ and

m

∑
i=1

ai ·deg(qi)≤ d
}
.

Note that Cd(Ag) includes 1 ∈ R. Also, it is obvious that the following constraints are implied by Ae∪Ag:
For p(X) ∈ Cd(Ae), p(X) = 0 and for q(X) ∈ Cd(Ag), q(X) ≥ 0. We also observe that the sets Cd(Ae)
and Cd(Ag) can be computed from Ae and Ag in time nO(d) ·max{`,m}.

Definition 5.1. For the constraint set A = Ae∪Ag defined above and h(X) ∈R[X ], we say A `d h(X)≥ 0
if and only if

h(X) = ∑
p(X)∈Cd(Ae)

αp · p(X)+ ∑
q(X)∈Cd(Ag)

rq(X) ·q(X) ,

where αp ∈ R, rq ∈M[X ] and for all q(X) ∈ Cd(Ag), deg(rq)+deg(q)≤ d. In this case, we say that A
degree-d SoS proves h(X)≥ 0.
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For the constraint set A, we say that A `d −1≥ 0 if and only if there exists

−1 = ∑
p(X)∈Cd(Ae)

αp · p(X)+ ∑
q(X)∈Cd(Ag)

rq(X) ·q(X)

with the same constraints on αp and rq as above. In this case, we say that there is a degree-d SoS
refutation of the constraint set A.

Note that we are adopting the same notation as in [49]. The reason we are interested in Definition 5.1
is because one can efficiently decide if A `d −1≥ 0 using semidefinite programming. This is because
deciding if A `d −1≥ 0 is equivalent to refuting the existence of a map Ẽ : R≤d [X ]→ R satisfying the
following conditions (see [50] for more details):

• Ẽ(1) = 1.

• It is a linear map, i. e., for every g,h ∈ R≤d [X ] and α,β ∈ R, Ẽ(αg+βh) = αẼ(g)+β Ẽ(h).

• For every h ∈ Cd(Ae), Ẽ(h) = 0.

• For every h ∈ Cd(Ag) and g ∈M≤d [X ], such that deg(g ·h)≤ d, Ẽ(g ·h)≥ 0.

A map Ẽ which satisfies all the above constraints is called a degree-d SoS consistent map for the constraint
set A = Ae∪Ag. Lasserre [36] and Parillo [50] have shown that using semidefinite programming, it is
possible to decide the feasibility of such a map Ẽ in time m ·nO(d). In fact, if there exists such a map Ẽ,
then the algorithm outputs one in the same time. It is important to mention that since the domain of Ẽ is
not finite, it is not obvious what one means by outputting the map. To see why this makes sense, note that
Ẽ is a linear map and hence it suffices to give to specify Ẽ on the set Mn,d [X ]. We also remark here that
the notion of finding a mapping Ẽ is close to the viewpoint taken by Barak et al. [3].

To get started with SoS proof systems, we state a few facts (which are very easy to prove):

Fact 5.2.

• If A `d p≥ 0 and A′ `d′ q≥ 0, then A∪A′ `max{d,d′} p+q≥ 0.

• If A `d p≥ 0 and A `d′ q≥ 0, then A `d+d′ p ·q≥ 0.

• If A `d {p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0} and {p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0} `d′ q≥ 0, A `d·d′ q≥ 0.

We next prove several other propositions in the SoS proof system. It will be helpful for the uninitiated
reader to look at these proofs in order to get familiar with the SoS proof system. For rest of the paper,
we set the following convention for indeterminates appearing in SoS proofs: capital letters X , Y and Z
will be used to denote a sequence of indeterminates (i. e., X = (x1, . . . ,xn)) while small letters x, y and
z will be used to indicate single indeterminates. This convention is however only for indeterminates in
the SoS proofs. For other variables, both capital and small letters will be used. Also, we will consider
polynomials on the indeterminates occurring in the SoS proofs. Whenever we refer to such polynomials
without an explicit reference to the underlying indeterminates, the set of indeterminates will be clear from
the context.
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5.1 Useful facts in SoS hierarchy

Fact 5.3. If A `d p≥ 0 and A `d q≥ 0, then A `d p+q≥ 0.

Fact 5.4. If A = {−1≤ y≤ 1},

• if k is an even integer, A `k+1 0≤ yk ≤ 1,

• if k is an odd integer, A `k −1≤ yk ≤ 1.

Proof. Note that for k = 0,1, the conclusion is trivially true. For k = 2, note that trivially, y2 ≥ 0. So, we
begin by observing that (from [49])

1− y2 =
1
2
(1+ y)2(1− y)+

1
2
(1+ y)(1− y)2 ,

and hence 0≤ y≤ 1 `3 y2 ≤ 1. This finishes the case for k = 2. For the remaining cases, we use induction.
We first consider the case when k > 2 is even. Then, trivially, we have yk ≥ 0. Also, observe that
1− yk = y2(1− yk−2)+(1− y2). Hence, by induction hypothesis, we have A `k+1 yk ≤ 1.

Next, consider the case when k > 2 is odd. Again, as 1− yk = y2(1− yk−2)+ (1− y2), hence by
induction hypothesis, we get A `k yk ≤ 1. Also, note that 1+ yk = y2(1+ yk−2)+(1− y2). Hence, again,
by induction hypothesis, we get A `k −1≤ yk

Fact 5.5. −1≤ y≤ 1 `5 y4 ≤ y2.

Proof.

y2− y4 =
1
2

y2(1+ y)2(1− y)+
1
2
(1+ y)(1− y)2y2 .

As the largest degree appearing is 5, this finishes the proof.

Fact 5.6. Let a≤ y≤ b `d p(y)≥ 0. Then, for λ1, . . . ,λk ∈ R such that ∀i ∈ [k], λi ≥ 0 and ∑
k
i=1 λi = 1,

we have that {
k⋃

i=1

a≤ zi ≤ b

}
`d p

( k

∑
i=1

λizi

)
≥ 0 .

Proof. In the SoS proof of p(y) ≥ 0, whenever the term (b− y) appears, we simply substitute it by
∑

k
i=1 λi(b− zi). Likewise, whenever the term (y−a) appears, we substitute it by ∑

k
i=1 λi(a− zi). It is easy

to see that this substitution shows that{
k⋃

i=1

a≤ zi ≤ b

}
`d p

( k

∑
i=1

λizi

)
≥ 0 .

Fact 5.7. For k ≥ 3, −1≤ y≤ 1 `2k+1 0≤ y2k ≤ y4.

Proof. 1− y2 = (1/2)(1+ y)2(1− y)+ (1/2)(1+ y)(1− y)2 and hence −1 ≤ y ≤ 1 `3 y2 ≤ 1. As a
consequence, for any j ≥ 1. we can get that −1≤ y≤ 1 `2 j+1 y2 j ≤ y2 j−2. Summing all the inequalities
as j variables from j = 3 to j = k, we get the stated inequalities.
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Fact 5.8. For integers m,n≥ 2,

{−1≤ y≤ 1,−1≤ z≤ 1} `1+max{2m,2n} −(y4 + z4)≤ ymzn ≤ (y4 + z4) .

Proof. `max{2m,2n} y2m + z2n ≥ ymzn. Also, using Fact 5.7, −1 ≤ y ≤ 1 `2m+1 y4 ≥ y2m. Similarly, we
have −1≤ z≤ 1 `2n+1 z4 ≥ z2n. Combining these, we have

{−1≤ y≤ 1,−1≤ z≤ 1} `1+max{2m,2n} ymzn ≤ (y4 + z4) .

Replacing y by −y and z by −z, we can similarly get

{−1≤ y≤ 1,−1≤ z≤ 1} `1+max{2m,2n} −ymzn ≤ (y4 + z4) .

This completes the proof.

Fact 5.9. For any odd integer n≥ 3,

{−1≤ y≤ 1,−1≤ z≤ 1} `n+2 −(y4 + z4)≤ yzn ≤ (y4 + z4) .

Proof. We use A to denote {−1 ≤ y ≤ 1,−1 ≤ z ≤ 1}. We begin with the case n = 3. We first use
Fact 3.10 from [49] which states that A `4 yz3 ≤ y4 + z4. This replaces one side of the inequality. We
can replace y by −y to get the other inequality. This proves the case n = 3. For n > 3, we begin by
observing that the case n = 1 implies A `n+1 yzn ≤ y4zn−3 + zn+1. Now, using Fact 5.4 (Item 1), we get
A `n+2 zn+1 ≤ z4. And similarly, we get A `n−2 zn−3 ≤ 1 and hence A `n+2 zn−3y4 ≤ y4. Combining
these, we get that A `n+2 yzn ≤ y4 + z4. Replacing y by −y, we get the other side.

Fact 5.10. Let A `d1 0≤ x≤ 1 and A `d2 −z≤ y≤ z where z ∈M≤d3 [X ]. Then,

A `d1+max{d2,d3} −z≤ xy≤ z .

Proof. Note that z− xy = z(1− x)+ x(z− y). Now, A `d1+d2 x(z− y) ≥ 0 and A `d3+d1 z(1− x) ≥ 0.
Combining these, we get that A `d1+max{d2,d3} xy≤ z. Flipping y to −y, we get the other inequality.

Moving on from elementary inequalities, we have a bounded-degree hypercontractive inequality due
to Barak et al. This inequality will be used in place of the Bonami-Beckner hypercontractive inequality
(Theorem 4.6) in the SoS version of the error analysis.

Fact 5.11. [3] Let n,d ∈ N and d ≤ n. For every S ⊆ [n] such that |S| ≤ d, we have an indeterminatề(S). For x ∈ {−1,1}n, define
`(x) = ∑

S⊆[n]:|S|≤d

̂̀(S)χS(x) .

Then,

`4 E
x∈{−1,1}n

[`4(x)]≤ 9d
(

E
x∈{−1,1}n

[`2(x)]
)2

.

We next state the following important theorem of Putinar [25] which shall be repeatedly used in the
SoS proof of “Majority is Stablest.”
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Theorem 5.12. [25] Let A= {p1(X)≥ 0, . . . , pm(X)≥ 0} and define M(A) to be the set of all polynomials
expressible as ∑

n
i=1 ri pi + r0 where r0, . . . ,rm ∈M[X ]. Assume that ∃q ∈M(A) such that the set {X :

q(X)≥ 0} is compact. If p > 0 on the set V(A), then p ∈M(A).

In the SoS proof terminology, Putinar’s theorem has the following consequence. For the convenience
of the reader, we recall that V(A) is the set of x where the constraints defined by A hold.

Corollary 5.13. Let X = (x1,x2) and A = {x1 ≥ ε,x2 ≥ ε,x1 ≤ 1− ε,x2 ≤ 1− ε}. Then, for any p(X)
such that p(X)≥ ε for all X ∈ V(A), there exists an integer d = d(p) such that A `d p≥ ε/2.

Proof. We can define the polynomials p1 = x1− ε , p2 = 1− ε − x1, p3 = x2− ε and p4 = 1− ε − x2.
Now, note that q(x,y) defined as

q(x1,x2) = (1− ε− x1)
2 · p1 +(x1− ε)2 · p2 +(1− ε− x2)

2 · p3 +(x2− ε)2 · p4

= (1−2ε)

(
−
(

x1−
1
2

)2

−
(

x2−
1
2

)2

+
1
4
−2ε(1− ε)

)
.

Clearly, q(x1,x2) ∈M(A) and that the set {(x1,x2) : q(x1,x2)≥ 0} is a compact set. As a consequence,
we can apply Theorem 5.12 to get that there is an integer d = d(p) such that A `d p− ε/2 ≥ 0. This
implies A ` p≥ ε/2.

As a key step in one of our proofs, we will also require a matrix version of Putinar’s Positivstellensatz
(see [37] for details). A matrix Γ ∈ (R[X ])p×p is said to be a sum-of-squares if there exists B ∈ (R[X ])p×q

(for some q ∈ N) such that B ·BT = Γ.

Theorem 5.14. Let A = {p1(X) ≥ 0, . . . , pm(X) ≥ 0} be satisfying the conditions in the hypothesis of
Theorem 5.12. Let Γ ∈ (R[X ])p×p be a symmetric matrix and δ > 0 be such that Γ� δ I on the set V(A).
Then, Γ = Γ0(X)+∑

m
i=1 Γi(X) · pi(X) where Γ0, . . . ,Γm are sum-of-squares.

In the same way that Corollary 5.13 followed from Theorem 5.12, we have the following consequence
of Theorem 5.14.

Corollary 5.15. Let X = (x1, . . . ,xn) and A = {p1(X)≥ 0, . . . , pm(X)≥ 0} be satisfying the conditions
in Theorem 5.12. Let Γ ∈ (R[X ])p×p be such that for x ∈ V(A), Γ� δ I for some δ > 0. Let v ∈ (R[X ])p.
Then, if p = vT ·Γ · v, then p ∈M(A).

Proof. First, by applying Theorem 5.14, we get Γ = Γ0(X)+∑
m
i=1 Γi(X) · pi(X). Let us assume that

Γi = BT
i ·Bi. Then,

p = vT ·Γ · v = vT (Γ0(X)+
m

∑
i=1

Γi(X) · pi(X))v = (B0 · v)T · (B0 · v)+
m

∑
i=1

(B0 · v)T · (B0 · v) · pi(x) .

This proves the claim.
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6 SoS proof of “Majority is Stablest”

The principal theorem of this section is the SoS version of “Majority is Stablest” theorem of [45]. Before
we state the theorem, we will need a few definitions. We will consider the indeterminates f (x) (for
x ∈ {−1,1}n). The constraints on these indeterminates is given by

Ap = {0≤ f (x)≤ 1 : for all x ∈ {−1,1}n} .

As is the case with the usual setting, its helpful to define the Fourier coefficients of f .

For S⊆ [n], f̂ (S) = E
x∈{−1,1}n

f (x) ·χS(x) and hence f (x) = ∑
S⊆[n]

f̂ (S)χS(x) .

Note that f̂ (S) are nothing but linear forms in terms of the original indeterminates. It is also helpful to
recall the notion of influences and low-degree influences in this context:

Infi( f ) = ∑
S3i

f̂ 2(S) , Inf≤d
i ( f ) = ∑

S3i:|S|≤d
f̂ 2(S).

With this, we state the main theorem of this section.

Theorem 6.1. For any κ > 0 and ρ ∈ (−1,0), ∃d0 = d0(κ,ρ), d1 = d1(κ,ρ) and c = c(κ,ρ) such that

Ap `d0 E
x∈{−1,1}n

y∼ρ x

[ f (x) · f (y)+(1− f (x)) · (1− f (y))]≥ 1− 1
π

arccosρ−κ− c ·
( n

∑
i=1

(Inf≤d1
i f )2

)
.

This is easily seen to be equivalent to the statement of the “Majority is Stablest” theorem of [45].
Before we delve further into the SoS proofs, we will familiarize ourselves with the Fourier machinery in
the SoS world. The upshot of the ensuing discussion is that the basic Fourier identities and operations
hold without any changes in the SoS world.

We start by verifying that Parseval’s identity holds, i. e., for { f (x)} and { f̂ (S)} defined as above

E[ f 2(x)] = ∑
S⊆[n]

f̂ 2(S) .

Similarly, we can define the noise operator Tρ here as follows: Given the sequence of indeterminates
{ f (x)}x∈{−1,1}n , we define the sequence of indeterminates {g(x)}x∈{−1,1}n as

g(x) = Ey∼ρ x[ f (x)]

and for every x, use Tρ f (x) to refer to g(x). It is also easy to check that if we define ĝ(S) =Ex[g(x) ·χS(x)],
then ĝ(S) = ρ |S| f̂ (S).
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6.1 Smoothening the function

For our purposes, it is necessary to do a certain smoothening of the function f . In particular, we
start by considering a new function f1, i. e., we create a new sequence of indeterminates defined by
f1(x) = (1− ε) f (x)+ ε/2 for some ε > 0. The value of ε shall be fixed later. We observe that

Ap `1 ∪x∈{−1,1}n{ε ≤ f1(x)≤ 1− ε} , (6.1)

f̂1(S) = (1− ε) f̂ (S)+(ε/2) ·1S=Φ .

We begin by making the following claim.

Claim 6.2.
Ap `2 f (x) f (y)−2ε ≤ f1(x) f1(y)≤ f (x) f (y)+2ε.

Proof. Begin by noting that 1− f (x) f (y) = (1− f (x)) f (y)+(1− f (y)) and hence Ap `2 0≤ f (x) f (y)≤
1. Also,

f1(x) f1(y)− f (x) f (y) = (ε2−2ε) f (x) f (y)+
ε2

4
+ ε(1− ε)( f (x)+ f (y)).

Using, Ap `2 0≤ f (x) f (y), we get that

Ap `2 f1(x) f1(y)− f (x) f (y)≤ 2(1− ε)ε +
ε2

4
≤ 2ε .

On the other hand, using Ap `2 f (x) f (y)≤ 1, we get that

Ap `2 f (x) f (y)− f1(x) f1(y)≤ 2ε− ε
2 ≤ 2ε .

The next stage of smoothening is done by defining g = T1−η f1 for some η > 0. Again, the value of η

will be fixed later. We observe that the following relations hold:⋃
x∈{−1,1}n

{ε ≤ f1(x)≤ 1− ε} `1
⋃

x∈{−1,1}n

{ε ≤ g(x)≤ 1− ε} , (6.2)

ĝ(S) = (1− ε)(1−η)|S| f̂ (S)+(ε/2) ·1S=Φ .

Also, observe that
Ex,y∼ρ x[ f1(x) · f1(y)] = Ex,y∼

ρ ′x[g(x) ·g(y)]

where ρ ′ = ρ/(1−η)2. Of course, this imposes the condition |ρ| ≤ |1−η |2. So, we have to choose η to
be small enough compared to |ρ|. Now, define the constraint set

A′p =
⋃

x∈{−1,1}n

{ε ≤ g(x)≤ 1− ε} .

So, we summarize the discussion of this subsection in the following two claims.

Claim 6.3. For any q and d ∈ N, if A′p `d q≥ 0, then Ap `d q≥ 0.
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The proof of the above is obtained by combining (6.1) and (6.2) with the third bullet of Fact 5.2.
Similarly, using Claim 6.2 and

Ex,y∼ρ x[ f1(x) · f1(y)] = Ex,y∼
ρ ′x[g(x) ·g(y)] ,

we get the next claim:

Claim 6.4.
Ap `2 Ex,y∼ρ x[ f (x) · f (y)]≥ Ex,y∼

ρ ′x[g(x) ·g(y)]−2ε .

Thus, the above two claims mean that from now on, we will work with A′p and aim to prove a lower
bound on

Ex,y∼
ρ ′x[g(x) ·g(y)] .

At this stage, let J̃ρ ′ be the approximation obtained from Claim B.1 with parameter ε > 0 and δ = ε . For
the sake of brevity, we indicate this by J̃ itself. The following claim allows us to compare the terms x · y
and J̃(x,y).

Claim 6.5. For any ε > 0, such that ρ ′ ∈ (−1,0) and J̃ is as described above, there is a dα = dα(ε,ρ
′)

such that,
{ε ≤ x≤ 1− ε,ε ≤ y≤ 1− ε} `dα

x · y≥ J̃(x,y)−2ε.

Proof. Note that for (x,y) ∈ (0,1)2, J0(x,y) = xy and hence by Slepian’s lemma, we get that if ρ ′ < 0,
then xy ≥ Jρ ′(x,y). Now, by definition, we have that for (x,y) ∈ [ε,1− ε]2, xy ≥ J̃(x,y)− ε . In other
words, if we define the polynomial p(x,y) = xy− J̃(x,y)+2ε , then we know that for (x,y) ∈ [ε,1− ε]2,
p(x,y)≥ ε . We can thus apply Corollary 5.13 to get that there is an integer dα = dα(ε,ρ

′) such that for
(x,y) ∈ [ε,1− ε]2, for ρ ′ ∈ (0,1),

{ε ≤ x≤ 1− ε,ε ≤ y≤ 1− ε} `dα
p≥ 0 .

Expanding p, finishes the proof.

6.2 Taylor’s theorem in the SoS world

Following the proof of “Majority is Stablest,” we now need to prove a Taylor’s theorem in the SoS
hierarchy. The following lemma is the SoS analogue of Claim 2.5.

Lemma 6.6. Define a sequence of indeterminates {h0(1),h0(−1),h1(1),h1(−1)}. Let A be a set of
constraints defined as A =

⋃
i, j∈{0,1}{ε ≤ hi( j) ≤ 1− ε}. For any ε > 0, ρ ′ ∈ (−1,0), ∃cγ = cγ(ε,ρ

′)
and ∃dγ = dγ(ε,ρ

′) such that

A `dγ E
x∈R{−1,1}

y∼
ρ ′x

[J̃(h0(x),h1(y))]≥ J̃(ĥ0(0), ĥ1(0))− ε · (ĥ0
2
(1)+ ĥ1

2
(1))− cγ · (ĥ0

4
(1)+ ĥ1

4
(1)) ,

where

ĥi( j) =
hi(1)+(−1) j ·hi(−1)

2
for i, j ∈ {0,1}. Further, cγ(ε,ρ

′) is a continuous function of ε and ρ ′.
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Note that while the error term in Claim 2.5 was third-order, the error term in Lemma 6.6 consists of
a small second-order term and a large fourth-order term. This sort of error term (which was used also
in [49]) is more convenient in the SoS world, because it avoids the need to consider absolute values.

The proof of Lemma 6.6 is fairly long, since it must be written in the restrictive SoS proof system. To
give some motivation for the proof, let us first give a short outline. First of all, if we restrict to the first-
and second-order terms of J̃, then the claimed inequality is true even without the fourth-order error term.
By the completeness of the SoS proof system (Corollary 5.15), there must therefore be a constant-degree
SoS proof of this fact. Most of the proof of Lemma 6.6 goes into showing that the higher order terms of J̃
can be bounded by a fourth-order error term. This is of course trivial to show in the usual proof system,
but takes some work to write as an SoS proof.

Proof of Lemma 6.6. We start by noting that since J̃ is a symmetric polynomial, hence we can write

J̃(x,y) = ∑
m,n:m+n≤K

µm,nxmyn .

Here, we assume that K is the degree of J̃ and c is the maximum absolute value of any coefficient. We
next make the following claim.

Claim 6.7.

E
x∈R{−1,1}

y∼
ρ ′x

[J̃(h0(x),h1(y))] = ∑
m,n:m+n is even

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
,

where

νm,n = ∑
m1≥m;n1≥n

µm1,n1 · ĥ0
m1−m

(0) · ĥ1
n1−n

(0) ·
(

m1

m

)(
n1

n

)
.

Proof. We begin by observing that

J̃(ĥ0(0)+ x, ĥ1(0)+ y) = ∑
m,n

µm,n · (ĥ0(0)+ x)m · (ĥ1(0)+ y)n = ∑
m,n

νm,n · xm · yn .

As a consequence, we get that

J̃(ĥ0(0)+ ĥ0(1), ĥ1(0)+ ĥ1(1)) = ∑
m,n

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ,

J̃(ĥ0(0)− ĥ0(1), ĥ1(0)− ĥ1(1)) = ∑
m,n

(−1)m+n
νm,n · ĥ0

m
(1) · ĥ1

n
(1) .

Adding these equations, we get

J̃(ĥ0(0)+ ĥ0(1), ĥ1(0)+ ĥ1(1))+ J̃(ĥ0(0)− ĥ0(1), ĥ1(0)− ĥ1(1)) = 2 · ∑
m,n:

m+n is even

νm,n · ĥ0
m
(1) · ĥ1

n
(1) . (6.3)
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Similarly, we have that

J̃(ĥ0(0)− ĥ0(1), ĥ1(0)+ ĥ1(1)) = ∑
m,n

(−1)m
νm,n · ĥ0

m
(1) · ĥ1

n
(1) ,

J̃(ĥ0(0)+ ĥ0(1), ĥ1(0)− ĥ1(1)) = ∑
m,n

(−1)n
νm,n · ĥ0

m
(1) · ĥ1

n
(1) .

Thus,

J̃(ĥ0(0)− ĥ0(1), ĥ1(0)+ ĥ1(1))+ J̃(ĥ0(0)+ ĥ0(1), ĥ1(0)− ĥ1(1)) = 2 · ∑
m,n:

m+n is even

(−1)m
νm,n · ĥ0

m
(1) · ĥ1

n
(1) .

(6.4)
Hence, combining (6.3) and (6.4), we get that

E
x∈R{−1,1}

y∼
ρ ′x

[J̃(h0(x),h1(y))] = ∑
m,n:

m+n is even

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
.

Next, we note that ν0,0 = J̃(ĥ0(0), ĥ1(0)). Thus, we get that

E
x∈R{−1,1}

y∼
ρ ′x

[J̃(h0(x),h1(y))]− J̃(ĥ0(0), ĥ1(0)) = ∑
m,n:m+n is even

K≥m+n≥2

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
.

(6.5)
We first make the following claim which bounds the terms when m+n≥ 4.

Claim 6.8.

A `2K+3 Y ≥ ∑
m,n:m+n is even

and m+n≥4

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
≥−Y ,

where Y = 2cK422K(ĥ0
4
(1)+ ĥ1

4
(1)).

Proof. For m+n≥ 4 and m1 ≥ m and n1 ≥ n, we define Γm1,n1,m,n as follows:

Γm1,n1,m,n = µm1,n1

(
m1

m

)(
n1

n

)
· ĥ0

m
(1) · ĥ1

n
(1) · ĥ0

m1−m
(0) · ĥ1

n1−n
(0) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
.

Next, define the set of constraints Am as

Am = {0≤ ĥ0(0)≤ 1 , 0≤ ĥ1(0)≤ 1 , −1≤ ĥ0(1)≤ 1 , −1≤ ĥ1(1)≤ 1} .

Now, it is easy to see that A `1 Am. Hence, by using the third bullet of Fact 5.2, if for any p and d ∈ N,
Am `d p≥ 0, then A `d p≥ 0. We shall be using this fact throughout this proof. Applying Fact 5.4, we
get that

A `m1−m+1 0≤ ĥ0
m1−m

(0)≤ 1 , A `n1−n+1 0≤ ĥ1
n1−n

(0)≤ 1 ,
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and hence we have that

A `m1+n1−m−n+2 0≤ ĥ0
m1−m

(0) · ĥ1
n1−n

(0)≤ 1 . (6.6)

Now, we consider two possibilities: Either m = n = 2 or max{m,n} ≥ 3. In the first case, using Fact 5.8,
we get that

A `5 −(ĥ0
4
(1)+ ĥ1

4
(1))≤ ĥ0

2
(1) · ĥ1

2
(1)≤ ĥ0

4
(1)+ ĥ1

4
(1) . (6.7)

Next, consider the other case, i. e., when max{m,n} ≥ 3. Without loss of generality, assume m≥ 3. Then,
by Fact 5.9, we get that

A `m+2 −(ĥ0
4
(1)+ ĥ1

4
(1))≤ ĥ0

m
(1) · ĥ1(1)≤ ĥ0

4
(1)+ ĥ1

4
(1) .

Next, we use Fact 5.10 to get that

A `m+n+1 −(ĥ0
4
(1)+ ĥ1

4
(1))≤ ĥ0

m
(1) · ĥ1

n
(1)≤ ĥ0

4
(1)+ ĥ1

4
(1) . (6.8)

Thus, combining (6.7) and (6.8), we get that for any m and n such that m+n≥ 4,

A `m+n+1 −(ĥ0
4
(1)+ ĥ1

4
(1))≤ ĥ0

m
(1) · ĥ1

n
(1)≤ ĥ0

4
(1)+ ĥ1

4
(1) .

Now, combining (6.6) along with an application of Fact 5.10, we get that

A `m1+n1+3 −(ĥ0
4
(1)+ ĥ1

4
(1))≤ ĥ0

m
(1) · ĥ1

n
(1) · ĥ0

m1−m
(0) · ĥ1

n1−n
(0)≤ ĥ0

4
(1)+ ĥ1

4
(1) .

Now, recalling that 0≤ m1,n1,m,n≤ K,
(m1

m

)
,
(n1

n

)
≤ 2K , |µm,n| ≤ c and |ρ ′| ≤ 1, we get that

A `2K+3 −c22K(ĥ0
4
(1)+ ĥ1

4
(1))≤ Γm1,n1,m,n ≤ c22K(ĥ0

4
(1)+ ĥ1

4
(1)) .

As

∑
m,n:m+n is even

and m+n≥4

νm,nĥ0
m
(1)ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
= ∑

m,n:m+n is even
m+n≥4

K≥m1≥m K≥n1≥n

Γm1,n1,m,n ,

we can conclude that

A `2K+3 −c22KK4 · (ĥ0
4
(1)+ ĥ1

4
(1))≤ ∑

m,n:m+n is even
and m+n≥4

νm,nĥ0
m
(1) · ĥ1

n
(1)≤ c22KK4 · (ĥ0

4
(1)+ ĥ1

4
(1)) .

This completes the proof of Claim 6.8.

Finally, we need to consider the terms when m+n = 2. This is where we will use Putinar’s theorem.
Note that

∑
m+n=2

νm,n · ĥ0
m
(1) · ĥ1

n
(1) ·

(
1+ρ ′

2
+(−1)m · 1−ρ ′

2

)
= ν2,0 · ĥ0

2
(1)+ν0,2 · ĥ1

2
(1)+ρ

′
ν1,1 · ĥ0(1) · ĥ1(1) .
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For the sake of brevity, call the above quantity Λ. Next, we observe that at x = ĥ0(0),y = ĥ1(0),

∂ 2J̃(x,y)
∂x2 = 2ν2,0 ,

∂ 2J̃(x,y)
∂y2 = 2ν0,2 ,

∂ 2J̃(x,y)
∂x∂y

= ν1,1 .

To see this, note that

∂ 2J̃(x,y)
∂x2 x=ĥ0(0), y=ĥ1(0)

=
∂ 2J̃(ĥ0(0)+ x′, ĥ1(0)+ y′)

∂x′2 x′=0, y′=0
.

However, the quantity on the right side is simply twice the coefficient of x′2 in the polynomial J̃(ĥ0(0)+
x′, ĥ1(0)+ y′) which is exactly 2ν2,0. The other equalities follow similarly. Thus, we get that

Λ =
1
2

(
∂ 2J̃(x,y)

∂x2 ĥ0
2
(1)+

∂ 2J̃(x,y)
∂y2 ĥ1

2
(1)+2ρ

′ ∂
2J̃(x,y)
∂x∂y

ĥ0(1) · ĥ1(1)
)
.

We mention here that in the above equation, the derivatives are evaluated at x = ĥ0(0), y = ĥ1(0). We do
not specify this in the equation for the sake of compactness. We now make the following claim which
gives a lower bound on Λ.

Claim 6.9. For every ε > 0 and ρ ′ ∈ (−1,0), there exists d′γ = d′γ(ε,ρ
′) such that

A `d′γ Λ≥−ε · (ĥ0
2
(1)+ ĥ1

2
(1)) .

Proof. We begin by defining the matrix M̃ as follows:

M̃ =

(
∂ 2J̃(x,y)

∂x2 ρ ′ ∂
2J̃(x,y)
∂x∂y

ρ ′ ∂
2J̃(x,y)
∂x∂y

∂ 2J̃(x,y)
∂y2

)
.

Put β = 2ε . Now, let us define M̃1 = M̃ +β I. Using Claim 2.6 and Claim B.1, for ρ ′ ∈ (−1,0), and
(x,y) ∈ [ε,1− ε]2, we can say that M̃1 � ε · I. Hence, using Corollary 5.15, ∃d′γ such that we have the
following

A `d′γ ĥ0
2
(1)
(

∂ 2J̃(x,y)
∂x2 +β

)
+2ρ

′ · ĥ0(1) · ĥ1(1) ·
∂ 2J̃(x,y)

∂x∂y
+ ĥ1

2
(1)
(

∂ 2J̃(x,y)
∂y2 +β

)
≥ 0

≡ A `d′γ ĥ0
2
(1) · ∂

2J̃(x,y)
∂x2 +2ρ

′ · ĥ0(1) · ĥ1(1) ·
∂ 2J̃(x,y)

∂x∂y
+ ĥ1

2
(1) · ∂

2J̃(x,y)
∂y2 ≥−β (ĥ0

2
(1)+ ĥ1

2
(1)) .

Dividing by 2 on both sides, finishes the proof. Note that the reason d′γ depends only on ε and ρ ′ is
because from Corollary 5.15, the degree d′γ depends on ε , ρ ′ and the polynomial J̃ and J̃ depends only on
ε and ρ ′.

Now, set dγ = max{d′γ ,2K +3}. Also, note that both K and c are bounded by continuous functions
of ε and ρ ′ (see Claim B.1), hence cγ can be chosen to be a continuous function of ρ ′ and ε and be an
upper bound on 2cK422K . Combining Claim 6.8 and Claim 6.9 with (6.5), we get Lemma 6.6.
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6.3 Tensorization

We now do a “tensorization” of the inequality in Lemma 6.6 (analogous to Theorem 2.4). Unlike in the
base case, this step of the SoS proof follows the non-SoS proof fairly closely. Let {φ(x)}x∈{−1,1}n be a set
of indeterminates. We recall that for y ∈ {−1,1}i, we define the set {φy(z)}z∈{−1,1}n−i of indeterminates
as follows: φy(z) = φ(z · y) where z · y denotes the concatenation of z and y. As before, we can define the
Fourier coefficients φ̂y(S) for S⊆ [n− i] and it is easy to see that they are homogeneous linear forms in
the indeterminates φ̂(S) (for S ⊆ [n]). We now state a few basic properties of the indeterminates gy(z)
and ĝy(S). (The proofs are easy and can be filled in by the reader.)

A′p `1

n−1⋃
i=0

⋃
y∈{−1,1}i

⋃
z∈{−1,1}n−i

{ε ≤ gy(z)≤ 1− ε} , (6.9)

A′p `1

n−1⋃
i=0

⋃
y∈{−1,1}i

⋃
S⊆[n−i]

{−1≤ ĝy(S)≤ 1} , (6.10)

`2 E
y∈{−1,1}i

[ĝy
2(n− i)] = ∑

S⊆{n−i,...,n}
n−i∈S

ĝ2(S) . (6.11)

Lemma 6.10. For the parameters cγ = cγ(ε,ρ
′) and dγ = dγ(ε,ρ

′) from Lemma 6.6,

A′p `dγ E
x∈{−1,1}n

y∼
ρ ′x

[J̃(g(x),g(y))]≥ J̃(E[g(x)],E[g(y)])− ε

(
n−1

∑
i=0

Ez∈{−1,1}i [ĝ2
z (n− i)]

)

− cγ

(
n−1

∑
i=0

Ez∈{−1,1}i [ĝ4
z (n− i)]

)
.

Proof. The proof is by induction. For any pair of strings z−1,z1 ∈ {−1,1}i and j ∈ {−1,1}, we define
the indeterminate,

hi( j) = Ez∈{−1,1}n−i−1 [g(z · j · zi)] .

Define
Az−1,z1 =

⋃
j∈{−1,1}

{ε ≤ hi( j)≤ 1− ε} .

It is trivial to see that A′p `1 Az−1,z1 . Now, using Lemma 6.6, for any two strings z1,z−1 ∈ {−1,1}i, we
get that

Az−1,z1 `dγ E
x∈{−1,1}

y∼
ρ ′x

J̃(E[gx·z1 ],E[gy·z−1 ])≥ J̃(E[gz1 ],E[gz−1 ])− ε
(
ĝ2

z1
(n− i)+ ĝ2

z−1
(n− i)

)
− cγ

(
ĝ4

z−1
(n− i)+ ĝ4

z1
(n− i)

)
.
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As a consequence of the third bullet of Fact 5.2, the left hand side of “`” can be replaced by A′p. Now,
for any given z1,z−1 ∈ {−1,1}i, let d(z1,z−1) be its Hamming distance. In particular, if i = 0, then
d(z1,z−1) = 0. Now, multiply the above inequality by(1+ρ ′

4

)i−d(z1,z−1)
·
(1−ρ ′

4

)d(z1,z−1)

and add all such inequalities generated by choosing (z1,z−1) ∈ {−1,1}i×{−1,1}i for 0≤ i < n. It is
easy that upon addition, all terms of the form J̃(E[gz1 ],E[gz−1 ]) cancel out except when z1,z−1 ∈ {−1,1}n

or z1 = z−1 = φ . Thus, we get the inequality

A′p `dγ E
x∈{−1,1}n

y∼
ρ ′x

[J̃(g(x),g(y))]≥ J̃(E[g(x)],E[g(y)])+ error terms

where the error terms are the terms coming from ĝ2
z j
(n− i) and ĝ4

z j
(n− i). We now explicitly compute the

error terms. First, we sum up the error coming from the term

ε
(
ĝ2

z1
(n− i)+ ĝ2

z−1
(n− i)

)
.

For any given z1 ∈ {−1,1}i, consider the term ε ĝ2
z1
(n− i). For every z−1 ∈ {−1,1}i, it occurs with the

factor (1+ρ ′

4

)i−d(z1,z−1)
·
(1−ρ ′

4

)d(z1,z−1)
.

Since there are exactly
( i

k

)
strings z−1 ∈ {−1,1}i such that d(z1,z−1) = k, hence we get that the total

weight associated is
i

∑
k=0

(
i
k

)(
1+ρ ′

4

)i−k(1−ρ ′

4

)k

= 2−i .

Thus, we get that the first kind of error terms contribute

ε
(
ĝ2

z1
(n− i)+ ĝ2

z−1
(n− i)

)
.

The calculation of the “fourth degree” error terms is exactly identical resulting in the final theorem.

We now simplify the error terms. Towards this, note that (6.11) implies that

`2 ε ·

(
n−1

∑
i=0

Ez∈{−1,1}i [ĝ2
z (n− i)]

)
= ε ·

(
∑

S 6=φ

ĝ2(S)
)
≤ ε ·

(
∑
S

ĝ2(S)
)
= ε · E

x∈{−1,1}n
[g2(x)] .

Further, A′p `3 Ex∈{−1,1}n [g2(x)]≤ 1 (using Fact 5.4). Thus, we get that

A′p `dγ E
x∈{−1,1}n

y∼
ρ ′x

[J̃(g(x),g(y))]≥ J̃(E[g(x)],E[g(y)])− ε− cγ

(
n−1

∑
i=0

Ex∈{−1,1}i [ĝ4
x(n− i)]

)
. (6.12)
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6.4 Bounding the error terms

Thus, all we are left to bound is the “degree-4” term. We briefly describe why one has to be careful to get
a (meaningful) upper bound here. The reason is that the obvious strategy to do this is to break g into high
degree and low-degree parts based on the noise parameter (call them h and `). Very naively, this gives an
error which is the sum of Exĥ4

x(n− i) and Ex ̂̀4x(n− i) (up to constant factors). The term Ex ̂̀4x(n− i) can
be easily bounded using hypercontractivity. However, there does not seem to be obvious way to bound
the term Exĥ4

x(n− i). This is in spite of the fact that Exĥ2
x(n− i) is small. We now show how to get around

this problem.
We define dη = (1/η) · log(1/η). Now, define the sequence of indeterminates {h(x)}x∈{−1,1}n and

{`(x)}x∈{−1,1}n as follows:

h(x) = ∑
|S|>dη

ĝ(S)χS(x) , `(x) = ∑
|S|≤dη

ĝ(S)χS(x) .

By the way it is defined, it is clear that `1 h(x)+ `(x) = g(x). Now, we can analyze the term

Ex∈{−1,1}i [ĝ4
x(n− i)]

as

`4

n−1

∑
i=0

Ex∈{−1,1}i [ĝ4
x(n− i)] =

n−1

∑
i=0

(Ex∈{−1,1}i [ĝ3
x(n− i)(ĥx(n− i)+ ̂̀x(n− i))])

=
n−1

∑
i=0

(
Ex∈{−1,1}i [ĝ3

x(n− i)ĥx(n− i)]+Ex∈{−1,1}i [ĝ2
x(n− i)̂̀2x(n− i)]

+ Ex∈{−1,1}i [ĝ2
x(n− i)̂̀x(n− i)ĥx(n− i)]

)
. (6.13)

We begin by stating the following useful fact:

Fact 6.11. Ap `3 ∑
n−1
i=0 Ex∈{−1,1}i ĥ2

x(n− i)≤ η .

Proof.

`2

n−1

∑
i=0

Ex∈{−1,1}i ĥ2
x(n− i) = ∑

S 6=φ

ĥ2(S) = ∑
|S|>dη

(1−η)dη f̂ 2(S)≤ η ·
(

∑
|S|>dη

f̂ 2(S)
)
≤ η ·

(
∑
|S|

f̂ 2(S)
)
.

Here the first equality uses (6.11) while the second uses the definition of h.

Ap `3

(
∑
|S|

f̂ 2(S)
)
= Ex∈{−1,1}n [ f 2(x)]≤ 1 .

Combining the two facts finishes the proof.

We now bound the terms appearing in (6.13). This is done in Claims 6.12, 6.13 and 6.14.

Claim 6.12. Ap `7 ∑
n−1
i=0 Ex∈{−1,1}i [ĝ3

x(n− i)ĥx(n− i)]≤√η .
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Proof. For any η > 0, we have that

`6

n−1

∑
i=0

Ex∈{−1,1}i [ĝ3
x(n− i)ĥx(n− i)]≤

√
η

2

(
n−1

∑
i=0

Ex∈{−1,1}i ĝ6
x(n− i)

)
+

(
∑

n−1
i=0 Ex∈{−1,1}i ĥ2

x(n− i)
)

2
√

η
.

Next, recall that using Fact 6.11, we have

Ap `3

n−1

∑
i=0

Ex∈{−1,1}i ĥ2
x(n− i)≤ η .

Similarly, from (6.10) and Claim 6.3, we have that Ap ` −1 ≤ ĝx(n− i) ≤ 1. This in turn implies
Ap `7 ĝ6

x(n− i)≤ ĝ2
x(n− i) (combining Fact 5.5 and Fact 5.7). Combining all the above, we get

Ap `7

n−1

∑
i=0

Ex∈{−1,1}i [ĝ3
x(n− i)ĥx(n− i)]≤

√
η

2
·

(
n−1

∑
i=0

Ex∈{−1,1}i ĝ2
x(n− i)

)
+

√
η

2
.

However, we have that

Ap `3

n−1

∑
i=0

Ex∈{−1,1}i ĝ2
x(n− i) = ∑

|S|>0
ĝ2(S)≤ E[g2(x)]≤ 1 .

This proves the claim.

Claim 6.13.

Ap `5

n−1

∑
i=0

E
x∈{−1,1}i

[ĝ2
x(n− i)̂̀2x(n− i)]≤

√
η

2
+

9dη

2
√

η

( n

∑
i=1

(Inf≤dη

i ( f ))2
)
.

Proof. For η > 0, we have that

`4

n−1

∑
i=0

Ex∈{−1,1}i [ĝ2
x(n− i)̂̀2x(n− i)]≤

√
η

2

(
n−1

∑
i=0

Ex∈{−1,1}i ĝ4
x(n− i)

)
+

(
∑

n−1
i=0 Ex∈{−1,1}i ̂̀4x(n− i)

)
2
√

η
.

Similarly, using Fact 5.11,

`4

n−1

∑
i=0

Ex∈{−1,1}i ̂̀4x(n− i)≤ 9dη ·

(
n−1

∑
i=0

(
Ex∈{−1,1}i ̂̀2x(n− i)

)2
)

.

As in the proof of Claim 6.12, we can show

Ap `5

n−1

∑
i=0

Ex∈{−1,1}i ĝ4
x(n− i)≤ 1 .
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Combining all the above, we get

Ap `5

n−1

∑
i=0

Ex∈{−1,1}i [ĝ2
x(n− i)̂̀2x(n− i)]≤

√
η

2
+

9dη

2
√

η

(
n−1

∑
i=0

(
Ex∈{−1,1}i ̂̀2x(n− i)

)2
)

. (6.14)

Again, observe that

`2 Ex∈{−1,1}i ̂̀2x(n− i) = ∑
S⊆{n−i,...,n}:n−i∈S

̂̀2(S)≤ ∑
S⊆[n]:n−i∈S

̂̀2(S)
= ∑

S⊆[n]:n−i∈S
and |S|≤dη

ĝ2(S)≤ ∑
S⊆[n]:n−i∈S
and |S|≤dη

f̂ 2(S)≤ Inf≤dη

n−i ( f ) .

As a consequence of Fact 5.2, we get

`4

n−1

∑
i=0

(
Ex∈{−1,1}i ̂̀2x(n− i)

)2
≤

n−1

∑
i=0

(
Inf≤dη

n−i ( f )
)2

.

Combining this with (6.14), we get the final result.

Claim 6.14.

Ap `9

n−1

∑
i=0

Ex∈{−1,1}i [ĝ2
x(n− i)ĥx(n− i)̂̀x(n− i)]≤

√
η +

9dη

2
√

η

( n

∑
i=1

(Inf≤dη

i ( f ))2
)
.

Proof. For any η > 0, we have

`6

n−1

∑
i=0

E
x∈{−1,1}i

[ĝ2
x(n− i)ĥx(n− i)̂̀x(n− i)]≤ 1

2
√

η

(n−1

∑
i=0

E
x∈{−1,1}i

ĥ2
x(n− i)

)

+

√
η

(
∑

n−1
i=0 Ex∈{−1,1}i ĝ4

x(n− i)̂̀2x(n− i)
)

2
.

From the proof of Claim 6.12, we know that

Ap `3

n−1

∑
i=0

E
x∈{−1,1}i

ĥ2
x(n− i)≤ η .

Thus, we get

`6

n−1

∑
i=0

E
x∈{−1,1}i

[ĝ2
x(n− i)ĥx(n− i)̂̀x(n− i)]≤

√
η

2
+

√
η

(
∑

n−1
i=0 Ex∈{−1,1}i ĝ4

x(n− i)̂̀2x(n− i)
)

2
. (6.15)

However,

`8

n−1

∑
i=0

E
x∈{−1,1}i

ĝ4
x(n− i)̂̀2x(n− i)≤

∑
n−1
i=0 Ex∈{−1,1}i ĝ8

x(n− i)+∑
n−1
i=0 Ex∈{−1,1}i ̂̀4x(n− i)

2
.
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Following the same proof as in the proof of Claim 6.12, we can show that

Ap `9

n−1

∑
i=0

E
x∈{−1,1}i

ĝ8
x(n− i)≤ 1 .

Similarly, from the argument in the proof of Claim 6.13, we can show that

Ap `4

n−1

∑
i=0

E
x∈{−1,1}i

̂̀4
x(n− i)≤ 9dη ·

(
n−1

∑
i=0

(
Inf≤dη

n−i ( f )
)2
)

.

Combining these, we get that

Ap `9

n−1

∑
i=0

E
x∈{−1,1}i

ĝ4
x(n− i)̂̀2x(n− i)≤

1+9dη ·
(

∑
n−1
i=0

(
Inf≤dη

n−i ( f )
)2)

2
.

Plugging this in (6.15), we get the claim.

Combining (6.12) with Claim 6.12, Claim 6.13, Claim 6.14 and plugging into Claim 6.3, we get that
for cγ and dγ described in Lemma 6.6,

Ap `max{dγ ,9} E
x∈{−1,1}n

y∼
ρ ′x

[J̃(g(x),g(y))]≥ J̃(E[g(x)],E[g(y)])− ε

−
5 · cγ

√
η

2
−

9dη · cγ√
η

( n

∑
i=1

(Inf≤dη

i ( f ))2) . (6.16)

Using Claim 6.5, we have that Ap `dα
g(x) ·g(y) ≥ J̃(g(x),g(y))−2ε . Similarly, combining this with

Claim 6.4 (and using that dα ≥ 2), we get that

Ap `dα
Ex,y∼ρ x[ f (x) · f (y)]≥ Ex,y∼

ρ ′x[J̃(g(x),g(y))]−4ε . (6.17)

We now combine this with (6.16) to get that

Ap `max{dγ ,dα ,9} E
x∈{−1,1}n

y∼ρ x

[ f (x) · f (y)]≥ J̃(E[g(x)],E[g(y)])−5ε

−
5 · cγ

√
η

2
−

9dη · cγ√
η

( n

∑
i=1

(Inf≤dη

i ( f ))2) . (6.18)

Now, define a new sequence of indeterminates { fc(x)}x∈{−1,1}n where fc(x) = 1− f (x). Analogous
to the (sequence of) indeterminates { f1(x)}x∈{−1,1}n and {g(x)}x∈{−1,1}n defined earlier, we define the
indeterminates { f1c(x)}x∈{−1,1}n and {gc(x)}x∈{−1,1}n as follows:

f1c(x) = (1− ε) fc(x)+ ε/2 and gc(x) = Ey∼1−η x[ f1c(x)] .

We now make the following observations:
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• ∀x ∈ {−1,1}n, Ap `1 ∀x ∈ {−1,1}n, ε ≤ gc(x)≤ (1− ε).

• Ex[g(x)]+Ex[gc(x)] = 1.

• For all i ∈ [n], Inf≤dη

i f = Inf≤dη

i fc.

Thus, using the above, analogous to (6.18), we have the following:

Ap `max{dγ ,dα ,9} E
x∈{−1,1}n

y∼ρ x

[ fc(x) · fc(y)]≥ J̃(E[gc(x)],E[gc(y)])−5ε

−
5 · cγ

√
η

2
−

9dη · cγ√
η

( n

∑
i=1

(Inf≤dη

i ( fc))
2) . (6.19)

Defining ξ as

ξ = 5ε +
5 · cγ

√
η

2
+

9dη · cγ√
η

(
n

∑
i=1

(Inf≤dη

i ( f ))2

)
and summing up (6.18) and (6.19), we get

Ap `max{dγ ,dα ,9} E
x∈{−1,1}n

y∼ρ x

[ f (x) · f (y)+(1− f (x)) · (1− f (y))]≥ J̃(E[g(x)],E[g(y)])

+ J̃(E[1−g(x)],E[1−g(y)])−2ξ .

(6.20)

Next, we recall the following fact:

Fact 6.15. For any a ∈ (0,1) and ρ ∈ (−1,0),

Jρ(a,a)+ Jρ(1−a,1−a)≥ 2Jρ(1/2,1/2) = 1− arccosρ

π
.

As a consequence we have that for every x ∈ [ε,1− ε],

J̃(x,x)+ J̃(1− x,1− x)≥ 1− arccosρ ′

π
−2ε .

By using Corollary 5.13, we have that there exists dδ = dδ (ε,ρ
′) such that

Ap `dδ
J̃(E[g(x)],E[g(y)])+ J̃(E[1−g(x)],E[1−g(y)])≥ 1− arccosρ ′

π
−4ε . (6.21)

Combining (6.20) and (6.21), we get

Ap `max{dγ ,dα ,dδ ,9} E
x∈{−1,1}n

y∼ρ x

[ f (x) · f (y)+(1− f (x)) · (1− f (y))]≥ 1− arccosρ ′

π
−4ε−2ξ . (6.22)

From here, getting to Theorem 6.1 is pretty easy. We first note that

4ε +2ξ = 14ε +5 · cγ

√
η +

2 ·9dη · cγ√
η

( n

∑
i=1

(Inf≤dη

i ( fc))
2
)
.

We now proceed as follows:

THEORY OF COMPUTING, Volume 12 (4), 2016, pp. 1–50 36

http://dx.doi.org/10.4086/toc


MAJORITY IS STABLEST: DISCRETE AND SOS

• For the given ρ and κ , first we choose ε = κ/100. This implies that 14 · ε ≤ κ/4.

• Next, observe that cγ = cγ(ρ
′,ε) is a continuous function of ρ ′ and ε . Now, recall that ρ ′ =

ρ/(1−η). At η = 0,
√

η ·cγ(ρ
′,ε) = 0. Hence, there exists η0 = η0(ρ,ε,κ)> 0 such that for all

η ≤ η0,
√

η · cγ(ρ
′,ε)≤ κ/32.

• Again, observe that for any ρ ∈ (−1,0) and κ > 0, there exists η1 = η1(ρ,κ)> 0 such that for all
η ≤ η1, (arccosρ)/π ≤ (arccosρ ′)/π +κ/4.

Now, choose η = min{η0,η1}. With η and ε having been fixed in terms of κ and ρ , we set

d0(κ,ρ) = max{dγ ,dα ,dδ ,9} , c(κ,ρ) =
2 ·9dη · cγ√

η
, and d1(κ,ρ) = dη

and hence get

Ap `d0(κ,ρ) E
x∈{−1,1}n

y∼ρ x

[ f (x) · f (y)+(1− f (x)) · (1− f (y))]≥ 1− arccosρ

π
−κ

− c(κ,ρ) ·

(
n

∑
i=1

(Inf≤d1(κ,ρ)
i ( f ))2

)
.

This finishes the proof of Theorem 6.1.

7 Refuting the Khot-Vishnoi instances of MAX-CUT

In this section, we will prove the following theorem:

Theorem 7.1. Let ρ ∈ (−1,0) and Gρ = (Vρ ,Eρ) be the MAX-CUT instance constructed in [33] for the
noise parameter ρ . Let {xv}v∈V be a sequence of indeterminates and A =

⋃
v∈V{0≤ xv ≤ 1}. Then, for

any δ > 0, there exists d′ = d′(δ ,ρ) such that

A∪

{
E

(u,v)∈E
xu · (1− xv)+ xv · (1− xu)≥

1
π

arccosρ +δ

}
`d′ −1≥ 0 .

Note that if the graph Gρ has a cut with λ · |E| edges, then there is {0,1} assignment to the set {xv}v∈Vρ

such that E(u,v)∈E xu · (1− xv)+ xv · (1− xu) = λ . Thus, Theorem 7.1 shows that for any δ > 0, there is
constant degree (dependent just on δ and ρ) SoS refutation for the assertion that the size of the fractional
max-cut of Gρ exceeds (1/π)arccosρ +δ . This theorem is essentially tight as it is known that the size
of max-cut in Gρ is at least (1/π)arccosρ−o(1). Thus, a constant number of rounds of the Lasserre
hierarchy computes the value of max-cut in Gρ (nearly) optimally.

To understand the significance of this result, we recall that O’Donnell and Zhou [49] had proved the
same result with (1/π)arccosρ +δ replaced by

1
2
− ρ

π
−
(

1
2
− 1

π

)
·ρ3 .
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While this does show that a constant number of rounds of Lasserre does better than the basic SDP on
the KV MAX-CUT instances, the question of whether with a constant number of rounds of Lasserre, the
integrality gap on these instances can come arbitrarily close to 1 remained open. Theorem 7.1 answers
this question in the affirmative.

The main technical component that O’Donnell and Zhou use in the proof of their analogue of
Theorem 7.1 is the following theorem.

Theorem 7.2. [49] Let { f (x)}x∈{−1,1}n be a sequence of indeterminates and let A =
⋃

x∈{−1,1}n{0 ≤
f (x)≤ 1}. Then, for any δ > 0 and ρ ∈ (−1,0),

A `O(1/δ 2) Stabρ( f )≥ K(ρ)−δ −2O(1/δ 2) ·

(
n

∑
i=1

f̂ 4(i)

)
.

where

K(ρ) =
1
2
+

ρ

π
+

(
1
2
− 1

π

)
·ρ3 .

Further, they apply this theorem essentially in a black-box manner. The main idea behind strengthening
the O’Donnell-Zhou result is that Theorem 6.1 is a strengthening of Theorem 7.2. Thus, we seek to follow
the same steps as in [49] except we will use replace the application of Theorem 7.2 by Theorem 6.1. As
Theorem 7.1 can be proved by just following the steps in [49] (and applying Theorem 6.1), we will not
give its complete proof here. However, to help the reader, we do describe some of the important steps.

Unique Games. We begin by recalling the description of instances of UNIQUE-GAMES (UG) (see [30]).
A UG instance consists of:

• an undirected graph G = (V,E);

• a probability distribution E on tuples of the form ((u,v),π(u,v)) where (u,v)∈ E and π(u,v) : [k]→ [k]
is a permutation.

Further, the weighted graph on G defined by E is regular. Also, [k] is said to be the alphabet of the
UNIQUE GAMES instance. The objective is to get a mapping L : V → [k] so as to maximize the following
quantity:

ν(G,E) := Pr(u,v,π(u,v))∈E[L(v) = π(u,v)(L(u))] .

The quantity ν(G,E) is said to be the value of the instance. Let Eu denote the marginal distribution
on (v,π) when the first vertex is conditioned to be u. We next consider the SoS formulation for the
UG instance described above. It is slightly different from the “obvious” formulation and follows the
formulation in [49]. To motivate the formulation, we first state the following claim without proof. The
proof can be found in [49].

Claim 7.3. Let (G,E) be a UNIQUE GAMES instance as defined above. Let {xv,i}v∈V, i∈[k] be a set of real
numbers satisfying the following conditions:

• For all v ∈V , i ∈ [k], xv,i ≥ 0.
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• For all v ∈V , ∑i∈[k] xv,i ≤ 1.

If ν(G,E)≤ β , then

E
u∈V

 k

∑
i=1

(
E

(v,π(u,v))∈Eu

xv,π(u,v)(i)

)2
≤ 4β .

Let {xv,i}v∈V,i∈[k] be a set of indeterminates. Inspired by Claim 7.3, we make the following definition.

Definition 7.4. Given a UG instance (G,E) with alphabet size k, there is a degree-d SOS refutation for
optimum β if

Ap
⋃ E

u∈V

 k

∑
i=1

(
E

(v,πu,v)∈Eu

xv,πu,v(i)

)2
≥ β

 `d −1≥ 0 .

where

Ap =
⋃

v∈V,i∈[k]
{xv,i ≥ 0} ∪

⋃
v∈V

{
∑

i∈[k]
xv,i ≤ 1

}
.

Before we go ahead, we recall that for any η ∈ (0,1) and N ∈N (which is a power of 2), [33] construct
UG instances over 2N/N vertices, alphabet size n such that optimal value of the instance is bounded by
N−η .2 Modifying the result from [3], O’Donnell and Zhou [49] show the following (Lemma 8.7 in [49]):

Theorem 7.5. Let η ∈ (0,1) and N be a power of 2 and let (V,E) be the corresponding instances of UG
constructed in [33]. Then, there is a degree-4 SoS refutation for optimum β = N−Ω(η).

We next describe the reduction from [30] of UG to MAX-CUT. The reduction is parameterized by
a “correlation” value ρ ∈ (−1,0). Given the instance of UG described above, the set of vertices in the
corresponding MAX-CUT instance is given by V ′ =V ×{−1,1}k. Further, the probability distribution
Eρ,k over the edges is given by the following sampling procedure:

• Choose u∼V uniformly at random.

• Choose (u,v1,π(u,v1)) and (u,v2,π(u,v2)) independently from the distribution Eu.

• Choose x ∈ {−1,1}k and y∼ρ x.

• Output vertices ((v1,π(u,v1)(x)),(v2,π(u,v2)(y))).

We also have the following simple claim from [30]:

Claim 7.6. Let G′ = (V ′,Eρ,k) be an instance of MAX-CUT described above. Consider a partition of the
graph G′ (into two sets) specified by a collection of functions { fv : {−1,1}k→{0,1}}. Then, the value
of cut defined by this partition is 1−Eu∈V [Stabρ(gu)] where

gu : {−1,1}k→ [0,1] is defined as gu(x) = E
(v,π)∈Eu

[ fv(π(x))] .

2Of course, the interesting part is that [33] shows that the standard SDP relaxation on this instance has value 1−η
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Having described the reduction from UNIQUE GAMES to MAX-CUT, we now consider the SoS
relaxation of the MAX-CUT instance defined by V ′ and Eρ,k. In particular, we have an indeterminate
fv(z) for every v ∈V and z ∈ {−1,1}k. The constraint set Am is given by

Am =
⋃
v∈V

⋃
z∈{−1,1}k

{0≤ fv(z)≤ 1} .

Given Claim 7.6, we can say that there is a degree-d SoS refutation for the value of the max-cut in this
graph exceeding β if

Am∪{1− E
u∈V

[Stabρ(gu)]≥ β} `d −1≥ 0.

Note that Stabρ(gu) is defined in terms of the indeterminates {0≤ fv(z)≤ 1}v∈V, z∈{−1,1}k in the obvious
way (gu is a homogeneous linear form in these indeterminates). The following claim (proven by O’Donnell
and Zhou [49]) shows the connection between SoS refutation for UNIQUE GAMES instances and SoS
refutation for MAX-CUT instances obtained after the [30] reduction.

Claim 7.7. Let (G,E) be a UNIQUE GAMES instance with a degree 4 SoS refutation for optimum β and
g(u) be the corresponding indeterminates obtained after the [30] reduction. Then,

Am∪
{

1− E
u∈V

[Stabρ(gu)]≥ K(ρ)−δ −2O(1/δ 2)
β

}
`O(1/δ 2)+4 −1≥ 0 . (7.1)

This implies that if the reduction from [30] is applied on the instances from Theorem 7.5,

Am∪
{

1− E
u∈V

[Stabρ(gu)]≥ K(ρ)−δ −2O(1/δ 2) ·N−Ω(η)

}
`O(1/δ 2)+4 −1≥ 0 .

The proof of Claim 7.7 is reasonably straightforward and goes by proving SoS versions of many analytic
statements and inequalities including use of Theorem 7.2. If we follow the exact same steps but use
Theorem 6.1 instead of Theorem 7.2, we get the following claim.

Claim 7.8. Let (G,E) be a UNIQUE GAMES instance with a degree 4 SoS refutation for optimum β and
g(u) be the corresponding indeterminates obtained after the [30] reduction. Then,

Am∪
{

1− E
u∈V

[Stabρ(gu)]≥ (arccosρ)/π−δ −d1(δ ,ρ)c(δ ,ρ) ·β
}
`d0(δ ,ρ)+4 −1≥ 0 . (7.2)

We do not repeat the steps here as it is identical to the proof of Claim 7.7. Using β = N−Ω(η), we get
Theorem 7.1.
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A Facts regarding Jρ

Here we collect various facts about the function

Jρ(x,y) = Pr[X ≤Φ
−1(x),Y ≤Φ

−1(y)] ,

where
(X ,Y )∼N

(
0,
(

1 ρ

ρ 1

))
.

As is standard, we will use φ to denote the density of the standard normal distribution. These calculations
all follow from elementary calculus.

Claim 2.6. For any (x,y) ∈ (0,1)2 and 0≤ σ ≤ ρ , Mρσ (x,y) is a negative semidefinite matrix. Likewise,
if ρ ≤ σ ≤ 0, then Mρσ (x,y) is a positive semidefinite matrix.

Proof. Towards proving this, note that we can define Y = ρ ·X +
√

1−ρ2 ·Z where Z ∼N(0,1) is an
independent normal. Also, let us define Φ−1(x) = s and Φ−1(y) = t. For s, t ∈ R, define Kρ(s, t) as

Kρ(s, t) = PrX ,Y [X ≤ s,Y ≤ t] = PrX ,Z[X ≤ s,Z ≤ (t−ρ ·X)/
√

1−ρ2] .

Note that for the aforementioned relations between x, y, s and t, Kρ(s, t) = Jρ(x,y). Note that

Kρ(s, t) =
∫ s

s′=−∞

φ(s′)
∫ (t−ρ·s′)/

√
1−ρ2

t ′=−∞

φ(t ′)ds′dt ′ . (A.1)

This implies that
∂Kρ(s, t)

∂ s
= φ(s)

∫ (t−ρ·s)/
√

1−ρ2

t ′=−∞

φ(t ′)dt ′ .

By chain rule, we get that
∂Jρ(x,y)

∂x
=

∂Kρ(s, t)
∂ s

· ∂ s
∂x

.

By elementary calculus, it follows that

dΦ−1(x)
dx

=
1

φ(Φ−1(x))
⇒ ∂ s

∂x
=

1
φ(Φ−1(x))

=
1

φ(s)
.

Thus,
∂Jρ(x,y)

∂x
=
∫ (t−ρ·s)/

√
1−ρ2

t ′=−∞

φ(t ′)dt ′ .

Thus, we next get that

∂ 2Jρ(x,y)
∂x2 =

∂ 2Jρ(x,y)
∂x∂ s

· ∂ s
∂x

= φ

(
t−ρ · s√

1−ρ2

)
· −ρ√

1−ρ2
· 1

φ(s)

= φ

(
Φ−1(y)−ρ ·Φ−1(x)√

1−ρ2

)
· −ρ√

1−ρ2
· 1

φ(s)
.

∂ 2Jρ(x,y)
∂x∂y

=
∂ 2Jρ(x,y)

∂x∂ t
· ∂ t

∂y
= φ

(
Φ−1(y)−ρ ·Φ−1(x)√

1−ρ2

)
· 1√

1−ρ2
· 1

φ(t)
.
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Because we know that (X ,Y )∼ (Y,X), by symmetry, we can conclude that

∂ 2Jρ(x,y)
∂y2 = φ

(
Φ−1(x)−ρ ·Φ−1(y)√

1−ρ2

)
· −ρ√

1−ρ2
· 1

φ(t)
,

and likewise,
∂ 2Jρ(x,y)

∂y∂x
= φ

(
Φ−1(x)−ρ ·Φ−1(y)√

1−ρ2

)
· 1√

1−ρ2
· 1

φ(s)
.

It is obvious now that
∂ 2Jρ(x,y)

∂x2 ·
∂ 2Jρ(x,y)

∂y2 −ρ
2
(

∂ 2Jρ(x,y)
∂x∂y

)2

= 0 .

Now, suppose that |σ | ≤ |ρ|. Then

det(Mρσ (x,y)) =
∂ 2Jρ(x,y)

∂x2 ·
∂ 2Jρ(x,y)

∂y2 −σ
2
(

∂ 2Jρ(x,y)
∂x∂y

)2

≥ 0 .

If ρ ≥ 0 then the diagonal of Mρσ (x,y) is non-positive, and it follows that Mρσ (x,y) is negative semidefi-
nite. If ρ ≤ 0 then the diagonal is non-negative and so Mρσ (x,y) is positive semidefinite.

Claim 2.7. For any −1 < ρ < 1, there exists C(ρ)> 0 such that for any i, j ≥ 0, i+ j = 3,∣∣∣∣∂ 3Jρ(x,y)
∂xi∂y j

∣∣∣∣≤C(ρ)(xy(1− x)(1− y))−C(ρ) .

Further, the function C(ρ) can be chosen so that it is continuous for ρ ∈ (−1,1).

Proof. As before, we set Φ−1(x) = s and Φ−1(y) = t. From the proof of Claim 2.6, we see that

∂ 2Jρ(x,y)
∂x2 = φ

(
Φ−1(y)−ρ ·Φ−1(x)√

1−ρ2

)
· −ρ√

1−ρ2
· 1

φ(s)
.

To compute the third derivatives of J, recall that

∂ s
∂x

=
1

φ(s)
and

∂ t
∂y

=
1

φ(t)
,

we have

∂ 3Jρ(x,y)
∂x3 =

ρ

(1−ρ2)3/2

ρt +(2ρ2−1)s
φ(s)

exp
(
− t2−2ρst +(2ρ2−1)s2

2(1−ρ2)

)
=

√
2πρ

(1−ρ2)3/2 (ρt +(2ρ
2−1)s)exp

(
− t2−2ρst +(3ρ2−2)s2

2(1−ρ2)

)
.

(A.2)
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Now, Φ−1(x)∼
√

2logx as x→ 0; hence there is a constant C such that Φ−1(x)≤C
√

logx for all x≤ 1/2.
Hence, exp(s2)≤ x−C for all x≤ 1/2; by symmetry, exp(s2)≤ (x(1− x))−C for all x ∈ (0,1). Therefore

exp
(
− t2−2ρst +(3ρ2−2)s2

2(1−ρ2)

)
= e
− t2

2(1−ρ2) e
ρst

1−ρ2 e
(2−3ρ2)s2

2(1−ρ2

≤ e
− t2

2(1−ρ2) e
ρ(s2+t2)
2(1−ρ2) e

(2−3ρ2)s2

2(1−ρ2

≤
(
x(1− x)y(1− y)

)− ρ

2(1−ρ2)
(
x(1− x)

)− 2−3ρ2

2(1−ρ2) .

(A.3)

Further, using exp(s2)≤ x−C and exp(t2)≤ y−C, ρt+(2ρ2−1)s≤ 4(xy)−C. As a consequence, applying
this to (A.2), we see that there is a constant C(ρ)> 0,∣∣∣∣∂ 3Jρ(x,y)

∂x3

∣∣∣∣≤C(ρ)
(
x(1− x)y(1− y)

)−C(ρ)
.

The other third derivatives are similar:

∂ 3Jρ(x,y)
∂x2∂y

=

√
2πρ

(1−ρ2)3/2 (t−2ρs)exp
(
− (2ρ2−1)t2−2ρst +(2ρ2−1)s2

2(1−ρ2)

)
.

By the same steps that led to (A.3), we get∣∣∣∣∂ 3Jρ(x,y)
∂x2∂y

∣∣∣∣≤C(ρ)
(
x(1− x)y(1− y)

)−C(ρ)

(for a slightly different C(ρ)). The bounds on ∂ 3J/∂y2∂x and ∂ 3J/∂x3 then follow because J is symmetric
in x and y.

The fact that C(ρ) can be chosen so that it is continuous for ρ ∈ (−1,1) is obvious from the discussion
above.

Claim A.1. For any x,y ∈ (0,1), ∣∣∣∣∂Jρ(x,y)
∂ρ

∣∣∣∣≤ (1−ρ
2)−3/2 .

Proof. We begin from (A.1), but this time we differentiate with respect to ρ:

∂Kρ(s, t)
∂ρ

=− 1
(1−ρ2)3/2

∫ s

s′=−∞

φ(s′)φ

(
t−ρs′√

1−ρ2

)
ds′ .

Since Range(φ)⊂ (0,1] and
∫

s′ φ(s
′)ds′ = 1, it follows that∣∣∣∣∂Kρ(s, t)

∂ρ

∣∣∣∣≤ (1−ρ
2)−3/2 .

Since
∂Jρ(s, t)

∂ρ
=

∂Kρ(Φ
−1(x),Φ−1(y))

∂ρ
,

the proof is complete.
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We also state the following useful claim without a proof. The proof is obvious from the calculations in
the proofs of Claim 2.6 and Claim 2.7.

Claim A.2. For any ρ ∈ (−1,1), ε > 0 there exists a continuous function γ(ρ,ε) such that for any
(x,y) ∈ [ε,1− ε]2 and 1≤ i+ j ≤ 3, ∣∣∣∣∂ i+ jJρ(x,y)

∂ ix∂ jy

∣∣∣∣≤ γ(ρ,ε) .

B Approximation by polynomials

Claim B.1. For any ρ ∈ (−1,1) and any δ > 0, there is a polynomial J̃ such that for all 0≤ i+ j ≤ 2,

sup
x,y∈[ε,1−ε]

∣∣∣∣∂ i+ jJρ(x,y)
∂xi∂y j −

∂ i+ jJ̃ρ(x,y)
∂xi∂y j

∣∣∣∣≤ δ .

Moreover, if ρ ∈ [−1+ ε,1− ε], then the degree of J̃ and the maximal coefficient in J̃ can be bounded by
constants depending only on ε and δ . Further, both these constants are continuous functions of ε and δ

for any ε > 0.

The proof of Claim B.1 follows from standard results on Bernstein polynomials. In particular, we
make use of the following theorem which may be found, for example, in [39].

Theorem B.2. Suppose f : [0,1]→ R has m continuous derivatives which are all bounded in absolute
value by M. For any n ∈ N, let Bn f be the polynomial

(Bn f )(x) =
n

∑
k=1

f (k/n)
(

n
k

)
xk(1− x)n−k .

Then for any 0≤ i≤ m,

sup
x∈[0,1]

∣∣∣∣di f (x)
dxi −

di(Bn f )(x)
dxi

∣∣∣∣≤C
√

M/n .

Seeing as the first three derivatives of Jρ are bounded on [ε,1− ε], Claim B.1 is essentially just a
2-variable version of Theorem B.2. Although such a result is almost certainly known (and for more than
2 variables), we were not to find a reference in the literature, and so we include the proof here.

Proof of Claim B.1. Suppose that f : [0,1]2→ R has all partial derivatives up to third order bounded by
M. Define

gn(x,y) = (Bn f (·,y))(x) =
n

∑
k=1

(
n
k

)
f (k/n,y)xk(1− x)n−k .

hn(x,y) = (Bngn(x, ·))(y) =
n

∑
k=1

n

∑
`=1

(
n
k

)(
n
`

)
f (k/n, `/n)xk(1− x)n−ky`(1− y)n−` .

THEORY OF COMPUTING, Volume 12 (4), 2016, pp. 1–50 44

http://dx.doi.org/10.4086/toc


MAJORITY IS STABLEST: DISCRETE AND SOS

Fix 0≤ i+ j ≤ 2 and note that

∂ jgn(·,y)
∂y j = Bn

∂ j f (·,y)
∂y j , (B.1)

∂ ihn(x, ·)
∂xi = Bn

∂ ign(x, ·)
∂xi . (B.2)

Now, fix y ∈ [0,1] and apply Theorem B.2 to (B.1): for any x ∈ [0,1],∣∣∣∣∂ i+ jgn(x,y)
∂xi∂y j − ∂ i+ j f (x,y)

∂xi∂y j

∣∣∣∣≤C
√

M/n .

On the other hand, fixing x and applying Theorem B.2 to (B.2) yields∣∣∣∣∂ i+ jhn(x,y)
∂xi∂y j − ∂ i+ jgn(x,y)

∂xi∂y j

∣∣∣∣≤C
√

M/n .

Putting these together, ∣∣∣∣∂ i+ jhn(x,y)
∂xi∂y j − ∂ i+ j f (x,y)

∂xi∂y j

∣∣∣∣≤ 2C
√

M/n .

Since hn is a polynomial, taking n sufficiently large implies that there is a polynomial f̃ such that f̃ ,
and its partial derivatives of order at most 2, uniformly approximate the corresponding derivatives of f .
Although we stated this for functions on [0,1]2, a change of coordinates shows that it holds equally well
for functions on [δ ,1−δ ]2 with three bounded derivatives. Since Jρ is such a function, the first part of
the claim follows.

For the second part of the claim, note that all of the error bounds hold uniformly in ρ ∈ [−1+ε,1−ε]
since the first, second and third derivatives of Jρ are uniformly bounded over ρ ∈ [−1+ ε,1− ε] (follows
easily by Claim A.2). Moreover, since maxx,y |Jρ(x,y)| ≤ 1, the coefficients in hn can be bounded in
terms of n, which is in turn bounded in terms of ε and δ .
Further, note that since the first, second and third derivatives derivatives of Jρ are bounded by a continuous
function of ρ and ε (see Claim A.2), hence n can also be bounded by a continuous function of ε and δ .
As maxx,y |Jρ(x,y)| ≤ 1, the coefficients of J̃ρ are bounded by a continuous function of ε and δ and so is
the degree of J̃ρ .
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