
THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30
www.theoryofcomputing.org

Monotone Circuit Lower Bounds
from Resolution

Ankit Garg Mika Göös∗ Pritish Kamath† Dmitry Sokolov‡

Received July 26, 2018; Revised September 26, 2020; Published November 9, 2020

Abstract. For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof
system, we show that a gadget-composed version of F is hard to refute in any proof system
whose lines are computed by efficient communication protocols—or, equivalently, that a
monotone function associated with F has large monotone circuit complexity. Our result
extends to monotone real circuits, which yields new lower bounds for the Cutting Planes
proof system.

ACM Classification: F.1.3, F.2.3

AMS Classification: 68Q17, 68Q15, 03F20

Key words and phrases: circuit complexity, communication complexity, proof complexity

An extended abstract of this paper appeared in the Proceedings of the 50th Symposium on Theory of Computing
(STOC’18) [16].
∗Supported by Michael O. Rabin Postdoctoral Fellowship.
†Supported in parts by NSF grants CCF-1650733, CCF-1733808, and IIS-1741137.
‡Supported by the Swedish Research Council grant 2016-00782, Knut and Alice Wallenberg Foundation grants KAW

2016.0066 and KAW 2016.0433.

c© 2020 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2020.v016a013

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2020.v016a013

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

1 Appetizer

DAG-like communication protocols [46, 40, 52], generalizing the usual notion of tree-like communication
protocols [35, 31, 41], provide a useful abstraction to study two kinds of objects in complexity theory:

• Monotone circuits. Let f be a monotone boolean function. The monotone circuit complexity of f
can be characterized in the language of DAG-like protocols. Namely, it equals the least size of a
DAG-like protocol that solves the monotone Karchmer–Wigderson (mKW) search problem for f .

• Propositional proofs. Let F be a CNF contradiction (an unsatisfiable CNF formula). Lower
bounds for the Resolution refutation length complexity of F—or indeed lower bounds for any
propositional proof system whose lines are computed by efficient communication protocols—can
be proved via DAG-like protocols. Namely, a lower bound is given by the least size of a DAG-like
protocol that solves a certain CNF search problem associated with F .

In this paper, we prove a query-to-communication lifting theorem that escalates lower bounds for a
DAG-like query model (essentially Resolution) to lower bounds for DAG-like communication protocols.
In particular, this yields a new technique to prove size lower bounds for monotone circuits and several
types of proof systems (including Cutting Planes).

The result can be interpreted as a converse to monotone feasible interpolation [10, 33], which is a popular
method to prove refutation size lower bounds for proof systems (such as Resolution and Cutting Planes)
by reductions to monotone circuit lower bounds. A theorem of this type was conjectured by Beame,
Huynh, and Pitassi [5, §6]. We also note that lifting theory for deterministic tree-like protocols—with
applications to monotone formula size, tree-like refutation size, and size–space tradeoffs—has been
developed in quite some detail [42, 28, 20, 21, 13, 56, 11]. We import techniques from this line of work
into the DAG-like setting.

A follow-up article [18] has obtained several concrete applications using our technique: an exponential
monotone circuit lower bound for XOR-SAT, and a separation showing that the Nullstellensatz proof
system can be exponentially more powerful than Cutting Planes.

We formalize our result in Section 3 after we have defined our DAG-like models in Section 2.

2 DAG-like models

We define all computational models as solving search problems, defined by a relation S ⊆ I×O for
some finite input and output sets I and O. On input x ∈ I the search problem is to find some output in
S(x) := {o ∈ O : (x,o) ∈ S}. We always assume S is total so that S(x) 6= /0 for all x ∈ I. We also define
S−1(o) := {x ∈ I : (x,o) ∈ S}. For applications, the two most important examples of search problems, one
associated with a monotone function f : {0,1}n→{0,1}, another with an n-variable CNF contradiction
F =

∧
i Di (where Di are disjunctions of literals), are as follows.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 2

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

mKW search problem S f = input: a pair (x,y) ∈ f−1(1)× f−1(0)
output: a coordinate i ∈ [n] such that xi > yi

CNF search problem SF = input: an n-variable truth assignment z ∈ {0,1}n

output: clause D of F unsatisfied by z, i. e., D(z) = 0

2.1 Abstract DAGs

We work with a top-down definition of DAG-like models. A version of the following definition (with a
specialized F) was introduced by [46] and subsequently simplified in [40, 52].

Top-down definition. Let F be a family of functions I→ {0,1}. An F-DAG solving S ⊆ I×O is a
directed acyclic graph of fan-out ≤ 2 where each node v is associated with a function fv ∈ F (we call
f−1
v (1) the feasible set for v) satisfying the following conditions.

1. Root: There is a distinguished root node r (fan-in 0), and fr ≡ 1 is the constant 1 function.
2. Non-leaves: For each non-leaf node v with children u,u′, we have f−1

v (1)⊆ f−1
u (1)∪ f−1

u′ (1).
3. Leaves: Each leaf node v is labeled with an output ov ∈ O such that f−1

v (1)⊆ S−1(ov).

The size of an F-DAGis its number of nodes. If we specialize S to be a CNF search problem SF , the
above specializes to the familiar definition of refutations in a proof system whose lines are negations of
functions in F. Here is that dual definition, specialized to S = SF .

Bottom-up definition. Let G be a family of functions {0,1}n → {0,1}. (To match up with the top-
down definition, one should take G := {¬ f : f ∈ F}.) A (semantic) G-refutation of an n-variable CNF
contradiction F is a directed acyclic graph of fan-out ≤ 2 where each node (or line) v is associated with a
function gv ∈ G satisfying the following conditions.

1. Root: There is a distinguished root node r (fan-in 0), and gr ≡ 0 is the constant 0 function.
2. Non-leaves: For each non-leaf node v with children u,u′, we have g−1

v (1)⊇ g−1
u (1)∩g−1

u′ (1).
3. Leaves: Each leaf node v is labeled with a clause D of F such that g−1

v (1)⊇ D−1(1).

2.2 Concrete DAGs

We now instantiate the abstract model for the purposes of communication and query complexity.

Rectangle-DAGs (DAG-like protocols). Consider a bipartite input domain I := X×Y so that Alice
holds x ∈ X, Bob holds y ∈ Y, and let F be the set of all indicator functions of (combinatorial) rectangles
over X×Y (sets of the form X×Y with X ⊆ X, Y ⊆ Y). Call such F-DAGs simply rectangle-DAGs. For a
search problem S⊆ X×Y×O we define its rectangle-DAG complexity by

rect-DAG(S) := least size of a rectangle-DAG that solves S.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 3

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

⊥

(x2)

(x1∨ x2) (¬x1∨ x2) (¬x2)

Resolve x2

Resolve x1

Resolution proof : Bottom-up definition

>

(¬x2)

x2 = 0

(¬x1∧¬x2)

x1 = 0

(x1∧¬x2)

x1 = 1

(x2)

x2 = 1

Query x2

Query x1

Conjunction-DAG: Top-down definition

Figure 1: Two equivalent ways to view a Resolution refutation, illustrated in the tree-like case (see [31,
§18.2] for more discussion of the tree-like case).

In circuit complexity, a straightforward generalization of the Karchmer–Wigderson depth characteri-
zation [32] shows that the monotone circuit complexity of any monotone function f equals rect-DAG(S f);
see [40, 52].

In proof complexity, a useful-to-study semantic proof system is captured by Fc-DAGs solving CNF
search problems SF where Fc is the family of all functions X×Y→ {0,1} (where X×Y = {0,1}n

corresponds to a bipartition of the n input variables of SF) that can be computed by tree-like protocols of
communication cost c, say for c = polylog(n). Such a proof system can simulate other systems (such
as Resolution and Cutting Planes with bounded coefficients), and hence lower bounds against Fc-DAGs
imply lower bounds for other concrete proof systems. Moreover, any Fc-DAG can be simulated by a
rectangle-DAG with at most a factor 2c blow-up in size, and hence we do not lose much generality by
studying only rectangle-DAGs.

Conjunction-DAGs (essentially Resolution). Consider the n-bit input domain I := {0,1}n and let F
be the set of all conjunctions of literals over the n input variables. Call such F-DAGs simply conjunction-
DAGs. We define the width of a conjunction-DAG Π as the maximum width of a conjunction associated
with a node of Π. For a search problem S⊆ {0,1}n×O we define

conj-DAG(S) := least size of a conjunction-DAG that solves S,

w(S) := least width of a conjunction-DAG that solves S.

In the context of CNF search problems S = SF , conjunction-DAGs are equivalent to Resolution
refutations; see also Figure 1. Indeed, conj-DAG(SF) is just the Resolution refutation length complexity
of F , and w(SF) is the Resolution width complexity of F [8].

The complexity measures introduced so far are related as follows; here S′ is any two-party version of S
obtained by choosing some bipartition X×Y= {0,1}n of the input domain of S.

rect-DAG(S′) ≤ conj-DAG(S) ≤ nO(w(S)). (2.1)

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 4

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

The first inequality holds because each conjunction can be simulated by a rectangle. The second inequality
holds since there are at most nO(w) many distinct width-w conjunctions, and we may assume w.l.o.g. that
any f ∈ F is associated with at most one node in an F-DAG (any incoming edge to a node v can be rewired
to the lowest node u, in topological order, such that fv = fu).

3 Our results

Our first theorem is a characterization of the rectangle-DAG complexity for composed search problems
of the form S◦gn. Here S⊆ {0,1}n×O is an arbitrary n-bit search problem, and g : X×Y→{0,1} is
some carefully chosen two-party gadget that helps to distribute each input variable of S between the two
parties. More precisely, S◦gn ⊆ Xn×Yn×O is the search problem where Alice holds x ∈ Xn, Bob holds
y ∈ Yn, and their goal is to find some o ∈ S(z) for z := gn(x,y) = (g(x1,y1), . . . ,g(xn,yn)).

Our concrete choice for a gadget is the usual m-bit index function INDm : [m]×{0,1}m → {0,1}
mapping (x,y) 7→ yx. For large enough m, we show that the bounds (2.1) are tight.

Theorem 3.1. Let m = m(n) := n∆ for a large enough constant ∆. For any S⊆ {0,1}n×O,

rect-DAG(S◦ INDn
m) = nΘ(w(S)).

We note that the conjunction-DAG width complexity of S ◦ INDn
m depends on how Alice’s gadget

inputs xi ∈ [m] are encoded as binary variables. For example, we can have w(S◦ INDn
m) = Θ(w(S)) when

using a “unary” encoding; see Section 8 for a discussion.

Implications. The primary advantage of such a lifting theorem is that we obtain, in a generic fashion, a
large class of hard (explicit) monotone functions and CNF contradictions. Let us outline how to apply our
theorem. We can start with any n-variable k-CNF contradiction F of Resolution width w, and conclude
from Theorem 3.1 that the composed problem S′ := SF ◦ INDn

m has rectangle-DAG complexity nΘ(w). Then
we can use reductions (either new or known; see Section 8 for known ones) to translate S′ back to a
mKW/CNF search problem. The upshot will be the following.

− S′ reduces to S f ′ where f ′ is some N-bit monotone function with N := nO(k).
− S′ reduces to SF ′ where F ′ is some nO(1)-variable 2k-CNF contradiction.

A follow-up article [18] has provided concrete applications using a novel reduction framework based
on the above template. For example, they consider a monotone function 3XOR-SATn : {0,1}N →{0,1}
over N := 2n3 input bits defined as follows. An input x ∈ {0,1}N is interpreted as (the indicator vector
of) a set of 3XOR constraints over n boolean variables v1, . . . ,vn (there are N possible constraints). We
define 3XOR-SATn(x) := 1 iff the set x is unsatisfiable, that is, no boolean assignment to the vi exists
that satisfies all constraints in x. They proceed to show that if F is an n-variable “Tseitin” contradiction
(which is hard for Resolution [54]), then S′ = SF ◦ INDn

m reduces to S3XOR-SATmn . Combining this with
Theorem 3.1, one obtains the following.

Corollary 3.2 ([18, Thm. 1]). 3XOR-SATn requires monotone circuits of size 2nΩ(1)
.

Since 3XOR-SATn is in NC2 [37], this improves on the exponential monotone vs. non-monotone
separation due to Tardos [53]; her function is in P and not known to be in NC.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 5

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

(a) (b) (c) (d)
Figure 2: We show lifting theorems for DAGs whose feasible sets are (a) rectangles or (b) triangles. It
remains open (see Section 10) to prove any lower bounds for explicit mKW/CNF search problems when
the feasible sets are (c) block-diagonal, which a special case of (d) intersections of 2 triangles.

Limitations. A disadvantage, stemming from the large gadget size m = n∆, is that we get at best (using
w = Θ(n)) a monotone circuit lower bound of exp(Nε) for a small constant ε ≥ 1/(∆+1). Such lower
bounds fall short of the current best record of exp(N1/3−o(1)) due to Harnik and Raz [25]. We inherit
the need for large gadgets from prior work [19, 22]; see Section 4. For this reason (and others), it is
an important open problem to develop a lifting theory for gadgets of size m = O(1). In particular, an
optimal 2Ω(N) lower bound would follow from an appropriate constant-size-gadget version of Theorem 3.1;
see Section 8 for details.

Techniques. We use tools developed in the context of tree-like lifting theorems, specifically from [19,
22]. These tools allow us to relate large rectangles in the input domain of S◦ INDn

m with large subcubes in
the input domain of S; see Section 4. Given these tools, the proof of Theorem 3.1 is relatively short (two
pages). The proof is extremely direct: from any rectangle-DAG of size nd solving S◦ INDn

m we extract a
width-O(d) conjunction-DAG solving S.

Classical work on monotone circuit lower bounds has typically focused on specific monotone
functions [44, 3, 1, 23, 50] and more generally on studying the power of the underlying proof methods [45,
55, 47, 51, 9, 2]. A notable exception is Jukna’s criterion [30], recently applied in [26, 14], which is a
general sufficient condition for a monotone function to require large monotone circuit complexity. Our
perspective is seemingly even more abstract, as our result is phrased for arbitrary search problems (not
just of mKW/CNF type). However, it remains unclear exactly how the power of our methods compare
with the classical techniques; for example, can our result be rephrased in the language of Razborov’s
method of approximations? (An anonymous reviewer thinks this is possible, but not instructive.)

3.1 Extension: Monotone real circuits

Triangle-DAGs. Consider a bipartite input domain I := X×Y and let F be the set of all indicator
functions of (combinatorial) triangles over X×Y; here a triangle T ⊆X×Y is a set that can be written as
T = {(x,y) ∈X×Y : aT (x)< bT (y)} for some labeling of the rows aT : X→R and columns bT : Y→R
by real numbers; see Figure 2b. In particular, every rectangle is a triangle. Call such F-DAGs simply

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 6

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

triangle-DAGs. For a search problem S⊆ X×Y×O we define

tri-DAG(S) := least size of a triangle-DAG that solves S.

Hrubeš and Pudlák [27] showed recently that the monotone real circuit complexity of an f equals
tri-DAG(S f). Monotone real circuits [24, 38] generalize monotone circuits by allowing the wires to carry
arbitrary real numbers and the binary gates to compute arbitrary monotone functions R×R→ R. The
original motivation to study such circuits, and what interests us here, is that lower bounds for monotone
real circuits imply lower bounds for the Cutting Planes proof system [12]. In our language, semantic
Cutting Planes refutations are equivalent to L-DAGs solving CNF search problems, where L is the family
of linear threshold functions (each f ∈ L is defined by some (n+1)-tuple a ∈ Rn+1 so that f (x) = 1 iff
∑i∈[n] aixi > an+1).

Our second theorem states that Theorem 3.1 holds more generally with rectangle-DAGs replaced with
triangle-DAGs. The proof is however more involved than the proof for Theorem 3.1.

Theorem 3.3. Let m = m(n) := n∆ for a large enough constant ∆. For any S⊆ {0,1}n×O,

tri-DAG(S◦ INDn
m) = nΘ(w(S)).

A pithy corollary is that if we start with any k-CNF contradiction F that is hard for Resolution and
compose F with a gadget (as described in Section 8), the formula becomes hard for Cutting Planes. In
particular, the composed formula can itself be written as a 2k-CNF.

Corollary 3.4. For any unsatisfiable k-CNF F on n variables, there is a related unsatisfiable 2k-CNF F ′

on nO(1) variables, such that any Cutting Planes refutation for F ′ has length at least nΩ(w(SF)).

The follow-up article [18] observed a near-immediate corollary: the Nullstellensatz proof system
(over any field) can be exponentially more powerful than Cutting Planes.

Corollary 3.5 ([18, §4.2]). There exists an n-variable, nO(1)-clause CNF contradiction F that can be
refuted by Nullstellensatz (over any field) in degree O(logn), but that requires Cutting Planes refutations
of length 2nΩ(1)

.

Previously, only few examples of hard contradictions were known for Cutting Planes, all proved via
feasible interpolation [38, 24, 26, 14]. A widely-asked question has been to improve this state-of-the-art by
developing alternative lower bound methods; see the surveys [6, §4] and [49, §5]. In particular, Jukna [31,
Research Problem 19.17] asked to find a more intuitive “combinatorial” proof method “explicitly showing
what properties of [contradictions] force long derivations.” While our method does implicitly use feasible
interpolation for Cutting Planes, at least it does afford a simple combinatorial intuition: the hardness is
simply borrowed from the realm of Resolution (where we understand very well what makes formulas
hard).

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 7

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

4 Subcubes from rectangles

In this section, as preparation, we recall some technical notions from [19, 22] concerning the index gadget
g := INDm. Specifically, writing G := gn : [m]n×{0,1}mn→ {0,1}n for n copies of g, we explain how
large rectangles in the domain of G are related with large subcubes in the codomain of G. In what follows,
we will always assume that m≥ n∆ for a sufficiently large constant ∆.

4.1 Structured rectangles

For a partial assignment ρ ∈ {0,1,∗}n we let freeρ := ρ−1(∗) denote its free coordinates, and fixρ :=
[n]r freeρ denote its fixed coordinates. The number of fixed coordinates |fixρ| is the width of ρ . Width-d
partial assignments are naturally in 1-to-1 correspondence with width-d conjunctions: for any ρ we define
Cρ : {0,1}n→{0,1} as the width-|fixρ| conjunction that accepts an x ∈ {0,1}n iff x is consistent with ρ .
Thus C−1

ρ (1) = {x ∈ {0,1}n : xi = ρi for all i ∈ fixρ} is a subcube. We say that R ⊆ [m]n×{0,1}mn is
ρ-like if the image of R under G is precisely the subcube of n-bit strings consistent with ρ , that is,

R is ρ-like ⇐⇒ G(R) = C−1
ρ (1).

For a random variable xxx we let H∞(xxx) := minx log(1/Pr[xxx = x]) denote the usual min-entropy of xxx.
When xxx ∈ [m]J for some index set J, we write xxxI ∈ [m]I for the marginal distribution of xxx on a subset
I ⊆ J of coordinates. For a set X we use the boldface XXX to denote a random variable uniformly distributed
over X .

Definition 4.1 ([19]). A random variable xxx ∈ [m]J is δ -dense if for every nonempty I ⊆ J, xxxI has
min-entropy rate ≥ δ , that is, H∞(xxxI)≥ δ · |I| logm.

Definition 4.2 ([17, 22]). A rectangle R := X×Y ⊆ [m]n×{0,1}mn is ρ-structured if

1. XXXfixρ is fixed, and every z ∈ G(R) is consistent with ρ , that is, G(R)⊆C−1
ρ (1);

2. XXX freeρ is 0.9-dense;
3. Y is large enough: H∞(YYY)≥ mn−n3.

Lemma 4.3 ([17, 22]). For m≥ n∆, every ρ-structured rectangle is ρ-like.

In this article we need a slight strengthening of Lemma 4.3: for a ρ-structured R, there is a single row
of R that is already ρ-like. The proof of the following lemma is defered to Section 9.

Lemma 4.4. Let X×Y be ρ-structured. For m≥ n∆, there exists x ∈ X such that {x}×Y is ρ-like.

We remark that the only reason why our proofs require m≥ n∆ is due to Lemma 4.4.

4.2 Rectangle partition scheme

We claim that, given any rectangle R := X ×Y ⊆ [m]n×{0,1}mn, we can partition most of X ×Y into
ρ-structured subrectangles with |fixρ| bounded in terms of the size of X ×Y . Indeed, we describe a
simple 2-round partitioning scheme from [22] below; see also Figure 3. In the 1st round of the algorithm,

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 8

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

X

Y

Xerr

Yerr

(a) (b)

Figure 3: (a) Rectangle Scheme partitions R = X×Y first along rows, then along columns. (b) Lemma 4.5
illustrated: most subrectangles are ρ-structured for low-width ρ , except some error parts (highlighted in
figure) that are contained in few error rows/columns Xerr, Yerr.

Rectangle Scheme

Input: R = X×Y ⊆ [m]n×{0,1}mn.
Output: A partition of R into subrectangles.

1: 1st round: Iterate the following for i = 1,2, . . . , until X becomes empty:
(i) Let Ii ⊆ [n] be a maximal subset (possibly Ii = /0) such that XXX Ii has min-entropy rate < 0.95,

and let αi ∈ [m]Ii be an outcome witnessing this: Pr[XXX Ii = αi]> m−0.95|Ii|

(ii) Define X i := {x ∈ X : xIi = αi}
(iii) Update X ← X rX i

2: 2nd round: For each part X i and γ ∈ {0,1}Ii , define Y i,γ := {y ∈ Y : gIi(αi,yIi) = γ}
3: return

{
Ri,γ := X i×Y i,γ : Y i,γ 6= /0

}
we partition the rows as X =

⊔
i X i where each X i will be fixed on some blocks Ii ⊆ [n] and 0.95-dense on

the remaining blocks [n]r Ii. In the 2nd round, each X i×Y is further partitioned along columns so as to
fix the outputs of the gadgets on coordinates Ii.

All the properties of Rectangle Scheme that we will subsequently need are formalized below; see
also Figure 3. For terminology, given a subset A′ ⊆ A we define its density (inside A) as |A′|/|A|. The
proof of the following lemma is postponed to Section 7.

Lemma 4.5 (Rectangle Lemma). Fix any parameter k≤ n logn. Given a rectangle R⊆ [m]n×{0,1}mn, let
R =

⊔
i Ri be the output of Rectangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n and Yerr ⊆ {0,1}mn,

both of density ≤ 2−k, such that for each i, one of the following holds:

• Structured case: Ri is ρ i-structured for some ρ i of width at most O(k/ logn).
• Error case: Ri is covered by error rows/columns, i. e., Ri ⊆ Xerr×{0,1}mn∪ [m]n×Yerr.

Finally, a query alignment property holds: for every x ∈ [m]n rXerr, there exists a subset Ix ⊆ [n] with
|Ix| ≤ O(k/ logn) such that every “structured” Ri intersecting {x}×{0,1}mn has fixρ i ⊆ Ix.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 9

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

5 Lifting for rectangle-DAGs

In this section we prove the nontrivial direction of Theorem 3.1: Let Π be a rectangle-DAG solving S◦G
of size nd for some d. Our goal is to show that w(S)≤ O(d).

5.1 Game semantics for DAGs

For convenience (and fun), we use the language of two-player competitive games, introduced in [39, 4],
which provide an alternative way of thinking about conjunction-DAGs solving S⊆ {0,1}n×O. The game
involves two competing players, Explorer and Adversary, and proceeds in rounds. The state of the game
in each round is modeled as a partial assignment ρ ∈ {0,1,∗}n. At the start of the game, ρ := ∗n. In each
round, Explorer makes one of two moves:

− Query a variable: Explorer specifies an i ∈ freeρ , and Adversary responds with a bit b ∈ {0,1}.
The state ρ is updated by ρi← b.

− Forget a variable: Explorer specifies an i ∈ fixρ , and the state is updated by ρi←∗.
An important detail is that Adversary is allowed to choose b ∈ {0,1} afresh even if the i-th variable was
queried and subsequently forgotten during past play. The game ends when a solution to S can be inferred
from ρ , that is, when C−1

ρ (1)⊆ S−1(o) for some o ∈ O.
Explorer’s goal is to end the game while keeping the width of the game state ρ as small as possible.

Indeed, Atserias and Dalmau [4] prove that w(S) is characterized (up to an additive ±1) as the least w
such that the Explorer has a strategy for ending the game that keeps the width of the game state at most w
throughout the game. (A similar characterization exists for DAG size [39].) Hence our goal becomes to
describe an Explorer-strategy for S such that the width of the game state never exceeds O(d) regardless
of how the Adversary plays.

5.2 Simplified proof

To explain the basic idea, we first give a simplified version of the proof: We assume that all rectangles R
involved in Π—call them the original rectangles—can be partitioned errorlessly into ρ-structured
subrectangles for ρ of width O(d). That is, invoking Rectangle Scheme for each original R, we assume
that

(∗∗∗) Assumption: All subrectangles in the partition R =
⊔

i Ri output by Rectangle Scheme satisfy the
“structured” case of Lemma 4.5 for k := 2d logn.

In Section 5.3 we remove this assumption by explaining how the proof can be modified to work in the
presence of some error rows/columns.

Overview. We extract a width-O(d) Explorer-strategy for S by walking down the rectangle-DAG Π,
starting at the root. For each original rectangle R that is reached in the walk, we maintain a ρ-structured
subrectangle R′ ⊆ R chosen from the partition of R. Note that ρ will have width O(d) by our choice of k.
The intention is that ρ will record the current state of the game. There are three issues to address: (1)
Why is the starting condition of the game met? (2) How do we take a step from a node of Π to one of its
children? (3) Why are we done once we reach a leaf?

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 10

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

(1) Root case. At start, the root of Π is associated with the original rectangle R = [m]n×{0,1}mn

comprising the whole domain. The partition of R computed by Rectangle Scheme is trivial: it contains a
single part, the ∗n-structured R itself. Hence we simply maintain the ∗n-structured R⊆ R, which meets
the starting condition for the game.

(2) Internal step. This is the crux of the argument. Supposing the game has reached state ρR′ and we
are maintaining some ρR′-structured subrectangle R′ ⊆ R where R is associated with an internal node v,
we want to move to some ρL′-structured subrectangle L′ ⊆ L where L is associated with a child of v. We
must keep the width of the game state at most O(d) during this move.

R′

L1
L0 Y ′

X ′
x∗

(x∗,y∗)

Since R′ =: X ′×Y ′ is ρR′-structured, we have from Lemma 4.4 that there exists some x∗ ∈ X ′ such
that {x∗}×Y ′ is ρR′-like. Let the two original rectangles associated with the children of v be L0 and
L1. Let

⊔
i Li

b be the partition of Lb output by Rectangle Scheme. By query alignment in Lemma 4.5,
there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Li

b that intersect the x∗-th row are ρ i-structured with
fixρ i ⊆ I∗b . As Explorer, we now query the input variables in coordinates J := (I∗0 ∪ I∗1)rfixρR′ (in any
order) obtaining some response string zJ ∈ {0,1}J from the Adversary. As a result, the state of the game
becomes the extension of ρR′ by zJ , call it ρ∗, which has width |fixρ∗|= |fixρR′ ∪ J| ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗,y∗) ∈ R′ ⊆ L0∪L1) such that G(x∗,y∗) is consistent
with ρ∗; indeed, the whole row {x∗}×Y ′ is ρR′-like and ρ∗ extends ρR′ . Suppose (x∗,y∗) ∈ L0; the case
of L1 is analogous. In the partition of L0, let L′ be the unique part such that (x∗,y∗) ∈ L′. Note that L′ is
ρL′-like for some ρL′ that is consistent with G(x∗,y∗) and fixρL′ ⊆ I∗0 (by query alignment). Hence ρ∗

extends ρL′ . As Explorer, we now forget all queried variables in ρ∗ except those queried in ρL′ .
We have recovered our invariant: the game state is ρL′ and we maintain a ρL′-structured subrectangle

L′ of an original rectangle L0. Moreover, the width of the game state remained O(d).

(3) Leaf case. Suppose the game state is ρ and we are maintaining an associated ρ-structured subrect-
angle R′ ⊆ R corresponding to a leaf node. The leaf node is labeled with some solution o ∈ O satisfying
R′ ⊆ (S◦G)−1(o), that is, G(R′)⊆ S−1(o). But G(R′) =C−1

ρ (1) by Lemma 4.3 so that C−1
ρ (1)⊆ S−1(o).

Therefore the game ends. This concludes the (simplified) proof.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 11

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

5.3 Accounting for error

Next, we explain how to get rid of Assumption (∗∗∗) by accounting for the rows and columns that are
classified as error in Lemma 4.5 for k := 2d logn. The partitioning of rectangles in Π is done more
carefully. We sort all original rectangles in reverse topological order R1,R2, . . . ,Rnd from leaves to root,
that is, if Ri is a descendant of R j then Ri comes before R j in the order. Then we perform the following
process on the rectangles in this order.

Initialize cumulative error sets X∗err = Y ∗err := /0. Iterate for i = 1,2, . . . ,nd rounds:

1. Remove from Ri the rows/columns X∗err, Y ∗err. That is, update

Ri ← Ri r
(
X∗err×{0,1}mn∪ [m]n×Y ∗err

)
.

2. Apply the Rectangle Scheme for Ri. Output all resulting subrectangles that satisfy the “structured”
case of Lemma 4.5 for k := 2d logn. (All non-structured subrectangles are omitted). Call the
resulting error rows/columns Xerr and Yerr.

3. Update X∗err← X∗err∪Xerr and Y ∗err← Y ∗err∪Yerr.

In words, an original rectangle Ri is processed only after all of its descendants are partitioned. Each
descendant may contribute some error rows/columns, accumulated into sets X∗err, Y ∗err, which are deleted
from Ri before it is partitioned. The partitioning of Ri will in turn contribute its error rows/columns to its
ancestors.

We may now repeat the proof of Section 5.2 verbatim using only the structured subrectangles output
by the above process. That is, we still maintain the same invariant: when the game state is ρ , we maintain
a ρ-structured R′ (output by the above process) of an original R. We highlight only the key points below.

(1) Root case. The cumulative error at the end of the process is tiny: X∗err, Y ∗err have density at most
nd · n−2d ≤ 1% by a union bound over all rounds. In particular, the root rectangle Rnd (with errors
removed) still has density 98% inside [m]n×{0,1}mn, and so the partition output by Rectangle Scheme is
trivial, containing only the ∗n-structured Rnd itself. This meets the starting condition for the game.

(2) Internal step. By construction, the cumulative error sets shrink when we take a step from a node
to one of its children. This means that our error handling does not interfere with the internal step: each
structured subrectangle R′ of an original rectangle R is wholly covered by the structured subrectangles of
the children of R.

(3) Leaf case. This case is unchanged.

6 Lifting for triangle-DAGs

In this section we prove the nontrivial direction of Theorem 3.3. Let Π be a triangle-DAG solving S◦G of
size nd for some d. Our goal is to show that w(S)≤ O(d).

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 12

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

Li T ∩Ri

Ri

Figure 4: Structured case of Lemma 6.1: The subtriangle T ∩Ri is sandwiched between two ρ i-structured
rectangles Li and Ri.

The proof is conceptually the same as for rectangle-DAGs. The only difference is that we need to
replace Rectangle Scheme (and the associated Lemma 4.5) with an algorithm that partitions a given
triangle T ⊆ [m]n×{0,1}mn into subtriangles that behave like conjunctions.

6.1 Triangle partition scheme

We introduce a triangle partitioning algorithm, Triangle Scheme. Its precise definition is postponed to
Section 7.2. For now, we only need its high-level description. On input a triangle T , Triangle Scheme
outputs a disjoint cover

⊔
i Ri ⊇ T where Ri are rectangles. This induces a partition of T into subtriangles

T ∩Ri. Each (non-error) rectangle Ri is ρ i-structured (for low-width ρ i) and is associated with a ρ i-
structured “inner” subrectangle Li ⊆ Ri satisfying Li ⊆ T ∩Ri ⊆ Ri; see Figure 4. Hence T ∩Ri is ρ i-like,
as it is sandwiched between two ρ i-like rectangles.

More formally, all the properties of Triangle Scheme that we will subsequently need are formalized
below (note the similarity with Lemma 4.5); see Section 7.4 for the proof.

Lemma 6.1 (Triangle Lemma). Fix any parameter k ≤ n logn. Given a triangle T ⊆ [m]n×{0,1}mn, let⊔
i Ri ⊇ T be the output of Triangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n and Yerr ⊆ {0,1}mn,

both of density ≤ 2−k, such that for each i, one of the following holds.

• Structured case: Ri is ρ i-structured for some ρ i of width at most O(k/ logn). Moreover, there
exists an “inner” rectangle Li ⊆ T ∩Ri such that Li is also ρ i-structured.

• Error case: Ri is covered by error rows/columns, i. e., Ri ⊆ Xerr×{0,1}mn∪ [m]n×Yerr.

Finally, a query alignment property holds: for every x ∈ [m]n rXerr, there exists a subset Ix ⊆ [n] with
|Ix| ≤ O(k/ logn) such that every “structured” Ri intersecting {x}×{0,1}mn has fixρ i ⊆ Ix.

6.2 Simplified proof

As in the rectangle case, we give a simplified proof assuming no errors. That is, invoking Triangle Scheme
for each triangle T involved in Π, we assume that

(†††) Assumption: All rectangles in the cover
⊔

i Ri⊇ T output by Triangle Scheme satisfy the “structured”
case of Lemma 6.1 for k := 2d logn.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 13

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

The argument for getting rid of the assumption (†††) is the same as in the rectangle case, and hence we
omit that step—one only needs to observe that removing cumulative error rows/columns from a triangle
still leaves us with a triangle.

Overview. As before, we extract a width-O(d) Explorer-strategy for S by walking down the triangle-
DAG Π, starting at the root. For each triangle T of Π that is reached in the walk, we maintain a ρ-structured
inner rectangle L ⊆ T . Here ρ (of width O(d) by the choice of k) will record the current state of the
game. There are the three steps (1)–(3) to address, of which (1) and (3) remain exactly the same as in the
rectangle case. So we only explain step (2), which requires us to replace the use of Lemma 4.5 with the
new Lemma 6.1.

(2) Internal step. Supposing the game has reached state ρL and we are maintaining some ρL-structured
inner rectangle L⊆ T associated with an internal node v, we want to move to some ρL̃-structured inner
rectangle L̃⊆ T̃ associated with a child of v. Moreover, we must keep the width of the game state at most
O(d) during this move.

Since L =: X ′×Y ′ is ρL-structured, we have from Lemma 4.4 that there exists some x∗ ∈ X ′ such
that {x∗}×Y ′ is ρL-like. Let the two triangles associated with the children of v be T0 and T1, so that
L⊆ T0∪T1.

Let
⊔

i Ri
b be the rectangle cover of Tb output by Triangle Scheme. By query alignment in Lemma 6.1,

there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Ri
b that intersect the x∗-th row are ρ i-structured with

fixρ i ⊆ I∗b . As Explorer, we now query the input variables in coordinates J := (I∗0 ∪ I∗1)rfixρL (in any
order) obtaining some response string zJ ∈ {0,1}J from the Adversary. As a result, the state of the game
becomes the extension of ρL by zJ , call it ρ∗, which has width |fixρ∗|= |fixρL∪ J| ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗,y∗) ∈ L ⊆ T0∪T1) such that G(x∗,y∗) is consistent
with ρ∗; indeed, the whole row {x∗}×Y ′ is ρL-like and ρ∗ extends ρL. Suppose (x∗,y∗) ∈ T0; the case of
T1 is analogous. In the rectangle covering of T0, let R be the unique part such that (x∗,y∗) ∈ R. Note that
R is ρR-like for some ρR that is consistent with G(x∗,y∗) and fixρR ⊆ I∗0 (by query alignment). Hence ρ∗

extends ρR. As Explorer, we now forget all queried variables in ρ∗ except those queried in ρR. Also we
move to the inner rectangle L̃⊆ R promised by Lemma 6.1 that satisfies L̃⊆ T0 and is ρL̃ = ρR structured.

We have recovered our invariant: the game state is ρL̃ and we maintain a ρL̃-structured subrectangle L̃
of a triangle T0. Moreover, the width of the game state remained O(d).

7 Partitioning rectangles and triangles

In this section, we prove Lemma 4.5, define Triangle Scheme, and prove Lemma 6.1. We use repeatedly
the following simple fact about min-entropy.

Fact 7.1. Let XXX be a random variable and E an event. Then H∞(XXX | E)≥H∞(XXX)− log1/Pr[E].

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 14

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

7.1 Proof of Rectangle Lemma

The proof is more-or-less implicit in [19, 22]. We start by recording a key property of the 1st round of
Rectangle Scheme.

Claim 7.2. Each part X i obtained in 1st round of Rectangle Scheme satisfies the following conditions.

− Blockwise-density: XXX i
[n]rIi

is 0.95-dense.

− Relative size: |X>i| ≤ mn−0.05|Ii| where X>i :=
⋃

j≥i X j.

Proof. By definition, XXX i = (XXX>i |XXX>i
Ii

= αi). Suppose for contradiction that XXX i
[n]rIi

is not 0.95-dense.
Then there is some nonempty subset K ⊆ [n]r Ii and an outcome β ∈ [m]K violating the min-entropy
condition, namely Pr[XXX i

K = β]> m−0.95|K|. But this contradicts the maximality of Ii since the larger set
Ii∪K now violates the min-entropy condition for XXX>i:

Pr[XXX>i
Ii∪K = αiβ] = Pr[XXX>i

Ii
= αi] ·Pr[XXX i

K = β] > m−0.95|Ii| ·m−0.95|K| = m−0.95(|Ii∪K|) .

This shows the first property. For the second property, apply Theorem 7.1 for XXX i = (XXX>i |XXX>i
Ii

= αi)

to find that H∞(XXX i) ≥ H∞(XXX>i)− 0.95|Ii| logm. On the other hand, since XXX i is fixed on Ii, we have
H∞(XXX i) ≤ (n− |Ii|) logm. Combining these two inequalities we get H∞(XXX>i) ≤ (n− 0.05|Ii|) logm,
which yields the second property.

Proof of Lemma 4.5. Identifying Yerr, Xerr. We define Yerr :=
⋃

i,γ Y i,γ subject to |Y i,γ | < 2mn−n2
. To

bound the size of Yerr, we claim that there are at most (4m)n possible choices of i,γ . Indeed, each X i is
associated with a unique pair (Ii ⊆ [n],αi ∈ [m]Ii), and there are at most 2n choices of Ii and at most mn

choices of corresponding αi. Also, for each X i, there are at most 2n possible assignments to γ ∈ {0,1}Ii .
For each i,γ , we add at most 2mn−n2

columns to Yerr. Thus, Yerr has density at most (4m)n ·2−n2
< 2−k

inside {0,1}mn.
We define Xerr :=

⊔
i X i subject to |Ii|> 20k/ logm. Let i be the least index with |Ii|> 20k/ logm so

that Xerr ⊆ X>i. By Claim 7.2, |X>i| ≤ mn−0.05|Ii| < mn ·2−k since |Ii|> 20k/ logm. In other words, X>i,
and hence Xerr, has density at most 2−k inside [m]n.

Structured vs. error. Let Ri,γ := X i×Y i,γ , where Xi is associated with (Ii,αi), be a rectangle not contained
in the error rows/columns. By definition of Xerr, Yerr, this means |Y i,γ | ≥ 2mn−n2

(so that H∞(YYY i,γ) ≥
mn− n2) and |Ii| ≤ 20k/ logm. We have from Claim 7.2 that XXX i

[n]rIi
is 0.95-dense. Hence, Ri,γ is

ρ i-structured where ρ i equals γ on Ii and consists of stars otherwise.

Query alignment. For each x ∈ [m]n rXerr, we define Ix = Ii where X i is the unique part that contains x. It
follows that any ρ-structured rectangle that intersects the x-th row is of the form X i×Y i,γ and hence has
fixρ = Ii. Since X i 6⊆ Xerr, we have |Ii| ≤ O(k/ logn).

7.2 Definition of Triangle Scheme

In the description of Triangle Scheme, we denote projections of a set S⊆ [m]n×{0,1}mn by

XS := {x ∈ [m]n : ∃y ∈ {0,1}mn such that (x,y) ∈ S} ,
Y S := {y ∈ {0,1}mn : ∃x ∈ [m]n such that (x,y) ∈ S} .

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 15

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

Triangle Scheme
Input: Triangle T ⊆ [m]n×{0,1}mn with labeling functions (aT ,bT)
Output: A disjoint rectangle cover

⊔
i Ri ⊇ T

1: Yerr← Column Cleanup on T
2: Initialize R0

alive := {[m]n× ({0,1}mn rYerr)}; Rr
alive := /0 for all r ≥ 1; Rfinal := /0

3: loop for r = 0,1,2, . . . , rounds until Rr
alive is empty:

4: for all R ∈ Rr
alive do

5:
⊔

i Ri← Rectangle Scheme on R relative to free coordinates
6: for all parts Ri do
7: if |XT∩Ri | ≥ |XRi |/2 then
8: Add Ri to Rfinal
9: else

10: Ri,top := top half of Ri according to aT (in particular T ∩Ri ⊆ Ri,top)
11: Add Ri,top to Rr+1

alive subject to T ∩Ri,top 6= /0

12: return Rfinal∪{[m]n×Yerr}

Overview. Triangle Scheme computes a disjoint rectangle cover
⊔

i Ri of T . Starting with a trivial
cover of the whole communication domain by a single part, the algorithm progressively refines this cover
over several rounds as guided by the input triangle T . As outlined in Section 6.1, the goal is to end
up with ρ-structured rectangles Ri that contain a large enough portion of T so that we may sandwich
Li ⊆ T ∩Ri ⊆ Ri where Li is a ρ-structured “inner” rectangle.

The main idea is as follows. The algorithm maintains a pool of alive rectangles. In a single round,
for each alive rectangle R, we first invoke Rectangle Scheme in order to restore ρ-structuredness for the
resulting subrectangles Ri. Then for each Ri we check if the subtriangle T ∩Ri occupies at least half the
rows of Ri. If yes, we add it to the final pool, which will eventually form the output of the algorithm.
If no, we discard the “lower” half of Ri as determined by the labeling aT , that is, the half that does not
intersect T . The “top” half (containing T ∩Ri) will enter the alive pool for next round.

Column Cleanup. An important detail is the subroutine Column Cleanup, run at the start of Triangle
Scheme, which computes a small set of columns that will eventually be declared as Yerr. By discarding
the columns Yerr, we ensure that whatever subrectangle Ri is returned by Rectangle Scheme, the rows
of T ∩Ri will satisfy an empty-or-heavy dichotomy: for every x ∈ XRi

, the x-th row of T ∩Ri is either
empty, or “heavy”, that is, of size at least 2mn−n2

. For intuition, an extreme bad example we want
to avoid is a triangle T that is just a single column; such T would be completely declared as “error”
by Column Cleanup. Having many heavy rows helps towards satisfying the 3rd item in Theorem 4.2
of ρ-stucturedness, and hence in finding the inner rectangle Li. This property of Column Cleanup is
formalized in Claim 7.3 below.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 16

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

Column Clean-up
Input: Triangle T ⊆ [m]n×{0,1}mn with labeling functions (aT ,bT)
Output: Error columns Yerr ⊆ {0,1}mn

1: Yerr← /0
2: For I ⊆ [n], α ∈ [m]I , γ ∈ {0,1}I , define YI,α,γ :=

{
y ∈ {0,1}mn : gI(α,yI) = γ

}
3: while there exists I,α,γ,x such that 0 < |T ∩ ({x}× (YI,α,γ rYerr))|< 2mn−n2 do
4: Yerr← Yerr∪Y T∩({x}×YI,α,γ)

5: return Yerr

Free coordinates. Another detail to explain is the underlined phrase relative to free coordinates. For
each alive rectangle R we tacitly associate a subset of free coordinates JR ⊆ [n] and fixed coordinates
[n]r JR. At start, the single alive rectangle has JR := [n], and whenever we invoke Rectangle Scheme for
a rectangle R relative to free coordinates, the understanding is that in line (i) of Rectangle Scheme, the
choice of Ii is made among subsets of JR alone. The resulting subrectangle Ri = X i×Y i, obtained by
fixing the coordinates Ii in X i, will have its free coordinates JRi := JR r Ii. (Restricting a rectangle to its
top half on line 10 does not modify the free coordinates.)

7.3 Properties of Triangle Scheme

Claim 7.3. For a triangle T ⊆ [m]n×{0,1}mn, let Yerr be the output of Column Cleanup. Then Yerr has
the following properties.

− Empty-or-heavy: For every triple (I ⊆ [n],α ∈ [m]I,γ ∈ {0,1}I), and every x ∈ [m]n, it holds that
T ∩ ({x}× (YI,α,γ rYerr)) is either empty or has size at least 2mn−n2

.
− Size bound: |Yerr| ≤ 2mn−Ω(n2).

Proof. The first property is immediate by definition of Column Cleanup. For the second property,
in each while-iteration, at most 2mn−n2

columns get added to Yerr. Moreover, there are no more than
2n ·mn ·2n ·mn = (2m)2n choices of I ⊆ [n], α ∈ [m]I , γ ∈ {0,1}I and x ∈ [m]n, and the loop executes at
most once for each choice of I,α,γ,x. Thus, |Yerr| ≤ (2m)2n ·2mn−n2 ≤ 2mn−Ω(n2).

Next, we list some key invariants that hold for Triangle Scheme.

Lemma 7.4. For every r ≥ 0, there exists a partition Xr :=
{

X i
}

i of [m]n satisfying the following.

(P1) For every R ∈ Rr
alive we have XR ∈ Xr.

(P2) Each X i ∈ Xr is labeled by a pair (Ii ⊆ [n],αi ∈ [m]Ii) such that XXX i
Ii
= αi is fixed.

(P3) The partition Xr+1 is a refinement of Xr. The labels respect this: if X j ∈ Xr+1 is a subset of
X i ∈ Xr, then I j ⊇ Ii and α j agrees with αi on coordinates Ii.

Moreover, let X := Xr∗ be the final partition assuming Triangle Scheme completes in r∗ rounds.

(P4) For every R ∈ Rfinal the row set XR is a union of parts of X. If X i ∈ X, labeled (Ii,αi), is such
that XR ⊇ X i, then the fixed coordinates of R are a subset of Ii.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 17

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

(P5) For every r ≥ 0, Xr and X agree on a fraction ≥ 1− 2−r of rows, that is, there is a subset of
“final” parts Xr

final ⊆ Xr such that
⋃
Xr

final has density ≥ 1−2−r inside [m]n, and Xr
final ⊆ X.

Proof. Let us define the row partitions Xr. The partition X1 contains only a single part, [m]n, labeled
by I1 := /0. Supposing Xr has been defined, the next partition Xr+1 is obtained by refining each old part
X i ∈ Xr. Consider one such old part X i ∈ Xr with label (Ii,αi). If there is no rectangle R ∈ Rr

alive with
XR = X i then we need not partition X i any further; we simply include X i in Xr+1 as a whole. Otherwise,
let R ∈ Rr

alive be any rectangle such that XR = X i; we emphasize that there can be many such choices for
R, but the upcoming refinement of X i will not depend on that choice. The r-th round of the algorithm
first computes R =

⊔
i Ri using Rectangle Scheme, and then each Ri might be horizontally split in half.

We interpret this as a refinement of X i according to the 1st round of Rectangle Scheme on R (which
only depends on XR = X i), with each part adding more fixed coordinates to the label (Ii,αi). Letting
X i =

⊔
j X i, j denote the resulting row partition, we then split each X i, j into two halves X i, j,top and X i, j,bot.

This completes the definition of Xr+1.
The properties (P1)–(P5) are straightforward to verify. For (P5), we only note that when the algorithm

horizontally splits a rectangle (inducing X i, j = X i, j,top∪X i, j,bot), the bottom halves are discarded, and
never again touched in future rounds. That is, X i, j,bot ∈ Xr′ for all r′ > r. This cuts the number of “alive”
rows

⋃
R∈Rr

alive
XR in half each round.

Lemma 7.5 (Error rows). Let X = {X i}i be the final row partition in Lemma 7.4. Fix any parameter
k < n logn. There is a density-2−k subset Xerr ⊆ [m]n (which is a union of parts of X) such that for any
part X i 6⊆ Xerr, we have |Ii| ≤ O(k/ logn).

Proof. Our strategy is as follows (cf. [22, Lemma 7]). For x ∈ [m]n, let i(x) be the unique index such that
x ∈ X i(x) ∈ X; recall that X i(x) is labeled by some (Ii(x),αi(x)). We will study a uniform random xxx∼ [m]n

and show that the distribution of the number of fixed coordinates |Ii(xxx)| has an exponentially decaying
tail. This allows us to define Xerr as the set of outcomes of xxx for which |Ii(xxx)| is exceptionally large. More
quantitatively, it suffices to show for a large constant C,

Pr
[
|Ii(xxx)|>C · k/ logn

]
≤ 2−k. (7.1)

Recall that X and X`, where ` := k+1, agree on all but a fraction 2−k/2 of rows by (P5). Hence by a
union bound, it suffices to show a version of (7.1) truncated at level `:

Pr
[
|Ii′(xxx)|>C′ · `/ logn

]
≤ 2−` (= 2−k/2), (7.2)

where i′(x) is defined as the unique index with x ∈ X i′(x) ∈ X`.
Partitions as a tree. The sequence X0, . . . ,X`, of row partitions can be visualized as a depth-` tree

where the nodes at depth r corresponds to parts of Xr, and there is an edge from X ∈ Xr to X ′ ∈ Xr+1 iff
X ′ ⊆ X . A way to generate a uniform random xxx∼ [m]n is to take a random walk down this tree, starting
at the root:

− At a non-leaf node X ∈ Xr we take a tree edge (X ,X ′) with probability |X ′|/|X |.
− Once at a leaf node X ∈ X`, we output a uniformly random xxx∼ X .

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 18

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

Potential function. We define a nonnegative potential function on the nodes of the tree. For each part
X ∈ Xr, labeled (I ⊆ [n],α ∈ {0,1}I), we define

D(X) := (n−|I|) logm− log |X | ≥ 0.

How does the potential change as we take a step starting at node X ∈ Xr labeled (J,α)? If X has one
child, the value of D remains unchanged. Otherwise, we move to a child of X in two substeps.

− Substep 1: Recall that we partition X =
⊔

i X i according to the 1st round of Rectangle Scheme
relative to free coordinates. That is, X i is further restricted on Ii ⊆ [n]r J to some value αi ∈ [m]Ii .
For a child X i labeled (Jt Ii,α tαi) the potential change is

D(X i)−D(X) = (n−|J∪ Ii|) logm− log |X i|− (n−|J|) logm+ log |X |
= log |X |− log |X i|− |Ii| logm

= log(|X |/|X>i|)− log(|X i|/|X>i|)−|Ii| logm

= log(|X |/|X>i|)− logPr[XXX>i
Ii

= αi]−|Ii| logm

≤ log(|X |/|X>i|)+0.95|Ii| logm−|Ii| logm

= δ (i)−0.05|Ii| logm. (where δ (i) := log(|X |/|X>i|))

− Substep 2: Each X i gets split into two halves, X i,top and X i,bot. Moving to either child makes the
potential increase by exactly 1 bit.

In summary, when we take a step to a random child in our random walk, the overall change in
potential is itself a random variable, which is at most

δδδ −0.05|III| logm+1, (7.3)

where (III, ·) is the label of the random child, and δδδ := δ (iii) is the random variable generated by choosing
iii with Pr[iii = i] = |X i|/|X |. Summing (7.3) over ` many rounds, we see that ` steps of the random
walk takes us to a node X jjj ∈ X` with random index jjj, which is labeled (I jjj,α jjj), and which satisfies
D(X jjj)≤∑r∈[`](δδδ r +1)−0.05|I jjj| logm where δδδ r is the “δδδ” variable corresponding to the r-th step. Since
the potential is nonnegative, we get that

|I jjj| ≤
20

logm
· ∑

r∈[`]
(δδδ r +1). (7.4)

Bounding this quantity is awkward since, in general, the variables δδδ r are not mutually independent.
However, a standard trick to overcome this is to define mutually independent and identically distributed
random variables dddr and couple them with δδδ r so that δδδ r ≤ dddr with probability 1.

− Definition of dddr: Sample a uniform real pppr ∈ [0,1) and define dddr := log(1/(1− pppr)) and couple
with δδδ r such that δδδ r = δ (iii) where iii is such that pppr falls in the iii-th interval, assuming we have
partitioned [0,1) into half-open intervals with lengths |X i|/|X | (where X1,X2, . . . are the sets from
Substep 1) in the natural left-to-right order. Thus, δδδ r is correctly distributed and δδδ r ≤ dddr holds
with probability 1.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 19

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

Note that E[2dddr/2] =
∫ 1

0 1/(1− p)1/2dp = 2. For a large enough constant C > 0, we calculate

Pr
[

∑r∈[`] dddr >C`
]
= Pr[2∑r∈[`](dddr/2) > 2C`/2]

≤ E[2∑r∈[`](dddr/2)]/2C`/2

=
(

∏r∈[`] E[2dddr/2]
)
/2C`/2

= 2` ·2−C`/2

≤ 2−C`/3.

Plugging this estimate in (7.4) (using δδδ r ≤ dddr) we get that Pr[|I jjj|>C′ · `/ logn]< 2−` for a sufficiently
large C′. This proves (7.2) and concludes the proof of the lemma.

7.4 Proof of Triangle Lemma

Identifying Yerr, Xerr. The column error set Yerr is already defined by Triangle Scheme. Note that only one
rectangle, [m]n×Yerr, is covered by the error columns. Claim 7.3 ensures that Yerr has density at most
2−Ω(n2) < 2−k. The row error set Xerr is defined by Lemma 7.5 (for the given k).

Structured vs. error. Let
⊔

i Ri be the output of Triangle Scheme, and consider an Ri = X i×Y i which is
not covered by error rows/columns; in particular Ri ∈ Rfinal. Let Ii ⊆ [n] denote the fixed coordinates of
Ri such that XXX i

Ii
= αi for some αi ∈ {0,1}Ii . From Claim 7.2 we have that XXX i

[n]rIi
is 0.95-dense. From

(P4) and Lemma 7.5 we have |Ii| ≤ O(k/ logn). Moreover, we observe that Y i = YIi,αi,γi rYerr for some
γi ∈ {0,1}Ii (notation from Column Cleanup) since Rectangle Scheme, and hence Triangle Scheme by
extension, only partitions columns by fixing individual gadget outputs. We have |YIi,αi,γi | ≥ 2mn−n by
definition, and so |Y i| ≥ 2mn−2n is large enough. Hence we conclude that Ri is ρ i-structured for ρ i that
equals γi on Ii and consists of stars otherwise.

Next, we locate the associated inner rectangle Li ⊆ Ri. All final rectangles returned by Triangle
Scheme are such that |X (T∩Ri)| ≥ |X i|/2. That is, every top row in Ri,top has a nonempty intersection with
T . Hence the empty-vs-heavy property of Claim 7.3 says that for all x∈ X i,top, we have |T ∩({x}×Y i)| ≥
2mn−n2

. Moreover, note that XXX i,top is 0.9-dense on its free coordinates [n]r Ii (we lose at most 1 bit of
min-entropy compared to XXX i by Theorem 7.1). We can now define Li := X i,top×Y ′ ⊆ T ∩Ri where Y ′ is
the set of the first (according to bT) 2mn−n2

columns of Y i; see Figure 4. This Li meets all the conditions
for being ρ i-structured.

Query alignment. For x ∈ [m]n rXerr, we define (Ix,αx) as the label of the unique part i(x) such that
x ∈ X i(x) ∈ X. By Lemma 7.5, |Ix| ≤ O(k/ logn). Every ρ-structured rectangle R j := X j ×Y j with
X j ⊇ X i(x) is, by (P4), such that fixρ ⊆ Ix.

8 Translating between mKW and CNF

In this section, for exposition, we recall some known reductions between mKW and CNF search problems
(as outlined in Section 3). These reductions are generic in that they are not adapted to the special
properties of the search problem S ⊆ {0,1}n×O one starts with. For concrete applications to natural

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 20

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

problems, one often needs more fine-grained reductions; for example, as mentioned in Section 3, the
follow-up article [18] has introduced a more specific framework.

In an effort to add some new perspective to the old reductions expounded here, we continue to use the
somewhat abstract search problem–centric “top-down” language. We encourage the readers who prefer
the CNF-centric “bottom-up” language to refer to the original cited papers.

Certificates. The key property of an n-variable search problem S ⊆ {0,1}n×O that facilitates an
efficient reduction to a mKW/CNF search problem is having a low certificate (a.k.a. nondeterministic)
complexity. A certificate for (x,o) ∈ S is a partial assignment ρ ∈ {0,1,∗}n such that x is consistent with
ρ and o is a valid output for every input consistent with ρ; in short, x ∈C−1

ρ (1)⊆ S−1(o). A certificate
for x is a certificate for (x,o) ∈ S for some o ∈ S(x). The certificate complexity of x is the least width of
a certificate for x. The certificate complexity of S is the maximum over all x ∈ {0,1}n of the certificate
complexity of x.

For any search problem S one can associate a “certification” search problem Scert: on input x to S,
return a certificate for x in S. Algorithmically speaking, such an Scert is clearly at least as hard as S: if we
solve Scert by finding a certificate for (x,o) ∈ S, we can solve S by returning o.

CNF search ⇔ low certificate complexity. For any k-CNF contradiction F , the associated CNF
search problem SF has certificate complexity at most k. Conversely [36], for any total search problem
S ⊆ {0,1}n×O, we can construct a k-CNF contradiction F , where k is the certificate complexity of S,
such that SF is a type of certification problem for S (and hence at least as hard as S). Namely, we can pick
a collection C of width-k certificates, one for each x ∈ {0,1}n. The k-CNF formula F is then defined as∧

ρ∈C¬Cρ .

Gadget composition. For the purposes of query complexity, there are two ways to represent the first
argument x ∈ [m] to the index function INDm : [m]×{0,1}m→ {0,1} as a binary string. The simplest
is to write x as a logm-bit string. Under this convention, INDm has certificate complexity logm+1. If
S⊆ {0,1}n×O has certificate complexity k, the composed problem S◦ INDn

m has certificate complexity
k(logm+1) (by composing certificates). This means that if we start with a k-CNF contradiction F , we
may reduce SF ◦ INDn

m to solving SF ′ where F ′ is a k(logm+1)-CNF contradiction over O(mn) variables.
A better representation [5, 13], which does not blow up the certificate complexity (or CNF width), is to

write x as an m-bit string of Hamming weight 1 (the index of the unique 1-entry encodes x ∈ [m]). Under
this convention, INDm : {0,1}m×{0,1}m→{0,1} becomes a partial function of certificate complexity 2.
Hence, if S has certificate complexity k, the partial composed problem S′ := S ◦ INDn

m has certificate
complexity 2k.

Moreover, the partial problem S′ can be extended into a total problem Stot without making it any
easier to solve for rectangle/triangle-DAGs, while still allowing for a O(logm)-depth decision tree to
find a 1-entry in a given x. Indeed, we introduce new variables/certificates in order to say that an input
(x,y) to S′ is trivially solved with output ⊥ /∈ O, if xi = 0m for some i ∈ [n]. Specifically, Alice will
receive new input bits x′ ∈ ({0,1}m)n (in addition to the original x ∈ ({0,1}m)n) with the convention
that xi,1 := 0 and xi,m+1 := 1. We say that an Alice input xx′ is good if whenever the string x′i ∈ {0,1}m

contains the substring 01 starting at position j, then xi, j = 1. Note that since each x′i starts with a 0

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 21

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

and ends with a 1, the substring 01 must appear somewhere in x′i. Thus when xx′ is good, each xi will
have Hamming weight at least 1. If xx′ is not good (meaning some x′i contains a substring 01 but the
corresponding bit of xi is 0), there is a width-3 certificate witnessing this. Our total search problem
Stot ⊆ {0,1}2mn×{0,1}mn× (O∪{⊥}) is defined by all these width-3 certificates (for output⊥) together
with all the original certificates of S′. To see that Stot is at least as hard as S′ for rectangle/triangle-DAGs,
we note that for any input (x,y) to S′, Alice can compute a unique x′ so that xx′ is good. Now any
output o ∈ Stot(xx′,y) is also such that o ∈ S′(x,y). Finally, we note that for every i ∈ [n], there is a
(logm+1)-query decision tree that either finds some j ∈ [m] with xi, j = 1 or finds a certificate that xx′ is
not good; namely, the decision tree performs a binary search on x′i for an occurrence of the substring 01.
(This decision tree is useful when finding upper bounds for Stot, such as for Theorem 3.4.)

In summary, we can reduce (in the context of our DAG-like models) SF ◦ INDn
m to solving SF ′ where

F ′ is a 2k-CNF contradiction over 2mn variables.

mKW problems. A rectangle R ⊆ X×Y is monochromatic for a search problem S ⊆ X×Y×O if
R ⊆ S−1(o) for some o ∈ O. The nondeterministic communication complexity of S is the logarithm
of the least number of monochromatic rectangles that cover the whole input domain X×Y. If S has
nondeterministic communication complexity logN, then by a standard reduction (e. g., [15, Lemma 2.3])
S reduces to S f for some monotone f : {0,1}N →{0,1}.

Consider a composed search problem SF ◦gn obtained from a k-CNF contradiction with ` clauses. Its
nondeterministic communication complexity is at most log`+ k · (logm+1); intuitively, it takes log`
bits to specify an unsatisfied clause C, and logm+1 bits to verify the output of a single gadget, and there
are k gadgets relevant to C. In summary, SF ◦gn reduces to S f for some monotone f : {0,1}N →{0,1}
on N = ` · (2m)k variables.

Suppose for a moment that a version of Theorem 3.1, proving a 2Ω(w) lower bound, held for a gadget
of constant size m = O(1). Then we could lift any of the known CNF contradictions with parameters
k = O(1), ` = O(n), w = Ω(n), to obtain an explicit monotone function on N = Θ(n) variables, with
essentially maximal monotone circuit complexity 2Ω(N). This gives some motivation to further develop
lifting tools for small gadgets.

9 Proof of Lemma 4.4

To prove Lemma 4.4, we recall two claims from [22] (which were used to prove Lemma 4.3). We need
the first claim in a slightly strengthened form. First, define χ(z) := (−1)∑i zi .

Claim 9.1 (Strengthening [22, Lemma 8]). For any ρ-structured X×Y with freeρ =: J ⊆ [n],

∀I ⊆ J, I 6= /0 : EXXX
∣∣EYYY [χ(gI(XXX I,YYY I))]

∣∣ ≤ 2−5|I| logn.

Proof. Fix any I ⊆ J, I 6= /0. Define subsets

X+ :=
{

x ∈ X : EYYY [χ(gI(xI,YYY I))]> 0
}

and X- :=
{

x ∈ X : EYYY [χ(gI(xI,YYY I))]< 0
}

so that

EXXX
∣∣EYYY [χ(gI(xI,YYY I))]

∣∣ = |X+|
|X |
·EXXX+ EYYY [χ(gI(XXX+

I ,YYY I))]+
|X-|
|X |
·EXXX- EYYY [−χ(gI(XXX-

I ,YYY I))] .

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 22

http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

It suffices to show that each of the two terms is at most 0.5 · 2−5|I| logn. Let us focus only on the first
term (a similar argument takes care of the second term). If |X+| ≤ 0.5 · 2−5|I| logn · |X |, then we are
already done, so assume the contrary so that H∞(XXX+

I) ≥ H∞(XXX I)−5|I| logn−1 ≥ 0.8|I| logm; here
recall that H∞(XXX I) ≥ 0.9|I| logm and we may assume m ≥ n60. To complete the proof, we rely on a
calculation from [22, Lem. 8]. There, the following is proved for constant 0.9 in place of 0.8, but this is
inconsequential, as one can always increase the exponent in m = n∆ if necessary.
Calculation from [22, Lem. 8, Eq. 4]: If H∞(XXX+

I)≥ 0.8|I| logm and H∞(YYY)≥ mn−n3 then

|EXXX+ EYYY [χ(gI(XXX+
I ,YYY I))]| ≤ 0.5 ·2−5|I| logn.

Claim 9.2 ([22, Lem. 9]). If a random variable zzzJ over {0,1}J satisfies1 |E[χ(zzzI)]| ≤ 2−3|I| logn for every
nonempty I ⊆ J, then zzzJ has full support over {0,1}J .

Proof of Lemma 4.4. Say that x ∈ X is good if |EYYY [χ(gI(xI,YYY I))]| ≤ 2−3|I| logn for all /0 6= I ⊆ J. By
applying Markov’s inequality to Theorem 9.1, we have for a uniform random xxx∼ X and any /0 6= I ⊆ J
that

Prxxx∼X

[∣∣EYYY [χ(gI(xxxI,YYY I))]
∣∣> 2−3|I| logn

]
≤ 2−2|I| logn.

Taking a union bound over all /0 6= I ⊆ J, we get

Prxxx∼X [xxx is not good] ≤ ∑ /0 6=I⊆J Prxxx∼X
[
|EYYY [χ(gI(xxxI,YYY I))]|> 2−3|I| logn

]
≤ ∑ /0 6=I⊆J 2−2|I| logn = ∑

|J|
d=1

(|J|
d

)
·2−2d logn

≤ ∑
|J|
d=1 2−d logn ≤ 2/n.

Hence most x ∈ X are good. Finally, observe that for any good x, the random variable zzzJ defined as
gJ(x,yyy) for a random yyy∼ Y , satisfies the Fourier condition in Theorem 9.2. Therefore, such a zzzJ has full
support over {0,1}J , which means that {x}×Y is ρ-like.

10 Open problems

If the long line of work on tree-like lifting theory is of any indication, there should be much to explore
also in the DAG-like setting. We propose a few concrete directions.

Can our methods be extended to prove lower bounds for DAGs whose feasible sets are intersections of
k triangles for k ≥ 2? See Figure 2. This would imply lower bounds for proofs systems such as width-k
Resolution over Cutting Planes [34] and Resolution over linear equations [43, 29].

Question 10.1. Prove a lifting theorem for F-DAGs where F := {intersections of k triangles}.

One of the most important open problems (e. g., [49, §5]) regarding semi-algebraic proof systems
that manipulate low-degree polynomials—where F is, say, degree-d polynomial threshold functions—is
to prove lower bounds on their DAG-like refutation length (tree-like lower bounds are known [7, 20]).

1In [22, §4.6], the claim is proved for the condition |E[χ(zzzI)]| ≤ 2−5|I| logn. However, the proof still works with the weaker
condition 2−3|I| logn, as we only require that zzzJ has full support instead of being pointwise-close to uniform.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 23

http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

Since degree-d polynomials can be efficiently evaluated by (d +1)-party number-on-forehead (NOF)
protocols, one might hope to prove a DAG-like NOF lifting theorem. However, we currently lack a good
understanding of NOF lifting even in the tree-like case. We believe the first necessary step should be to
settle the following (a two-party analogue of which was proved in [19]).

Question 10.2. Prove a nondeterministic lifting theorem for NOF protocols.

The proof of Theorem 3.1, which extracts a width-O(d) conjunction-DAG from a size-nd rectangle-
DAG, has the additional property of preserving the DAG depth (up to an O(d) factor). This raises the
question of whether one could investigate size–depth tradeoffs for monotone circuits via lifting.

Question 10.3. Does there exist, for any d ≥ 1, an f : {0,1}n → {0,1} computable with monotone
circuits of size nd such that any subexponential-size monotone circuit computing f has depth nΩ(d)?

Razborov [48] has recently obtained related results for Resolution, but the parameters in his construc-
tion seem not to be good enough for a direct application of Theorem 3.1.

Acknowledgements

We thank Jakob Nordström for extensive feedback on an early draft of this paper. We also thank Toniann
Pitassi, Thomas Watson, and anonymous STOC and ToC reviewers for comments.

References

[1] NOGA ALON AND RAVI B. BOPPANA: The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987. [doi:10.1007/BF02579196] 6

[2] KAZUYUKI AMANO AND AKIRA MARUOKA: The potential of the approximation method. SIAM J.
Comput., 33(2):433–447, 2004. [doi:10.1137/S009753970138445X] 6

[3] ALEXANDER E. ANDREEV: On a method for obtaining lower bounds for the complexity of
individual monotone functions. Dokl. Math., 282(5):1033–1037, 1985. Link at Math-Net.ru. 6

[4] ALBERT ATSERIAS AND VÍCTOR DALMAU: A combinatorial characterization of resolution width.
J. Comput. System Sci., 74(3):323–334, 2008. [doi:10.1016/j.jcss.2007.06.025] 10

[5] PAUL BEAME, TRINH HUYNH, AND TONIANN PITASSI: Hardness amplification in proof com-
plexity. In Proc. 42nd STOC, pp. 87–96. ACM Press, 2010. [doi:10.1145/1806689.1806703] 2,
21

[6] PAUL BEAME AND TONIANN PITASSI: Propositional proof complexity: Past, present, and future.
In Current Trends in Theoretical Computer Science: Entering the 21st Century, pp. 42–70. World
Scientific, 2001. [doi:10.1142/9789812810403_0001, ECCC:TR98-067] 7

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 24

http://dx.doi.org/10.1007/BF02579196
http://dx.doi.org/10.1137/S009753970138445X
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=9107&option_lang=eng
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1145/1806689.1806703
http://dx.doi.org/10.1142/9789812810403_0001
https://eccc.weizmann.ac.il/report/1998/067
http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

[7] PAUL BEAME, TONIANN PITASSI, AND NATHAN SEGERLIND: Lower bounds for Lovász–
Schrijver systems and beyond follow from multiparty communication complexity. SIAM J. Comput.,
37(3):845–869, 2007. [doi:10.1137/060654645] 23

[8] ELI BEN-SASSON AND AVI WIGDERSON: Short proofs are narrow—resolution made simple. J.
ACM, 48(2):149–169, 2001. [doi:10.1145/375827.375835] 4

[9] CHRISTER BERG AND STAFFAN ULFBERG: Symmetric approximation arguments for
monotone lower bounds without sunflowers. Comput. Complexity, 8(1):1–20, 1999.
[doi:10.1007/s000370050017] 6

[10] MARIA LUISA BONET, TONIANN PITASSI, AND RAN RAZ: Lower bounds for cutting planes
proofs with small coefficients. J. Symbolic Logic, 62(3):708–728, 1997. [doi:10.2307/2275569] 2

[11] ARKADEV CHATTOPADHYAY, MICHAL KOUCKÝ, BRUNO LOFF, AND SAGNIK MUKHOPAD-
HYAY: Simulation theorems via pseudo-random properties. Comput. Complexity, 28:617–659, 2019.
[doi:10.1007/s00037-019-00190-7, arXiv:1704.06807] 2

[12] WILLIAM COOK, COLLETTE COULLARD, AND GYÖRGY TURÁN: On the complexity of cutting-
plane proofs. Discr. Appl. Math., 18(1):25–38, 1987. [doi:10.1016/0166-218X(87)90039-4] 7

[13] SUSANNA F. DE REZENDE, JAKOB NORDSTRÖM, AND MARC VINYALS: How limited interaction
hinders real communication (and what it means for proof and circuit complexity). In Proc. 57th
FOCS, pp. 295–304. IEEE Comp. Soc., 2016. [doi:10.1109/FOCS.2016.40] 2, 21

[14] NOAH FLEMING, DENIS PANKRATOV, TONIANN PITASSI, AND ROBERT ROBERE: Random
Θ(logn)-CNFs are hard for cutting planes. In Proc. 58th FOCS, pp. 109–120. IEEE Comp. Soc.,
2017. Update: ECCC TR17-045. [doi:10.1109/FOCS.2017.19] 6, 7

[15] ANNA GÁL: A characterization of span program size and improved lower bounds for monotone
span programs. Comput. Complexity, 10(4):277–296, 2001. [doi:10.1007/s000370100001] 22

[16] ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV: Monotone cir-
cuit lower bounds from resolution. In Proc. 50th STOC, pp. 902–911. ACM Press, 2018.
[doi:10.1145/3188745.3188838] 1

[17] MIKA GÖÖS, PRITISH KAMATH, TONIANN PITASSI, AND THOMAS WATSON: Query-to-
communication lifting for PNP. Comput. Complexity, 28(1):113–144, 2019. Preliminary version in
CCC’17. [doi:10.1007/s00037-018-0175-5] 8

[18] MIKA GÖÖS, PRITISH KAMATH, ROBERT ROBERE, AND DMITRY SOKOLOV: Adven-
tures in monotone complexity and TFNP. In Proc. 10th Innovations in Theoret. Comp.
Sci. (ITCS’19), pp. 38:1–38:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.
[doi:10.4230/LIPIcs.ITCS.2019.38] 2, 5, 7, 21

[19] MIKA GÖÖS, SHACHAR LOVETT, RAGHU MEKA, THOMAS WATSON, AND DAVID ZUCK-
ERMAN: Rectangles are nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016.
[doi:10.1137/15M103145X] 6, 8, 15, 24

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 25

http://dx.doi.org/10.1137/060654645
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1007/s000370050017
http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.1007/s00037-019-00190-7
http://arxiv.org/abs/1704.06807
http://dx.doi.org/10.1016/0166-218X(87)90039-4
http://dx.doi.org/10.1109/FOCS.2016.40
https://eccc.weizmann.ac.il/report/2017/045/
http://dx.doi.org/10.1109/FOCS.2017.19
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1145/3188745.3188838
https://doi.org/10.4230/LIPIcs.CCC.2017.12
http://dx.doi.org/10.1007/s00037-018-0175-5
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.38
http://dx.doi.org/10.1137/15M103145X
http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

[20] MIKA GÖÖS AND TONIANN PITASSI: Communication lower bounds via critical block
sensitivity. SIAM J. Comput., 47(5):1778–1806, 2018. Preliminary version in STOC’14.
[doi:10.1137/16M1082007] 2, 23

[21] MIKA GÖÖS, TONIANN PITASSI, AND THOMAS WATSON: Deterministic communication vs.
partition number. SIAM J. Comput., 47(6):2435–2450, 2018. Preliminary version in FOCS’15.
[doi:10.1137/16M1059369] 2

[22] MIKA GÖÖS, TONIANN PITASSI, AND THOMAS WATSON: Query-to-communication lift-
ing for BPP. SIAM J. Comput., 49(4):132–143, 2020. Preliminary version in FOCS’17.
[doi:10.1137/17M115339X] 6, 8, 15, 18, 22, 23

[23] ARMIN HAKEN: Counting bottlenecks to show monotone P 6= NP. In Proc. 36th FOCS, pp. 36–40.
IEEE Comp. Soc., 1995. [doi:10.1109/SFCS.1995.492460] 6

[24] ARMIN HAKEN AND STEPHEN A. COOK: An exponential lower bound for the size of monotone
real circuits. J. Comput. System Sci., 58(2):326–335, 1999. [doi:10.1006/jcss.1998.1617] 7

[25] DANNY HARNIK AND RAN RAZ: Higher lower bounds on monotone size. In Proc. 32nd STOC,
pp. 378–387. ACM Press, 2000. [doi:10.1145/335305.335349] 6

[26] PAVEL HRUBEŠ AND PAVEL PUDLÁK: Random formulas, monotone circuits, and interpolation. In
Proc. 58th FOCS, pp. 121–131. IEEE Comp. Soc., 2017. [doi:10.1109/FOCS.2017.20] 6, 7

[27] PAVEL HRUBEŠ AND PAVEL PUDLÁK: A note on monotone real circuits. Information Processing
Letters, 131:15–19, 2018. [doi:10.1016/j.ipl.2017.11.002, ECCC:TR17-048] 7

[28] TRINH HUYNH AND JAKOB NORDSTRÖM: On the virtue of succinct proofs: Amplifying commu-
nication complexity hardness to time–space trade-offs in proof complexity. In Proc. 44th STOC, pp.
233–248. ACM Press, 2012. [doi:10.1145/2213977.2214000] 2

[29] DMITRY ITSYKSON AND DMITRY SOKOLOV: Lower bounds for splittings by linear combinations.
In Proc. 39th Math. Found. Comp. Sci. (MFCS’14), pp. 372–383. Springer, 2014. [doi:10.1007/978-
3-662-44465-8_32] 23

[30] STASYS JUKNA: Finite limits and monotone computations: The lower bounds criterion. In
Proc. 12th IEEE Conf. on Comput. Complexity (CCC’97), pp. 302–313. IEEE Comp. Soc., 1997.
[doi:10.1109/CCC.1997.612325] 6

[31] STASYS JUKNA: Boolean Function Complexity: Advances and Frontiers. Volume 27 of Algorithms
and Combinatorics. Springer, 2012. [doi:10.1007/978-3-642-24508-4] 2, 4, 7

[32] MAURICIO KARCHMER AND AVI WIGDERSON: Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discr. Math., 3(2):255–265, 1990. Preliminary version in STOC’88.
[doi:10.1137/0403021] 4

[33] JAN KRAJÍČEK: Interpolation theorems, lower bounds for proof systems, and independence results
for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, 1997. [doi:10.2307/2275541] 2

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 26

https://doi.org/10.1145/2591796.2591838
http://dx.doi.org/10.1137/16M1082007
https://doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1137/16M1059369
https://doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.1137/17M115339X
http://dx.doi.org/10.1109/SFCS.1995.492460
http://dx.doi.org/10.1006/jcss.1998.1617
http://dx.doi.org/10.1145/335305.335349
http://dx.doi.org/10.1109/FOCS.2017.20
http://dx.doi.org/10.1016/j.ipl.2017.11.002
https://eccc.weizmann.ac.il/report/2017/048
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1007/978-3-662-44465-8_32
http://dx.doi.org/10.1007/978-3-662-44465-8_32
http://dx.doi.org/10.1109/CCC.1997.612325
http://dx.doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/62212.62265
http://dx.doi.org/10.1137/0403021
http://dx.doi.org/10.2307/2275541
http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

[34] JAN KRAJÍČEK: Discretely ordered modules as a first-order extension of the cutting planes proof
system. J. Symbolic Logic, 63(4):1582–1596, 1998. [doi:10.2307/2586668] 23

[35] EYAL KUSHILEVITZ AND NOAM NISAN: Communication Complexity. Cambridge Univ. Press,
1997. [doi:10.1017/CBO9780511574948] 2

[36] LÁSZLÓ LOVÁSZ, MONI NAOR, ILAN NEWMAN, AND AVI WIGDERSON: Search problems in the
decision tree model. SIAM J. Discr. Math., 8(1):119–132, 1995. [doi:10.1137/S0895480192233867]
21

[37] KETAN MULMULEY: A fast parallel algorithm to compute the rank of a matrix over an arbitrary
field. Combinatorica, 7(1):101–104, 1987. [doi:10.1007/BF02579205] 5

[38] PAVEL PUDLÁK: Lower bounds for resolution and cutting plane proofs and monotone computations.
J. Symbolic Logic, 62(3):981–998, 1997. [doi:10.2307/2275583] 7

[39] PAVEL PUDLÁK: Proofs as games. Amer. Math. Monthly, 107(6):541–550, 2000.
[doi:10.2307/2589349] 10

[40] PAVEL PUDLÁK: On extracting computations from propositional proofs (a survey). In Proc. 30th
Found. Software Techn. Theoret. Comp. Sci. (FSTTCS’10), pp. 30–41. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2010. [doi:10.4230/LIPIcs.FSTTCS.2010.30] 2, 3, 4

[41] ANUP RAO AND AMIR YEHUDAYOFF: Communication Complexity and Applications. Cambridge
Univ. Press, 2020. [doi:10.1017/9781108671644] 2

[42] RAN RAZ AND PIERRE MCKENZIE: Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. [doi:10.1007/s004930050062] 2

[43] RAN RAZ AND IDDO TZAMERET: Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic, 155(3):194–224, 2008. [doi:10.1016/j.apal.2008.04.001] 23

[44] ALEXANDER A. RAZBOROV: Lower bounds on the monotone complexity of some Boolean
functions. Dokl. Math., 31(4):354–357, 1985. Link at Math-Net.ru. 6

[45] ALEXANDER A. RAZBOROV: On the method of approximations. In Proc. 21st STOC, pp. 167–176.
ACM Press, 1989. [doi:10.1145/73007.73023] 6

[46] ALEXANDER A. RAZBOROV: Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya Math., (1):205–227, 1995. Link at Math-Net.ru. 2, 3

[47] ALEXANDER A. RAZBOROV: On small size approximation models. In The Mathematics of Paul
Erdös I, pp. 385–392. Springer, 1997. [doi:10.1007/978-3-642-60408-9_28] 6

[48] ALEXANDER A. RAZBOROV: A new kind of tradeoffs in propositional proof complexity. J. ACM,
63(2):16:1–16:14, 2016. [doi:10.1145/2858790] 24

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 27

http://dx.doi.org/10.2307/2586668
http://dx.doi.org/10.1017/CBO9780511574948
http://dx.doi.org/10.1137/S0895480192233867
http://dx.doi.org/10.1007/BF02579205
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.2307/2589349
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1017/9781108671644
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1016/j.apal.2008.04.001
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=9192&option_lang=eng
http://dx.doi.org/10.1145/73007.73023
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=9&option_lang=eng
http://dx.doi.org/10.1007/978-3-642-60408-9_28
http://dx.doi.org/10.1145/2858790
http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

[49] ALEXANDER A. RAZBOROV: Proof complexity and beyond. SIGACT News, 47(2):66–86, 2016.
[doi:10.1145/2951860.2951875] 7, 23

[50] BENJAMIN ROSSMAN: The monotone complexity of k-clique on random graphs. SIAM J. Comput.,
43(1):256–279, 2014. [doi:10.1137/110839059] 6

[51] JANOS SIMON AND SHI-CHUN TSAI: On the bottleneck counting argument. Theoret. Comput. Sci.,
237(1–2):429–437, 2000. Preliminary version in CCC’97. [doi:10.1016/S0304-3975(99)00321-7] 6

[52] DMITRY SOKOLOV: Dag-like communication and its applications. In Proc. 12th Comp. Sci. Symp.
in Russia (CSR’17), pp. 294–307. Springer, 2017. [doi:10.1007/978-3-319-58747-9_26] 2, 3, 4

[53] ÉVA TARDOS: The gap between monotone and non-monotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988. [doi:10.1007/BF02122563] 5

[54] ALASDAIR URQUHART: Hard examples for resolution. J. ACM, 34(1):209–219, 1987.
[doi:10.1145/7531.8928] 5

[55] AVI WIGDERSON: The fusion method for lower bounds in circuit complexity. In Combinatorics,
Paul Erdős is Eighty, pp. 453–468. János Bolyai Math. Soc., Budapest, 1993. 6

[56] XIAODI WU, PENGHUI YAO, AND HENRY YUEN: Raz–McKenzie simulation with the inner
product gadget. Electron. Colloq. Comput. Complexity, TR17-010, 2017. [ECCC] 2

AUTHORS

Ankit Garg
Researcher
Microsoft Research India
garga microsoft com
https://ankit-garg-6.github.io/

Mika Göös
Assistant professor
EPFL
mika goos epfl ch
https://theory.epfl.ch/mika/

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 28

http://dx.doi.org/10.1145/2951860.2951875
http://dx.doi.org/10.1137/110839059
https://doi.org/10.1109/CCC.1997.612324
http://dx.doi.org/10.1016/S0304-3975(99)00321-7
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1007/BF02122563
http://dx.doi.org/10.1145/7531.8928
https://eccc.weizmann.ac.il/report/2017/010
https://ankit-garg-6.github.io/
https://theory.epfl.ch/mika/
http://dx.doi.org/10.4086/toc

MONOTONE CIRCUIT LOWER BOUNDS FROM RESOLUTION

Pritish Kamath
Postdoctoral scholar
Toyota Technological Institute at Chicago
Chicago, IL, USA
pritish alum mit edu
https://pritishkamath.github.io/

Dmitry Sokolov
Postdoctoral researcher
KTH Royal Institute of Technology
sokolovd kth se
https://logic.pdmi.ras.ru/~sokolov/

ABOUT THE AUTHORS

ANKIT GARG is a researcher at Microsoft Research India. Previously, he obtained his
Ph. D. in computer science from Princeton University under the supervision of Mark
Braverman, and then spent two years as a postdoc at Microsoft Research New England.
Even before that, he got his undergraduate degree in computer science from the Indian
Insitute of Technology Delhi. His research interests lie in algebraic complexity, optimiza-
tion, and communication complexity. He grew up in Bathinda (a small city in Punjab,
India) and like most Indians, loves playing and watching cricket.

MIKA GÖÖS is an assistant professor at EPFL in the Theory Group. Previously, he was
a postdoc at Stanford Theory, the Institute for Advanced Study, and the ToC group at
Harvard. He completed his Ph. D. at the University of Toronto under the watchful eye
of Toniann Pitassi. He obtained his B. S. from Aalto University, and his M. S. from the
University of Oxford. In his spare time, Mika enjoys rock climbing, hoping to climb a
7C-grade boulder one day.

PRITISH KAMATH is a postdoctoral scholar at the Toyota Technological Institute at Chicago.
He completed his Ph. D. at MIT, co-advised by Madhu Sudan and Ronitt Rubinfeld.
Prior to that, he completed a B. Tech. in Computer Science at IIT Bombay in 2012 after
which he was a Research Fellow at Microsoft Research India until 2013, where he was
mentored by Neeraj Kayal. He has broad interests in complexity theory and has worked
in areas touching upon communication complexity, information theory, Boolean and
algebraic circuit complexity and proof complexity. Most recently he has also become
interested in foundational aspects of machine learning. He likes to juggle multiple things
in life; sometimes on a bicycle.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 29

https://pritishkamath.github.io/
https://logic.pdmi.ras.ru/~sokolov/
https://www.microsoft.com/en-us/research/lab/microsoft-research-india/
https://www.cs.princeton.edu/
http://www.cs.princeton.edu/~mbraverm/
http://www.cs.princeton.edu/~mbraverm/
https://www.microsoft.com/en-us/research/lab/microsoft-research-new-england/
http://www.cse.iitd.ernet.in/
http://www.cse.iitd.ernet.in/
https://en.wikipedia.org/wiki/Bathinda
https://theory.epfl.ch/
http://theory.stanford.edu/
https://www.ias.edu/
http://toc.seas.harvard.edu/
http://toc.seas.harvard.edu/
http://www.cs.toronto.edu
http://www.cs.toronto.edu/~toni/
https://www.aalto.fi/
https://www.cs.ox.ac.uk/
www.mit.edu
http://madhu.seas.harvard.edu/
http://people.csail.mit.edu/ronitt/
https://www.cse.iitb.ac.in/
http://www.iitb.ac.in/
https://www.microsoft.com/en-us/research/lab/microsoft-research-india/
https://www.microsoft.com/en-us/research/people/neeraka/
https://youtu.be/iXgAfveUTMk
http://dx.doi.org/10.4086/toc

ANKIT GARG, MIKA GÖÖS, PRITISH KAMATH, AND DMITRY SOKOLOV

DMITRY SOKOLOV is a postdoc at Lund University and the University of Copenhagen. He
got his Ph. D. in mathematics from the St. Petersburg Department of Steklov Mathemati-
cal Institute of the Russian Academy of Sciences under the supervision of Edward Hirsch
and Dmitry Itsykson, and then spent two years as a postdoc at KTH Royal Institute
of Technology. He defended his master’s thesis in computer science at St. Petersburg
Academic University. His research interests include proof complexity, communication
complexity, and circuit complexity. He likes to play table tennis.

THEORY OF COMPUTING, Volume 16 (13), 2020, pp. 1–30 30

https://www.lu.se/
https://www.ku.dk/english/
http://www.pdmi.ras.ru/pdmi/en
http://www.pdmi.ras.ru/pdmi/en
https://logic.pdmi.ras.ru/~hirsch/
https://logic.pdmi.ras.ru/~dmitrits/
https://www.kth.se/
https://www.kth.se/
http://dx.doi.org/10.4086/toc

	Appetizer
	dag-like models
	Abstract dags
	Concrete dags

	Our results
	Extension: Monotone real circuits

	Subcubes from rectangles
	Structured rectangles
	Rectangle partition scheme

	Lifting for rectangle-dags
	Game semantics for dags
	Simplified proof
	Accounting for error

	Lifting for triangle-dags
	Triangle partition scheme
	Simplified proof

	Partitioning rectangles and triangles
	Proof of Rectangle Lemma
	Definition of Triangle Scheme
	Properties of Triangle Scheme
	Proof of Triangle Lemma

	Translating between mKW and CNF
	Proof of Lemma 4.4
	Open problems
	References

