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Abstract. We introduce a hitting set generator for Polynomial Identity Testing based

on evaluations of low-degree univariate rational functions at abscissas associated

with the variables. We establish an equivalence up to rescaling with a generator

introduced by Shpilka and Volkovich, which has a similar structure but uses

multivariate polynomials.

We initiate a systematic analytic study of the power of hitting set generators by

characterizing their vanishing ideals, i. e., the sets of polynomials that they fail to hit.

We provide two such characterizations for our generator. First, we develop a small

collection of polynomials that jointly produce the vanishing ideal. As corollaries,

we obtain tight bounds on the minimum degree, sparseness, and partition class

size of set-multilinearity in the vanishing ideal. Second, inspired by a connection

to alternating algebra, we develop a structured deterministic membership test for

the multilinear part of the vanishing ideal. We present a derivation based on

alternating algebra along with the required background, as well as one in terms of

zero substitutions and partial derivatives, avoiding the need for alternating algebra.

A conference version of this paper appeared in the Proceedings of the 13th Innovations in Theoretical Computer

Science Conference [40].
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As evidence of the utility of our analytic approach, we rederive known derandom-

ization results based on the generator by Shpilka and Volkovich and present a new

application in derandomization / lower bounds for read-once oblivious algebraic

branching programs.

1 Overview

Polynomial identity testing (PIT) is the fundamental problem of deciding whether a given

multivariate algebraic circuit formally computes the zero polynomial. PIT has a simple, efficient

randomized algorithm that only needs blackbox access to the circuit: Pick a random point and

check whether the circuit evaluates to zero on that particular point.

Despite the fundamental nature of PIT and the simplicity of the randomized algorithm, no

efficient deterministic algorithm is known—even in the white-box setting, where the algorithm

has access to the description of the circuit. The existence of such an algorithm would imply

long-sought circuit lower bounds [27, 2, 31]. Conversely, sufficiently strong circuit lower bounds

yield blackbox derandomization for all of BPP, the class of decision problems admitting efficient

randomized algorithms with bounded error [43, 28]. Although the known results leave gaps

between the two directions, they show that PIT constitutes an important stepping stone towards

derandomizing BPP, and suggest that derandomizing BPP can be achieved in a blackbox fashion

if at all.

Blackbox derandomization of PIT for a class of polynomials C in the variables G1, . . . , G= is

equivalent to the efficient construction of a substitution � that replaces each G8 by a low-degree

polynomial in a small set of fresh variables such that, for every nonzero polynomial ? from C,
?(�) remains nonzero [49, Lemma 4.1]. We refer to � as a generator, the fresh variables are its

seed, and we say that � hits the class C. If there are ; seed variables, and if ? and � have degree

at most =$(1), then the resulting deterministic PIT algorithm for C makes =$(;) blackbox queries.

Much progress on derandomizing PIT has been obtained by designing such substitutions

and analyzing their hitting properties for interesting classes C. Shpilka and Volkovich [48]

introduced a generator, now dubbed the Shpilka–Volkovich generator, or “SV generator” for

short. It takes as an additional parameter a positive integer ; and can be viewed as an algebraic

version of ;-wise independence in the sense that any selection of ; of the original variables

can remain independent while the others are forced to zero. The property is realized using

Lagrange interpolation with respect to = distinct elements of the underlying field F , one element

08 corresponding to each original variable G8 . We refer to the elements 08 as abscissas; they are

also parameters of SV.

Definition 1.1 (SV generator). The Shpilka–Volkovich (SV) Generator for F [G1 , . . . , G=] is paramet-

rized by the following data:

• A positive integer ;.

• For each 8 ∈ [=], a distinct abscissa 08 ∈ F .
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The generator SV
;
takes as seed ; pairs of fresh variables (H1 , I1), . . . , (H; , I;) and substitutes

G8 ←
;∑
C=1

IC · !8(HC), (1.1)

where the Lagrange interpolant !8 is the unique univariate polynomial of degree at most = − 1

satisfying !8(08) = 1 and !8(0 9) = 0 for 9 ∈ [=] \ {8}.

SV
1

takes two seed variables, H and I. For any 8 ∈ [=], setting H = 08 gets G8 = I while the

other variables are set to zero. For larger ;, SV
;
is the sum of ; independent copies of SV

1

.

Shpilka and Volkovich proved that SV
1

hits sums of a bounded number of read-once

formulas for ; = $(log =) [48], later improved to ; = $(1) [41]. The generator for ; = $(log =)
has also been shown to hit multilinear depth-4 circuits with bounded top fan-in [32], multilinear

bounded-read formulas [7], commutative read-once oblivious algebraic branching programs

[15], Σm

∧
ΣΠ$(1)

formulas (i.e., sums of terms that are the product of a monomial and a power

of a bounded-degree polynomial) [14], circuits with locally-low algebraic rank in the sense

of [37], and orbits of simple polynomial classes under invertible linear transformations of the

variables [39]. The generator is an ingredient in other hitting set constructions, as well, notably

constructions using the technique of low-support rank concentration [4, 3, 26, 25, 46, 10]. It also

forms the core of a “succinct” generator that hits a variety of classes, including depth-2 circuits

[19].

Vanishing ideal. In this paper, we initiate a systematic study of the power of a generator �

through the set of polynomials ? such that ?(�) vanishes, which we denote by Van[�]. For any
fixed generator �, Van[�] is closed under addition, and for all @ ∈ F [G1 , . . . , G=] and ? ∈ Van[�],
@ · ? ∈ Van[�]. By definition, this means that the set Van[�] has the algebraic structure of an
ideal. From now on, we refer to Van[�] as the vanishing ideal of �. Our technical contributions

can be understood as precisely characterizing the vanishing ideal of the SV generator.

Characterizations of the vanishing ideal facilitate two objectives:

Derandomization. A generator � hits a class C of polynomials if and only if C and Van[�]
have at most the zero polynomial in common. For a class C defined by a resource bound,

� trivially hits C if the characterization of the nonzero elements in Van[�] is incompatible

with being computable within the resource bound. In other words, derandomization of

PIT for C reduces to proving lower bounds for Van[�]. By developing explicit structure

for polynomials in the ideal, lower bounds become more tractable.

More generally, given a characterization of Van[�], in order to derandomize PIT for a class

C it suffices to design another generator �′ that hits merely the polynomials in C ∩Van[�].
As � hits the remainder of C, combining � with �′ yields a generator for all of C. In this

way, one may assume—for free—additional structure about the polynomials in C, namely

that the polynomials moreover belong to Van[�].

Lower bounds. If we happen to know that � hits the class C of polynomials computable

within some resource bound, then any expression for a nonzero polynomial in Van[�]
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yields an explicit polynomial that falls outside C. Such a statement is often referred to

as hardness of representation, and it can be viewed as a lower bound in the model of

computation underlying C (assuming the polynomial can be computed in the model at all).

Characterizing Van[�]makes explicit the polynomials to which the lower bound applies.

We illustrate how to make progress on both objectives through our characterizations of the

SV generator’s vanishing ideal.

Rational function evaluations. Another contribution of our paper is the development of an

alternate view of the SV generator, namely as evaluations of univariate rational functions of

low degree. We would like to promote the perspective for its intrinsic appeal and applicability.

Among other benefits, it facilitates the study of the vanishing ideal.

The transition goes as follows. Recall in Definition 1.1 that the SV generator takes as

additional parameters a positive integer ; and an arbitrary choice of distinct abscissas 08 ∈ F for

each of the original variables G8 , 8 ∈ [=]. When ; = 1, SV
1

takes as seed two fresh variables, H

and I, and can be described succinctly in terms of the Lagrange interpolants !8 for the set of

abscissas. Plugging in an explicit expression for the Lagrange interpolants, we have:

G8 ← I · !8(H) � I ·
∏

9∈[=]\{8}

H − 0 9
08 − 0 9

. (1.2)

By rescaling, the denominators on the right-hand side of (1.2) can be cleared, resulting in the

following somewhat simpler substitution:

G8 ← I ·
∏

9∈[=]\{8}
(H − 0 9). (1.3)

The vanishing ideals of (1.3) and SV
1

are the same up to rescaling each variable to match the

rescaling from (1.2) to (1.3).

More importantly, we apply the change of variables I ← I′/∏9∈[=](H − 0 9). The resulting
substitution now uses rational functions of the seed:

G8 ←
I′

H − 08
. (1.4)

The notion of vanishing ideal naturally extends to rational function substitutions. The change

of variables from (1.3) to (1.4) establishes that any polynomial vanishing on (1.3) also vanishes

on (1.4). The change of variables is invertible (the inverse is I′ ← I ·∏9∈[=](H − 0 9)), so any

polynomial vanishing on (1.4) also vanishes on (1.3). We conclude that the vanishing ideal of

(1.4) is the same as that of SV
1

up to rescaling the variables.

Note that, for fixed H and I′, (1.4) may be interpreted as first forming a univariate rational

function 5 () = I′
H− (depending on H and I′ but independent of 8) and then substituting

G8 ← 5 (08). As H and I′ vary, 5 ranges over all rational functions in  with numerator degree

zero and denominator degree one. We denote (1.4) by RFE
0

1
, where RFE is a short-hand for
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Rational Function Evaluation, 0 bounds the numerator degree, and 1 bounds the denominator

degree.

As a generator, RFE
0

1
naturally generalizes to RFE

:
;
for arbitrary :, ; ∈ ℕ.

Definition 1.2 (RFE generator). The Rational Function Evaluation Generator (RFE) for F [G1 , . . . , G=]
is parametrized by the following data:

• A non-negative integer :, the numerator degree.

• A non-negative integer ;, the denominator degree.

• For each 8 ∈ [=], a distinct abscissa 08 ∈ F .

The generator RFE
:
;
takes as seed a rational function 5 ∈ F () such that 5 can be written as

,/ℎ for some , , ℎ ∈ F [] with deg(,) ≤ :, deg(ℎ) ≤ ;, and ℎ(08) ≠ 0 for all 8 ∈ [=]. From 5 , it

generates the substitution G8 ← 5 (08) for each 8 ∈ [=].

There aremultipleways to parametrize the seed ofRFE
:
;
using scalars; the flexibility to choose

is a source of convenience. We refer to Section 2 for a discussion on different parametrizations,

as well as on how large the underlying field F must be. As is customary in the context of

blackbox derandomization of PIT, we assume that F is sufficiently large, possibly by taking a

field extension.

The connection between RFE
0

1
and SV

1

extends as follows. For higher values of ;, SV
;
is

defined as the sum of ; independent instantiations of SV
1

. The same transformations as above

relate SV
;
and the sum of ; independent instantiations of RFE

0

1
. Partial fraction decomposition

expresses a (non-degenerate) univariate rational function with numerator of degree ; − 1 and

denominator of degree ; as a sum of ; rational functions with numerators of degree 0 and

denominators of degree 1. As a result, SV
;
is equivalent in power to RFE

;−1

;
, up to variable

rescaling. See Section 2 for a formal treatment.

For parameter values : ≠ ; − 1, there is no SV generator that corresponds to RFE
:
;
, but

SV
max(:+1,;)

encompasses RFE
:
;
(up to rescaling) and uses at most twice as many seed variables.

Thus, the RFE-generator and the SV-generator efficiently hit the same classes of polynomials.

However, RFE induces simple linear dependencies on the seed variables—as opposed to the

nonlinear dependencies produced by SV—which enables our approach for determining the

vanishing ideal. The moral is that, even though polynomial substitutions are sufficient for

derandomizing PIT, it nevertheless helps to consider rational substitutions. Their use may

simplify analysis and arguably yield more elegant constructions.

As another indication of the power of rational substitutions, an alternate interpretation of

the RFE generator is that it substitutes the ratio of two linear functions of the seed variables,

where the coefficients of the linear functions are powers of the abscissas. A generator that only

substitutes linear functions—as opposed to a ratio of linear functions—of the seed variables

must have seed length = in order to hit all linear polynomials. This is because if the seed length

were less than =, then there exists a nontrivial linear combination of the = variables that becomes

zero after substitution. In contrast, the simplest nontrivial case of RFE, RFE
0

1
, hits all linear

polynomials and only needs a seed of length 2.
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Generating set. Our first result describes a small and explicit generating set for the vanishing

ideal of RFE. It consists of instantiations of a single determinant expression.

Theorem 1.3 (generating set). Let :, ;, = ∈ ℕ and let 08 for 8 ∈ [=] be distinct elements of F . The
vanishing ideal of RFE

:
;
in F [G1 , . . . , G=] for the given choice of abscissas (08)8∈[=] is generated by the

following polynomials over all choices of : + ; + 2 indices 81 , 82 , . . . , 8:+;+2 ∈ [=]:

EVC
:
; [81 , 82 , . . . , 8:+;+2] � det

[
0:
8 9

0:−1

8 9
. . . 1 0 ;

8 9
G8 9 0 ;−1

8 9
G8 9 . . . G8 9

] :+;+2

9=1

. (1.5)

Moreover, for any fixed set � ⊆ [=] of size : + 1, the polynomials EVC
:
; [� t !] form a generating set of

minimum size when ! ranges over all (; + 1)-subsets of [=] that are disjoint from �, where

EVC
:
; [(] � EVC

:
; [81 , 82 , . . . , 8 |( |]

for ( = {81 , . . . , 8 |( |} ⊆ [=] with 81 < 82 < · · · < 8 |( |.

The name “EVC” is a shorthand for “Elementary Vandermonde Circulation”. Later in

this overview and in Section 9 we discuss a representation of polynomials using alternating

algebra, with connections to notions from network flow. In this representation, polynomials in

the vanishing ideal coincide with circulations, and instantiations of EVC are the elementary

circulations.

We refer to the set � in Theorem 1.3 as a core. The core � plays a similar role as in a

combinatorial sunflower except that, unlike the petals of a sunflower, the sets ! do not need to

be disjoint outside the core.

Example 1.4. Consider the special case where : = 0 and ; = 1. The generator for Van[RFE
0

1
]

when 81 = 1, 82 = 2, and 83 = 3 is given by

EVC
0

1
[1, 2, 3] �

������1 01G1 G1

1 02G2 G2

1 03G3 G3

������ = (01 − 02)G1G2 + (02 − 03)G2G3 + (03 − 01)G3G1.

For any fixed 8∗ ∈ [=], the polynomials EVC
0

1
[(] form a generating set of minimum size when (

ranges over all subsets of [=] of size 3 that contain � = {8∗}. As an aside, they also constitute

minimal polynomials not computable by read-once formulas, which is consistent with the fact

that SV
1

hits all read-once formulas (see Theorem 5.7).

In general, the generators EVC
:
; are nonzero, multilinear, homogeneous polynomials of

degree ; + 1, and they have nonzero coefficients for all multilinear monomials of degree ; + 1.

Each generating set of minimum size in Theorem 1.3 yields a Gröbner basis with respect to every

monomial order that prioritizes the variables outside �. A Gröbner basis is a special generating

set that allows solving ideal-membership queries more efficiently, among other problems in

computational algebra [12, 1]. Computing Gröbner bases for general ideals is exponential-space

complete [36, 38]. Theorem 1.3 represents a rare instance of a natural and interesting ideal for
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which we know a small and explicit Gröbner basis. See the end of Section 3 for more background

on Gröbner bases.

To gain some intuition about dependencies between the generatorsEVC
:
; , note that permuting

the order of the variables used in the construction of EVC
:
; yields the same polynomial or minus

that polynomial, depending on the sign of the permutation. This follows from the determinant

structure of EVC
:
; and is the reason why we need to fix the order of the variables in order to

obtain a generating set of minimum size. More profoundly, the following relationship holds

for every choice of : + ; + 3 indices 81 , 82 , . . . , 8:+;+3 ∈ [=] and every univariate polynomial @ of

degree at most ::

det

[
@(08 9 ) 0:

8 9
0:−1

8 9
. . . 1 0 ;

8 9
G8 9 0 ;−1

8 9
G8 9 . . . G8 9

] :+;+3

9=1

= 0. (1.6)

The determinant in (1.6) vanishes because the first column of the matrix is a linear combination

of the next : + 1. A minor expansion across the first column expresses the determinant of the

matrix as a linear combination of minors, and each minor is an instantiation of EVC
:
; . Since (1.6)

vanishes, the minor expansion yields a linear dependency for every nonzero polynomial @ of

degree at most :. In fact, when {81 , . . . , 8:+;+3} varies over subsets of [=] containing a fixed core

of size : + 1, the equations (1.6) generate all linear dependencies among instances of EVC
:
; .

As corollaries to Theorem 1.3 we obtain the following tight bounds on Van[RFE
:
;
]. The

bounds hold for every way to choose the parameters in Definition 1.2, including the abscissas.

Corollary 1.5. The minimum degree of a nonzero polynomial in Van[RFE
:
;
] equals ; + 1.

Corollary 1.5 proves a conjecture by Fournier and Korwar [20] (additional partial results

reported in [35]) that there exists a polynomial of degree ; + 1 in = = 2; + 1 variables that SV
;

fails to hit. The conjecture follows because the generators for Van[SV
;] have degree ; + 1 and

use 2; + 1 variables. See also Corollary 3.9 in Section 3.

As none of the generators contain a monomial of support ; or less, the same holds for

every nonzero polynomial in Van[RFE
:
;
]. This extends the known property that SV

;
hits

every polynomial that contains a monomial of support ; or less [48]. See Proposition 5.1 and

Theorem 1.8 for a strengthening in the case of multilinear polynomials.

Corollary 1.6. The minimum sparseness, i. e., number of monomials, of a nonzero polynomial in
Van[RFE

:
;
] equals

(:+;+2

;+1

)
.

The generators EVC
:
; realize the bound in Corollary 1.6 as they exactly contain all multilinear

monomials of degree ; + 1 that can be formed out of their : + ; + 2 variables. The claim that no

nonzero polynomial in Van[RFE
:
;
] contains fewer than

(:+;+2

;+1

)
monomials requires an additional

combinatorial argument (see Lemma 6.1). It is a (tight) quantitative strengthening of the known

property that SV
;
hits every polynomial with fewer than 2

;
monomials [7, 26, 14, 19]. Note that

for : = ; − 1 we have that

(:+;+2

;+1

)
=

(
2;+1

;+1

)
= Θ(22;/

√
;). One consequence is that for SV

;
to hit all

polynomials with < monomials, a seed length of ; = Ω(log<) is required. In particular, hitting

sparse polynomials requires ; = Ω(log =).
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Another consequence deals with set-multilinearity, a common restriction in works on

derandomizing PIT and algebraic circuit lower bounds. A polynomial ? of degree ; + 1

in a set of variables {G1 , . . . , G=} is said to be set-multilinear if [=] can be partitioned as

[=] = -1 t -2 t · · · t -;+1 such that every monomial in ? is a product G81 · G82 · · · · · G8;+1
, where

8 9 ∈ -9 . Note that set-multilinearity implies multilinearity but not the other way around.

As the generators EVC
:
; are not set-multilinear, it is not immediately clear from Theorem 1.3

whether Van[RFE
:
;
] contains nontrivial set-multilinear polynomials of any degree. However, a

variation on the construction of the generators EVC
:
; yields explicit set-multilinear homogeneous

polynomials in Van[RFE
:
;
] of degree ; + 1 where each -9 has size : + 2 (see Definition 7.1). We

denote them by ESMVC
:
; , where ESMVC stands for “Elementary Set-Multilinear Vandermonde

Circulation”. ESMVC
:
; contains all monomials of the form G81 · G82 · · · · · G8;+1

with 8 9 ∈ -9 . For
any variable partition (-1 , -2 , . . . , -;+1) with |-1 | = · · · = |-;+1 | = : + 2, ESMVC

:
; is the only

set-multilinear polynomial in Van[RFE
:
;
] with that variable partition, up to a scalar multiple,

and exhibits the following extremal property. See also Theorem 7.4.

Corollary 1.7. The minimum partition class size of a nonzero set-multilinear polynomial of degree
; + 1 in Van[RFE

:
;
] equals : + 2.

Membership test. Our second characterization of the vanishing ideal of RFE can be viewed

as a structured membership test. Given a polynomial ?, there is a generic way to test whether

? belongs to the vanishing ideal of a generator �, namely by symbolically substituting � into

? and verifying that the result simplifies to zero. When � is a polynomial substitution, the

well-known transformation of a generator into a deterministic blackbox PIT algorithm yields

another test: Verify ?(�) = 0 for a sufficiently large set of substitutions into the seed variables.

By clearing denominators, the same goes for rational substitutions like RFE
:
;
.

While the generic test works, one cannot extract �-specific insight into whether or why � hits

any particular polynomial. In contrast, our membership test uses the specific structure of � and

provides useful insight. Building on the generating set of Theorem 1.3, we state our structured

test for membership of multilinear polynomials in Van[RFE
:
;
] in terms of partial derivatives

and zero substitutions. Several prior papers demonstrated the utility of those operations in the

context of derandomizing PIT using the SV generator, especially for syntactically multilinear

models [48, 32, 7].

Theorem 1.8 (membership test for multilinear polynomials). Let :, ;, = ∈ ℕ and let 08 for 8 ∈ [=]
be distinct elements of F . A multilinear polynomial ? ∈ F [G1 , . . . , G=] belongs to Van[RFE

:
;
] if and only

if both of the following conditions hold:

1. There are no monomials of degree ; or less, nor of degree = − : or more, in ?.

2. For all disjoint subsets  , ! ⊆ [=] with | | = : and |!| = ;, %!? | ←0
is zero upon the following

substitution for each 8 ∈ [=] \ ( ∪ !), where I denotes a fresh variable:

G8 ← I ·
∏

9∈ (08 − 0 9)∏
9∈!(08 − 0 9)

. (1.7)
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A few technical comments regarding the statement are in order. The first part of condition 1

in Theorem 1.8 generalizes the known property that SV
;
hits every multilinear polynomial that

contains a monomial of degree ; or less [48]. As for the second part, see Proposition 5.1 for

more discussion. The two parts together imply that all multilinear polynomials on = ≤ : + ; + 1

variables are hit by RFE
:
;
.

In condition 2, %!? | ←0
denotes the polynomial obtained by taking the partial derivative

of ? with respect to every variable in ! and setting all the variables in  to zero. Because of

the multilinearity, the order of the operations does not matter, and the resulting polynomial

depends only on variables in [=] \ ( ∪ !). The substitution (1.7) can be viewed as G8 ← 5 (08),
where

5 () = I · 5 ,!() � I ·
∏

9∈ ( − 0 9)∏
9∈!( − 0 9)

is a valid seed of RFE
:
;
for polynomials in the variables G8 , 8 ∈ [=] \ ( ∪ !). Upon substitution,

%!? | ←0
becomes a univariate polynomial @ of degree at most = − : − ; in the fresh variable I.

In the case where ? is homogeneous, @ has at most one term, and @ is nonzero if and only @ is

nonzero at I = 1. In general, for any fixed set / of = − : − ; + 1 elements of F , @ is nonzero if and

only if @ is nonzero at some I ∈ /.
Theorem 1.8 can be understood as stating that a multilinear polynomial ? is hit by RFE

:
;

if and only if ? has a monomial supported on few or all-but-few variables, or else there is

a set of : zero substitutions,  , and a set of ; partial derivatives, !, whose application to ?

leaves a polynomial that is nonzero after substituting G8 ← I · 5 ,!(08). By judiciously choosing

variables for the zero substitutions and partial derivatives, prior papers managed to simplify

polynomials ? of certain types and reduce PIT for ? to PIT for simpler instances, resulting in

efficient recursive algorithms. In Section 5, we develop a general framework for such algorithms

and prove correctness directly from Theorem 1.8. Moreover, because Theorem 1.8 is a precise

characterization, any argument that SV or RFE hits a class of multilinear polynomials can be

converted into one within our framework, i. e., into an argument based on zero substitutions

and partial derivatives. Thus, Theorem 1.8 shows that these tools harness the complete power

of SV and RFE for multilinear polynomials.

Applications. We illustrate the utility of our characterizations of the vanishing ideal of RFE in

the two directions mentioned before.

Derandomization. To start, we demonstrate how Theorem 1.8 yields an alternate proof

of the result from [41] that SV
1

—equivalently, RFE
0

1
—hits every nonzero read-once formula

�. Whereas the original proof hinges on a clever ad-hoc argument, our proof (described in

Section 5) is entirely systematic and amounts to a couple straightforward observations in order

to apply Theorem 1.8.

As a proof of concept of the additional power of our characterization for derandomization, we

make progress in a well-studied model for algebraic computation, namely read-once oblivious

algebraic branching programs (ROABPs). An ROABP consists of a layered digraph, the width

THEORY OF COMPUTING, Volume 20 (1), 2024, pp. 1–70 9

http://dx.doi.org/10.4086/toc


IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

of which constitutes an important complexity parameter. We refer to Section 8.1 for more

background.

Theorem 1.9 (ROABP hitting property). For any integer ; ≥ 1, SV
; hits the class of polynomials

computed by read-once oblivious algebraic branching programs of width less than (;/3) + 1 that contain a
monomial of degree at most ; + 1.

To the best of our knowledge, Theorem 1.9 is incomparable to the known results for ROABPs

[45, 29, 30, 17, 15, 3, 6, 26, 25, 24, 46, 10]. Without the restriction that the polynomial has a

monomial of degree at most ; + 1, Theorem 1.9 would imply a fully blackbox polynomial-time

identity test for the class of constant-width ROABPs. No such test has been proven to exist at

this time; prior work requires either quasipolynomial time or else opening the blackbox, such as

by knowing the order in which the variables are read.

With the restriction, hitting the class in Theorem 1.9 with SV
;
represents fairly specialized

progress. This is because SV
;+1

is well-known to hit every polynomial containing a monomial

of support ; + 1 or less, and thus hits the class in Theorem 1.9, irrespective of the restriction

on ROABP width. That said, the method of proof of Theorem 1.9 diverges significantly from

prior uses of the SV generator and therefore may be of independent interest. We elaborate

on the method more when we discuss the techniques of this paper, but for now, we point out

that most prior uses of the SV generator rely on combinatorial arguments, i. e., arguments that

depend only on which monomials are present in the polynomials to hit. Theorem 1.9 necessarily

goes beyond this because there is a polynomial in Van[SV
;] of degree ; + 1 that has the same

monomials as a polynomial computed by an ROABP of width 2, which by Theorem 1.9 is not in

Van[SV
;] for ; ≥ 4. Namely, any instance of ESMVC

;−1

; contains exactly all the monomials of the

form G81 · G82 · · · · · G8;+1
with (81 , . . . , 8;+1) ∈ -1 × · · · × -;+1 for some disjoint sets -9 ; the same

goes for

∏
9

∑
8 9∈-9 G8 9 , which is computed by an ROABP of width 2.

Lower bounds. Our result for ROABPs also illustrates this direction. Our derandomization

result for the class in Theorem 1.9 is equivalent to the following lower bound.

Theorem 1.10 (ROABP lower bound). For any integer ; ≥ 1, any nonzero polynomial in Van[SV
;]

that contains a monomial of degree at most ; + 1, requires ROABP width at least (;/3) + 1.

Such a lower bound is interesting because there are appealing polynomials meeting the

conditions, in particular the generators EVC
;−1

; as well as ESMVC
;−1

; . Other hardness of

representation results follow in a similar manner from prior hitting properties of SV in the

literature. The following lower bounds apply to computing both EVC
;−1

; and ESMVC
;−1

; :

• Any syntactically multilinear formula must have at leastΩ(log(;)/log log(;)) reads of some

variable [7, Theorem 6.3].

• Any sum of read-once formulas must have at least Ω(;) summands [41, Corollary 5.2].

• There exists an order of the variables such that any ROABP with that order must have

width at least 2
Ω(;)

[15, Corollary 4.3].
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• AnyΣm

∧
ΣΠ$(1)

formulamust have top fan-in at least 2
Ω(;)

[14]; see also [19, Lemma 5.12].

• Lower bounds over characteristic zero for circuits with locally-low algebraic rank [37,

Lemma 5.2].

Techniques. Many of our results ultimately require showing that, under suitable condi-

tions, RFE hits a polynomial ?. A recurring analysis fulfills this role in the proofs of Theo-

rems 1.3, 1.8, and 1.9. We take intuition from the analytic setting (e. g., F = ℝ) and study the

behavior of ?(RFE) as a function of the seed’s zeroes and poles. When they are near the abscissas

of chosen variables of ?, the behavior is dominated by the contributions of the monomials of ?

for which the variables with abscissas near zeros have minimal degree and the variables with

abscissas near poles have maximal degree. This allows us to analyze a first approximation to

?(RFE) by “zooming in” on the contributions of the monomials in which the chosen variables

have extremal degrees. If the first approximation is nonzero, then we can conclude that RFE

hits ?. We capture the technique in our Zoom Lemma (Lemma 4.3). Formal Laurent series can

express the analytic intuition purely algebraically. We provide a proof from first principles that

does not require any background in Laurent series and works over all fields.

Theorem 1.3 states the equality � = Van[RFE
:
;
] of two ideals, where � denotes the ideal

generated by all instantiations of EVC
:
; , and Van[RFE

:
;
] the vanishing ideal of RFE

:
;
.

• The inclusion ⊆ follows from linearizing the defining equations of RFE
:
;
(Lemma 3.1). The

technique mirrors the use of resultants to compute implicit equations for rational plane

curves. This is where the switch from SV to RFE helps.

• To establish the inclusion ⊇ we first show that the equivalence class of any polynomial ?

modulo � contains a representative A whose monomials exhibit the combinatorial structure

of a core (Lemma 3.7). If ? ∉ �, A is nonzero. The core structure of A then allows us to apply

the zooming-in mechanism such that the resulting first approximation to A is nonzero, in

which case the Zoom Lemma tells us that RFE
:
;
hits A (Lemma 3.8). By the inclusion ⊆, we

conclude that RFE
:
;
hits ?.

The proof of Theorem 1.8 also relies on the Zoom Lemma. Membership to the ideal is

equivalent to the vanishing of all coefficients of the expansion of ?(RFE). The application of

the Zoom Lemma can be viewed as determining a small number of coefficients sufficient to

guarantee that their vanishing implies all coefficients vanish. The restriction to multilinear

polynomials ? allows us to express the zoomed-in contributions of ? as the result of applying

partial derivatives and zero-substitutions.

Theorem 1.9 makes use of the characterization of the minimum width of a read-once

oblivious algebraic branching program computing a polynomial ? as the maximum rank of the

monomial coefficient matrices of ? for various variable partitions [42]. The result is effectively

about polynomials ? that are homogeneous of degree ; + 1, in which case the monomial

coefficient matrices have a block-diagonal structure with ; + 2 blocks. An application of the

Zoom Lemma in the contrapositive yields linear equations between elements of consecutive
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blocks under the assumption that SV
;
fails to hit ?. When some block is zero, the equations

yield a Cauchy system on the rows or columns of its neighboring blocks. Based on the fact

that Cauchy systems have full rank and exploiting the specific structure, we deduce several

constraints on the row-space/column-space of the neighboring blocks. A careful analysis and

case analysis based on the number of zero blocks yields a rank lower bound of at least (;/3) + 1

for a well-chosen partition of the variables.

We point out that, in the preceding application, the Zoom Lemma is instantiated several

times in parallel to form a large system of equations on the coefficients of ?, and the whole

system is necessary for the analysis. This stands in contrast to most prior work using SV, which

can be cast as using knowledge of how ? is computed to guide a search for a single fruitful
instantiation of the Zoom Lemma.

Alternating algebra representation. The inspiration for several of our results stems from

expressing the polynomials EVC
:
; using concepts from alternating algebra (also known as

exterior algebra or Grassmann algebra). In fact, the membership test for the ideal generated by

the instantiations of EVC
:
; in Theorem 1.8 is based on the relationship %2 = 0 from alternating

algebra. Our original statement and proof of the theorem made use of that framework, but

we managed to eliminate the alternating algebra afterwards. Still, as we find the perspective

insightful and potentially helpful for future developments, we describe the connection briefly

here and in more detail in Section 9. We explain the intuition for the simple case where the

degree of the polynomial ? equals ; + 1. In that setting, belonging to the ideal generated by the

polynomials EVC
:
; is equivalent to being in their linear span.

The alternating algebra Λ∗(*) of a vector space* over a field F consists of the closure of*

under an additional binary operation, referred to as “wedge” and denoted ∧, which is bilinear,

associative, and satisfies

D ∧ D = 0 (1.8)

for every D ∈ * . This determines a well-defined algebra. When the characteristic of F is not 2,

(1.8) can equivalently be understood as anti-commutativity:

D1 ∧ D2 = −(D2 ∧ D1) (1.9)

for every D1 , D2 ∈ * . For any characteristic and D1 , D2 , . . . , DC ∈ * ,

D1 ∧ D2 ∧ · · · ∧ DC (1.10)

is nonzero iff the D8 ’s are linearly independent, and any permutation of the order of the vectors in

(1.10) yields the same element ofΛ∗(*) up to a sign. The sign equals the sign of the permutation,

whence the name “alternating algebra.” If* has a basis + = {E1 , . . . , E=} of size =, then a basis

for Λ∗(*) can be formed by all 2
=
expressions of the form (1.10), where the D8’s range over all

subsets of + and are taken in some fixed order. Considering the elements of + as vertices, the

basis elements of Λ∗(*) can be thought of as the oriented simplices of all dimensions that can

be built from + .

THEORY OF COMPUTING, Volume 20 (1), 2024, pp. 1–70 12

http://dx.doi.org/10.4086/toc


POLYNOMIAL IDENTITY TESTING VIA EVALUATION OF RATIONAL FUNCTIONS

Anti-commutativity arises naturally in the context of network flow, where + denotes the

vertices of the underlying graph, and a wedge E1 ∧ E2 of level C = 2 represents one unit of flow

from E1 to E2. Equation (1.9) reflects the fact that one unit of flow from E1 to E2 cancels with one

unit of flow from E2 to E1. The adjacent levels C = 1 and C = 3 also have natural interpretations

in the flow setting: E1 (the element of Λ∗(*) of the form (1.10) with C = 1) represents one unit of

surplus flow at E1 (the vertex of the graph), and E1 ∧ E2 ∧ E3 abstracts a circulation of one unit

along the directed cycle E1 → E2 → E3 → E1.

The different levels are related by so-called boundary maps, which are linear transformations

that map a simplex to a linear combination of its subsimplices of one dimension less. The maps

are parametrized by a linear weight function F : * → F , and defined on the vertices by

%F : E1 ∧ E2 ∧ · · · ∧ EC ↦→
C∑
8=1

(−1)8+1F(E8) E1 ∧ · · · ∧ E8−1 ∧ E8+1 ∧ · · · ∧ EC , (1.11)

an expression resembling the minor expansion of a determinant along a column [F(E8)]C8=1
. In

the flow setting, using F ≡ 1, applying %1 to E1 ∧ E2 yields E2 − E1, the superposition of demand

at E1 and surplus at E2 corresponding to one unit of flow from E1 to E2. Likewise, %1 sends the

abstract elementary circulation E1 ∧ E2 ∧ E3 to the superposition of the three edge flows that

make up the directed 3-cycle E1 → E2 → E3 → E1. A linear combination ? of terms (1.10) with

C = 2 represents a valid circulation iff it satisfies conservation of flow at every vertex, which

can be expressed as %1(?) = 0, i. e., ? is in the kernel of %1. An equivalent criterion is for ? to be

the superposition of circulations around directed 3-cycles, which can be expressed as ? being

in the image of %1. The relationship im(%F) = ker(%F) between the image and the kernel of a

boundary map holds for any nonzero F, and generalizes to composed boundary maps: For any

linearly independent F1 , . . . , F:+1, it holds that

im

(
%F:+1

◦ %F: ◦ · · · ◦ %F1

)
=

:+1⋂
A=1

ker (%FA ) . (1.12)

When F1 , . . . , F:+1 are linearly dependent, %F:+1
◦ · · · ◦ %F1

is the zero map.

In the context of RFE, the set + consists of a distinct vertex E8 for each variable G8 , and

simplices correspond to multilinear monomials. The anti-commutativity of ∧ coincides with the

fact that swapping two arguments to EVC
:
; means swapping two rows in (1.5), which changes

the sign of the determinant. Using boundary maps, EVC
:
; [81 , 82 , . . . , 8:+;+2] can be viewed as

%$(E81 ∧ E82 ∧ · · · ∧ E8:+;+2
), where %$ � %F:+1

◦ %F: ◦ · · · ◦ %F1
and FA(E8) � (08)A−1

. By (1.12), this

means that EVC
:
; is in the kernel of %FA for each A ∈ [:+1], or equivalently, in the kernel of %F for

each F : * → F of the form F(E8) = @(08)where @ is a polynomial of degree at most :. In fact,

(1.12) implies that the linear span of the generators EVC
:
; consists exactly of the polynomials of

degree ; + 1 in this kernel. The linear span coincides with the polynomials of degree ; + 1 in

the ideal generated by the polynomials EVC
:
; . For multilinear polynomials, being in the kernel

can be expressed in terms of zero substitutions and partial derivatives as in Theorem 1.8. This

yields an alternate route for deriving our membership test for multilinear polynomials of degree
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3 = ; + 1 in the ideal generated by the instantiations of EVC
:
; , which by Theorem 1.3 agrees with

Van[RFE
:
;
]. In the basic case where : = 0 and ; = 1, only the weight function F ≡ 1 needs to be

considered and the kernel requirement coincides with flow conservation. We refer to Section 9

for the general multilinear case of arbitrary degree.

Related recent work and further research. We propose to systematically investigate the power

of generators by characterizing their vanishing ideals. As we demonstrated for SV and RFE,

such characterizations can exhibit both strengths and weaknesses of the generator.

Specific other generators of interest include Klivans–Spielman [34] and generators based

on the matrix rank condenser by Gabizon and Raz [21, 33, 16]. A related direction is figuring

out how vanishing ideals are affected when manipulating generators. Examples include the

RFE generator with pseudorandom abscissas, or work that relates the vanishing ideal of a

combination of generators to the vanishing ideals of the constituent generators. In particular, a

combination of SV with Klivans–Spielman appears in the literature [32, 15, 19], where the latter

is used to effectively hit sparse polynomials, which our results show that SV does not.

The generator SV
;
is the canonical example of an ;-wise independent generator in the

algebraic setting. Understanding the power of ;-wise independent generators more broadly,

e. g., as formalized in [18, 39], could lead to useful insights for derandomizing PIT. This work

demonstrates explicit polynomials like EVC
;−1

; and ESMVC
;−1

; that are not automatically hit by

;-wise independence as they are not hit by SV
;
. Is there a deeper underlying reason related to

;-wise independence?

A generator hits all polynomials from a resource-bounded class iff no nonzero polynomial in

the vanishing ideal can be computed within those resources. Chatterjee and Tengse [11] recently

showed the following generic limitation: The vanishing ideal of any generator computable by

algebraic circuits of polynomial size in the number of variables contains a nonzero polynomial

computable in VPSPACE. From this perspective, our results exhibit a weakness of SV and RFE

in that their vanishing ideals contain nonzero polynomials from the presumably much smaller

class VBP. In fact, EVC
:
; is a polynomial depending on only : + ; + 2 variables and is computable

by a branching program of size polynomial in the number of variables. Thus, in order to hit all

branching programs of size B, SV and RFE require a seed length : + ; + 2 = BΩ(1).
A related question is whether the generators we have identified have minimal (or approxi-

mately minimal) complexity in the vanishing ideal. Andrews and Forbes [8] recently established

such a result for a generator that substitutes an = × < matrix of variables with the product

of = × ; and ; × < matrices of variables for small ;. The vanishing ideal of their generator is

straightforwardly generated by (; + 1) × (; + 1) minors. For this vanishing ideal the authors

manage to show that every nonzero element is at least as hard as computing Θ(;1/3) × Θ(;1/3)
determinants (under simple reductions and in the sense of border complexity).

Lastly, we list some avenues for improving specific aspects of our results. Theorem 1.8

represents an elementary deterministic membership test in the vanishing ideal of RFE
:
;
for

multilinear polynomials. Can the elementary test can be extended to all polynomials? From

the alternating algebra perspective, the test relies an the convenient one-to-one correspondence

between multilinear polynomials and elements of the alternating algebra. For general poly-
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nomials, this correspondence is no longer one-to-one, and the resulting membership test is

nondeterministic.

Another target is eliminating degree restrictions for our characterizations of specialized

classes of polynomials, in particular in Theorem 1.9 for ROABPs. Removing the degree restriction

for ROABPs would result in a full blackbox derandomization of constant-width ROABPs. An

alternative possibility is that, through better analysis of the vanishing ideal, it turns out that

RFE has limitations in derandomizing constant-width ROABPs.

Organization. We start in Section 2 with formal aspects of the RFE generator that have

been omitted from the informal discussion thus far. We construct the generating set for the

vanishing ideal (Theorem 1.3) in Section 3, followed by the Zoom Lemma in Section 4. The ideal

membership test (Theorem 1.8) is developed in Section 5. We present the results on sparseness

in Section 6, and the ones on set-multilinearity in Section 7. Background on ROABPs and our

result on derandomizing PIT for ROABPs (Theorem 1.9) are covered in Section 8. We end our

paper in Section 9 with a further discussion of the alternating algebra representation and an

alternate derivation of the membership test for multilinear polynomials in the ideal generated

by the instances of EVC
:
; .

2 RFE Generator

We defined the RFE generator in the overview but omitted some of the formal details. In this

section, we discuss different parametrizations of RFE as well as how to obtain deterministic

blackbox PIT algorithms from a generator and how large the underlying field F must be. We

also state and establish the precise relationship between RFE
;−1

;
and SV

;
.

In Definition 1.2, we defined RFE as a set of substitutions formed by varying the seed 5

over certain rational functions with coefficients in F . Meanwhile, our analyses proceed by

parametrizing 5 by scalars, abstracting the scalar parameters as fresh formal variables, and

calculating in the field of rational functions in those variables. The approaches are equivalent

over large enough fields, and the flexibility to choose is a source of convenience. Here are some

natural parametrizations of 5 :

Coefficients. Select scalars ,0 , . . . , ,: , ℎ0 , . . . , ℎ; ∈ F and set

5 () = ,:: + ,:−1:−1 + · · · + ,1 + ,0

ℎ;; + ℎ;−1;−1 + · · · + ℎ1 + ℎ0

,

ignoring choices of ℎ0 , . . . , ℎ; for which the denominator vanishes at some abscissa.

Evaluations. Fix two collections, � = {11 , . . . , 1:+1} and � = {21 , . . . , 2;+1}, each of distinct

scalars from F . Then select scalars ,1 , . . . , ,:+1 and ℎ1 , . . . , ℎ;+1 and set

5 () = ,()
ℎ()
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where , is the unique degree-: polynomial with ,(11) = ,1, ,(12) = ,2, . . . , ,(1:+1) = ,:+1,

and ℎ is defined similarly with respect to �. Choices of ℎ1 , . . . , ℎ;+1 that lead ℎ to vanish

at some abscissa are ignored.

Note that an explicit formula for , and ℎ in terms of the parameters can be obtained using

the Lagrange interpolants with respect to � and �.

Roots. Select scalars I, B1 , . . . , B:′ , C1 , . . . , C;′ ∈ F for some :′ ≤ : and ;′ ≤ ; and set

5 () = I · ( − B1) · · · · · ( − B:′)( − C1) · · · · · ( − C;′)
,

where {C1 , . . . , C;′} is disjoint from the set of abscissas.

In fact, it is no loss of power to restrict to :′ = : and ;′ = ;.

Hybrids are of course possible, too. For example, Proposition 2.2 below uses the evaluations

parametrization for the numerator and roots parametrization for the denominator.

The following lemma justifies that, for any polynomial ?, as long as F is large enough, ?(RFE)
vanishes with respect to a particular parametrization of RFE if and only if it vanishes with

respect to RFE as defined in Definition 1.2. The lemma is an immediate consequence of the

well-known analogous result for polynomials, sometimes referred to as the Polynomial Identity

Lemma [44, 13, 50, 47, 9].

Lemma 2.1. Let F be field, and 5 = ,/ℎ ∈ F (�1 , . . . , �;) be a rational function in ; variables with
deg(,) ≤ 3 and deg(ℎ) ≤ 3. Let ( ⊆ F be finite. Then the probability that 5 vanishes or is undefined
when each �8 is substituted by a uniformly random element of ( is at most 23/|( |.

Proof. The rational function 5 vanishes or is undefined if and only if the polynomial ? �= ,ℎ
vanishes, which happens with probability at most deg(?)/|( | according to the Polynomial

Identity Lemma. �

In particular, if F is infinite, then, for all polynomials ?, all the above parametrizations and

Definition 1.2 are equivalent for the purposes of hitting ?; when ? is fixed, the equivalence holds

provided |F | ≥ poly(=, deg(?)). Quantitative bounds on the number of substitutions to perform

when testing whether RFE hits ? in the blackbox algorithm likewise follow from Lemma 2.1. As

is customary in the context of blackbox derandomization of PIT, if F is not large enough, then

one works instead over a sufficiently large extension of F .

We now formally state and argue the close relationship between RFE
;−1

;
and SV

;
that we

sketched in Section 1.

Proposition 2.2. Let ; and = be positive integers. There is an invertible diagonal transformation � :

F = → F = such that, for any polynomial ? ∈ F [G1 , . . . , G=], ?(SV
;) = 0 if and only if (?◦�)(RFE

;−1

;
) = 0.

In particular, the vanishing ideals of RFE
;−1

;
and of SV

;
are the same up to the rescaling of

Proposition 2.2.
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Proof of Proposition 2.2. Let F̂ be the field of rational functions in indeterminates  1, . . . ,  ; , �1,

. . . , �; over F . A polynomial ? ∈ F [G1 , . . . , G=] has ?(SV
;) = 0 if and only if ? vanishes at the

point ©«
;∑
C=1

�C
∏

9∈[=]\{8}

 C − 0 9
08 − 0 9

: 8 ∈ [=]ª®¬ ∈ F̂ = . (2.1)

Set � : F = → F = to be the diagonal linear transformation that divides the coordinate for G8 by∏
9∈[=]\{8}(08 − 0 9). � is invertible. Applying �−1

to (2.1) yields the point

©«
;∑
C=1

�C
∏

9∈[=]\{8}
( C − 0 9) : 8 ∈ [=]ª®¬ = ©«

;∑
C=1

©«�C
∏
9∈[=]
( C − 0 9)ª®¬ 1

 C − 08
: 8 ∈ [=]ª®¬ . (2.2)

? vanishes at (2.1) if and only if ? ◦ � vanishes at (2.2). Now let F̂ ′ be the field of rational

functions in indeterminates �1, . . . , �; , �1, . . . , �; over F . After the change of variables

�C ←
1∏

9∈[=](�C − 0 9)
· −�C∏

B≠C(�C − �B)
and  C ← �C

(2.2) becomes(
;∑
C=1

�C(∏
B≠C �C − �B

) 1

08 − �C
: 8 ∈ [=]

)
=

(∑;
C=1

�C
∏

B≠C
08−�B
�C−�B∏;

C=1
08 − �C

: 8 ∈ [=]
)
∈ F̂ ′= . (2.3)

Since the change of variables is invertible, ? ◦� vanishes at (2.2) if and only if it vanishes at (2.3).

Now, viewing �1 , . . . , �; , �1 , . . . , �; as seed variables, observe that the right-hand side of (2.3)

is RFE
;−1

;
(,/ℎ) where , is parametrized by evaluations (,(�C) = �C) and ℎ is parametrized by

roots (�1 , . . . , �;). It follows that ? ◦ � vanishes at (2.3) if and only if (? ◦ �)(RFE
;−1

;
) = 0. �

3 Generating Set

In this section, we establish Theorem 1.3, our characterization of the vanishing ideal of RFE

in terms of an explicit generating set. For every :, ; ∈ ℕ, we develop a template, EVC
:
; , for

constructing polynomials that belong to the vanishing ideal of RFE
:
;
such that all instantiations

collectively generate the vanishing ideal.

The template can be derived in the following fashion. Fix any seed 5 of RFE
:
;
, and write it as

5 = ,/ℎ where ,() = ∑:
3=0

,33 and ℎ() =
∑;
3=0

ℎ33 are respectively polynomials of degree

: and ;. For any 8 ∈ [=], the polynomial ,(08)/ℎ(08) − G8 ∈ F [G1 , . . . , G=] vanishes by definition at

RFE
:
;
( 5 ). While this polynomial varies with 5 , it does so uniformly. Specifically, after rescaling

to ,(08) − ℎ(08)G8 , the polynomial depends only linearly on the coefficients of , and ℎ. We exploit

this uniformity to construct a polynomial that vanishes at RFE
:
;
( 5 ) but that now is independent

of 5 . Since 5 is arbitrary, the constructed polynomial belongs to the vanishing ideal of RFE
:
;
.
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The construction begins by expressing the vanishing of each ,(08) − ℎ(08)G8 at RFE
:
;
( 5 ) as

the following system of equations. Abbreviating

®, �
[
,: ,:−1 . . . ,1 ,0

]ᵀ
®ℎ �

[
ℎ; ℎ;−1 . . . ℎ1 ℎ0

]ᵀ
,

we write [
0:
8

0:−1

8
. . . 1 0 ;

8
G8 0 ;−1

8
G8 . . . G8

]
8∈[=] ·

[ ®,
−®ℎ

]
= 0. (3.1)

Written this way, (3.1) has the form of a homogeneous system of linear equations. There is one

equation for each 8 ∈ [=] and one unknown for each of the : + ; + 2 parameters of the seed 5 .

The system’s coefficient matrix has no dependence on 5 , but for any 5 , substituting RFE
:
;
( 5 )

into G1 , . . . , G= yields a system that has a nontrivial solution, namely the vector in (3.1).

Consider, then, the determinant of the square subsystem of (3.1) formed by any : + ; + 2

rows. It is a polynomial in F [G1 , . . . , G=]. Because the coefficient matrix in (3.1) is independent

of 5 , the determinant is independent of 5 . Because the subsystem has a nonzero solution after

substituting RFE
:
;
( 5 ) for any 5 , the determinant vanishes after substituting RFE

:
;
( 5 ) for any 5 .

We conclude that the determinant belongs to the vanishing ideal of RFE
:
;
.

Recalling that the determinant for the subsystem consisting of rows 81 , . . . , 8:+;+2 is identically

EVC
:
; [81 , 82 , . . . , 8:+;+2], we have established:

Lemma 3.1. For every :, ; ∈ ℕ and 81 , 82 , . . . , 8:+;+2 ∈ [=], EVC
:
; [81 , . . . , 8:+;+2] ∈ Van[RFE

:
;
].

As we explain at the end of this section, the above derivation is where our use of RFE in

lieu of SV plays a critical role. Before moving on, we also point a few elementary properties

and an provide an explicit expression for the coefficients of EVC
:
; as products of Vandermonde

determinants in the abscissas and a sign term. We introduce the following notation for the

underlying Vandermonde matrices.

Definition 3.2 (Vandermondematrix). For) = {81 , . . . , 8C} ⊆ [=]with 81 < · · · < 8C , we abbreviate

the Vandermonde matrix built from 08 for 8 ∈ ) in increasing order as

�) �


0C−1

81
· · · 1

...
...

0C−1

8C
· · · 1

 . (3.2)

The sign term makes use of the following standard combinatorial quantity.

Definition 3.3 (cross inversions). For �, � ⊆ [=], XInv(�, �) � |{(0, 1) ∈ � × � | 0 > 1}| denotes
the number of cross inversions between � and �.

Proposition 3.4. For every :, ; ∈ ℕ, EVC
:
; is skew-symmetric in that, for any 81 , . . . , 8:+;+2 ∈ [=] and

permutation � of [: + ; + 2],

EVC
:
; [81 , . . . , 8:+;+2] = sign(�) · EVC

:
; [8�(1) , . . . , 8�(:+;+2))].
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For any ( ⊆ [=] with |( | = : + ; + 2, EVC
:
; [(] is a nonzero, multilinear, and homogeneous polynomial

of total degree ; + 1, and every multilinear monomial of degree ; + 1 in G81 , . . . , G8:+;+2
appears with a

nonzero coefficient. More specifically, for ( = {81 , . . . , 8:+;+2} ⊆ [=] with 81 < 82 < . . . , 8:+;+2,

EVC
:
; [(] =

∑
 t!=(
|!|=;+1

� ,! ·
∏
8∈!

G8 , (3.3)

where
� ,! � (−1)XInv( ,!) · det(� ) · det(�!). (3.4)

Proof. All assertions follow from elementary properties of determinants, that Vandermonde

determinants are nonzero unless they have duplicate rows, and the following computation. The

coefficient � ,! can be obtained by plugging in 0 for G8 with 8 ∈  , and 1 for G8 with 8 ∈ !. For
 ∗ consisting of the first : + 1 elements of ( and !∗ of the last ; + 1, this yields the determinant����������������

0:
81
· · · 1 0 · · · 0

...
. . .

...
...

. . .
...

0:
8:+1

· · · 1 0 · · · 0

∗ · · · ∗ 0 ;
8:+2

· · · 1

...
. . .

...
...

. . .
...

∗ · · · ∗ 0 ;
8:+;+2

· · · 1

����������������
, (3.5)

which equals the product of the Vandermonde matrices det(� ∗) and det(�!∗), and confirms the

expression for � ∗ ,!∗ as XInv( ∗ , !∗) = 0. For general  and !, we obtain a determinant with the

same shape as (3.5) after rearranging the rows such that the ones involving 08 for 8 ∈  appear

first and in order, and the ones involving 08 for 8 ∈ ! appear last and in order. By skew-symmetry,

the rearrangement induces an additional factor of sign(�) = (−1)Inv(�)
, where � denotes the

underlying permutation of [: + ; + 2] and Inv(�) denotes the number of inversions of �, which

equals XInv( , !). �

Lemma 3.1 shows that the polynomials EVC
:
; [81 , . . . , 8:+;+2] belong to the vanishing ideal

of RFE
:
;
. In fact, various subsets of them generate the vanishing ideal. To prove that a certain

subset does so, we establish the following two steps:

1. Modulo the ideal � generated by the subset, every polynomial ? is equal to a polynomial A

with a particular combinatorial structure (Lemma 3.7).

2. Every nonzero polynomial A with that structure is hit by RFE
:
;
(Lemma 3.8).

Together, these show that every polynomial in the vanishing ideal of RFE
:
;
is equal to the zero

polynomial modulo the ideal �. We conclude that the ideals coincide, i. e., the vanishing ideal of

RFE
:
;
is generated by the subset of instantiations of EVC

:
; that define �.
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For the subset of instantiations EVC
:
; [� t !]where � ⊆ [=] is any fixed subset of size : + 1

and ! ⊆ [=] ranges over all subsets of size ; + 1 disjoint from �, the combinatorial structure

bridging the two steps is that the polynomial is cored.

Definition 3.5 (monomial support and cored polynomial). The support of a monomial < ∈
F [G1 , . . . , G=], denoted supp(<), is the set of indices 8 ∈ [=] such that < depends on G8 . For

2, C ∈ ℕ, a polynomial ? ∈ F [G1 , . . . , G=] is said to be (2, C)-cored if there exists � ⊆ [=], called
the core, such that |� | ≤ 2 and for every monomial < of ?, |supp(<) \ � | ≤ C. For any subset

� ⊆ [=] and monomial < =
∏

8∈[=] G
38
8
, we call

∏
8∈� G

38
8
the �-part of <, and

∏
8∈[=]\� G

38
8
the

non-�-part of <.

The crux for the first step is the following property, which allows us to gradually get closer

to a (: + 1, ;)-cored polynomial.

Proposition 3.6. Let :, ;, = ∈ ℕ, let � be a (: + 1)-subset of [=], and let � denote the ideal generated by
the polynomials EVC

:
; [� t !] where ! ranges over all (; + 1)-subsets of [=] \ �. Consider a monomial

< ∈ F [G1 , . . . , G=] such that |supp(<) \ � | > ;. Modulo �, < is equal to a linear combination of
monomials whose non-�-parts have lower degree than the non-�-part of <.

Proof. Let ! be a subset of supp(<) \� of size ;+1. Let<′ be the monomial such that< = <′ · G!,
where G! �

∏
8∈! G8 . By Proposition 3.4, G! is a monomial of EVC

:
; [� t !], and every other

monomial of EVC
:
; [� t !] has non-�-part of degree at most ;. It follows that <′ · EVC

:
; [� t !]

can be written as 2 · < + A, where 2 in a nonzero element in F and every monomial in A has

non-�-part of lower degree than < does. Since ideals are closed under multiplication by any

other polynomial, <′ · EVC
:
; [� t !] ∈ �. Thus, we have 0 ≡ 2 · < + A mod �, which can be

rewritten as < ≡ −2−1 · A mod �. �

Proposition 3.6 leads to the following formalization of the first step of our approach.

Lemma 3.7. Let :, ;, = ∈ ℕ, let � be a (: + 1)-subset of [=], and let � be the ideal generated by the
polynomials EVC

:
; [� t !] where ! ranges over all (; + 1)-subsets of [=] \�. Modulo �, every polynomial

is equal to a (: + 1, ;)-cored polynomial with core �.

Proof. For any polynomial ? ∈ F [G1 , . . . , G=], Proposition 3.6 allows us to systematically eliminate

any monomial < in ? that violates the (: + 1, ;)-cored condition, without changing ? modulo

�. The process may introduce other monomials, but those monomials all have non-�-parts of

degree lower than < does. This means that the process cannot continue indefinitely. When it

ends, the remaining polynomial is (: + 1, ;)-cored with core � and is equivalent to ? modulo

�. �

The second step of our approach is formalized in Lemma 3.8.

Lemma 3.8. Let :, ;, = ∈ ℕ and let A ∈ F [G1 , . . . , G=] be nonzero and (: + 1, ;)-cored. Then RFE
:
;
hits

A.

We prove Lemma 3.8 from the Zoom Lemma in Section 4. Assuming it, we have all

ingredients for the proof of Theorem 1.3.
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Proof of Theorem 1.3. The combination of Lemma 3.1, Lemma 3.7, and Lemma 3.8 shows that, for

every core � ⊆ [=] of size : + 1, the vanishing ideal Van[RFE
:
;
] is generated by the polynomials

EVC
:
; [�t!]where ! ranges over all (;+1)-subsets of [=]\�. The generators are all homogeneous

of minimum degree ; + 1, and each generator has a monomial that occurs in none of the other

generators (namely the product of the variables in !). Therefore, the generating set hasminimum

size since it forms a vector space basis of the degree-(; + 1) part of Van[RFE
:
;
]. �

As an aside, we justify along the same lines the claim from Section 1 that all linear

dependencies among instances ofEVC
:
; are generated by the equations (1.6) when {81 , . . . , 8:+;+3}

ranges over all subsets of [=] containing a core � of size : + 1. A similar reduction strategy

modulo those equations allows us to rewrite∑
(⊆[=]
|( |=:+;+2

2( · EVC
:
; [(] = 0

such that the range of the subsets ( is reduced to a (: + 1, ; + 1)-cored subclass with core �. By

linear independence, the only equation of that form is the trivial one with all 2( = 0.

Gröbner basis. We end this section with a short discussion on Gröbner bases. This part is

not essential for understanding the remainder of the paper; the reader may feel free to skip it.

Readers who want to know more may refer to [1, 12].

Gröbner bases are useful for solving several computational problems involving ideals,

including determining whether a given polynomial ? belongs to an ideal � given by a finite set �

of generators. The setup presumes a total order ≥ on monomials with the following properties:

• For all monomials <, we have < ≥ 1, where 1 denotes the empty monomial.

• For monomials <1 , <2 , <, we have that if <1 ≥ <2, then <1 · < ≥ <2 · <.

Assuming such a monomial ordering ≥, every nonzero polynomial has a unique monomial that

is maximal in ≥, which we call the leading monomial.

For a given a polynomial ?, we can compute a �-reduced form of ? by repeatedly applying

the following reduction step, starting from 5 = ?: Find , ∈ � such that the leading monomial

of , divides some monomial < of 5 , and then subtract a suitable multiple of , from 5 so as to

produce a new value of 5 that does not contain < as a monomial. If several such , and < exist,

pick any. The process continues until no suitable , and < can be found, which the properties of

the ordering ≥ guarantee to happen at some point. The final 5 is called a �-reduced form of ?,

which may or may not be unique.

A natural algorithm to determine membership of ? in � is to compute a �-reduced form

5 of ? and conclude that ? ∈ � if and only if 5 = 0. The algorithm generalizes computing

the remainder in univariate polynomial division, with some differences being that there are

multiple choices of ,, and the monomial < does not need to be the leading monomial of 5 . A

positive conclusion, ? ∈ �, is always correct because reduction does not affect membership and 0
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trivially belongs to the ideal. However, the algorithm can have false negatives, namely when

? ∈ � has a nonzero �-reduced form, i. e., the reduction process reaches some 5 ∈ � that does
not have a monomial < divisible by the leading monomial of some , ∈ �.

A Gröbner basis � for � is a finite set of generators satisfying the additional constraint that

every nonzero element of � has a monomial < that is divisible by the leading monomial of some

element of �. In this case, the above algorithm for deciding membership in � is always correct.

In fact, this gives another characterization of when a finite generating set � is a Gröbner basis.

Yet another characterization is that every polynomial ? has a unique �-reduced form 5 .

In the overview, we claimed that the set � of polynomials EVC
:
; [� t !] form a Gröbner basis

for Van[RFE
:
;
], where � ⊆ [=] is a fixed core of size : + 1 and ! ranges over the (; + 1)-subsets of

[=] \ �. This holds with respect to any monomial ordering such that, for every !, G! �
∏

8∈! G8
is the leading monomial of EVC

:
; [� t !]. Examples of such orderings include all lexicographic

orderings where the variables outside � have higher priority than the variables inside �.

Lemma 3.8 implies that every nonzero polynomial in Van[RFE
:
;
] has a monomial with more

than ; variables outside of �, which is to say that the monomial is divisible by G! for some

! ⊆ [=] \ � of size ; + 1. As G! is the leading monomial of EVC
:
; [� t !], we conclude that every

nonzero polynomial in Van[RFE
:
;
] has a monomial that is divisible by the leading term of some

element of �, i. e., � is a Gröbner basis.

One can interpret Proposition 3.6 as performing a reduction step of ? by �. Lemma 3.7

keeps performing this step until it is no longer possible, yielding a �-reduced form 5 of ? that is

(: + 1, ;)-cored with core �. Lemma 3.8 implies that any two (: + 1, ;)-cored representatives

modulo � of the same polynomial ? coincide, so every polynomial ? has a unique �-reduced

form. This is another way to see that the set � is a Gröbner basis.

Instantiation for SV. By the connection between SV and RFE, a generating set for Van[RFE
;−1

;
]

induces a generating set for Van[SV
;]. We provide an explicit expression as an instantiation of

Theorem 1.3 and Proposition 3.4.

Corollary 3.9. Let ; , = ∈ ℕ and let 08 for 8 ∈ [=] be distinct elements of F . For any fixed set � ⊆ [=] of
size ;, the polynomials EVCSV

;[� t !] form a generating set of minimum size for Van[SV
;] when !

ranges over all (; + 1)-subsets of [=] that are disjoint from �. Here, for any ( = {81 , . . . , 82;+1} ⊆ [=]
with 81 < · · · < 82;+1,

EVCSV
;[(] �

∑
)⊆(
|) |=;+1

�′
(\),) ·

∏
8∈)

G8 ,

where

�′
(\),) � (−1)XInv((\),)) · ©«

∏
8∈)

∏
9∈[=]\{8}

(08 − 0 9)ª®¬ · det(�(\)) · det(�)). (3.6)

Proof. By Proposition 2.2, for any polynomial ? ∈ F [G1 , . . . , G=], ?(SV
;) = 0 iff (? ◦ �)(RFE

;−1

;
) =

0, where � : F = → F = is the invertible transformation that divides each variable G8 by∏
9∈[=]\{8}(08 − 0 9). Since the vanishing ideal of RFE

;−1

;
coincides with the ideal generated by the
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polynomials EVC
;−1

; [� t !], it follows that the vanishing ideal of SV
;
coincides with the ideal

generated by the polynomials

EVC
;−1

; [� t !] ◦ �
−1. (3.7)

For ) ⊆ ( � � t ! with |) | = ; + 1, the coefficient of

∏
8∈) G8 in EVC

;−1

; [(] is given by �(\),) . By
the construction of �, �−1

multiplies G8 by
∏

9∈[=]\{8}(08 − 0 9). Thus, the coefficient of

∏
8∈) G8 in

(3.7) equals �′
(\),) given by (3.6) and EVC

;−1

; [� t !] ◦ �−1 = EVCSV
;[(]. �

In comparison to the coefficients �(\),) of the polynomial EVC
;−1

; [(], the coefficients �′
(\),)

of EVCSV
;[(] contain an additional term, namely the middle term on the right-hand side of (3.6).

As a consequence, each coefficient of EVCSV
;[(] depends on all abscissas 01 , . . . , 0= , whereas the

coefficients of EVC
:
; [(] only depend on the abscissas with indices in (. This reflects a difference

in setup between the two generators: The substitution for a variable G8 is a multivariate function

of all abscissas in SV versus a univariate function of the abscissa 08 only in RFE. The difference

represents one reason why RFE is more convenient to work with than SV, even though both

have essentially the same power.

A more important reason is our derivation of the generating set EVC
:
; in Lemma 3.1. Our

approach hinges on the fact that the substitutions for a variable G8 induce linear equations

involving the seed variables ,: , . . . , ,0 , ℎ; , . . . , ℎ0, with coefficients being expressions in terms

of the polynomial variables G1 , . . . , G= and abscissas 01 , . . . , 0= . Collecting : + ; + 2 of such

equations yields as many linear constraints as unknowns, which suffices to derive a nontrivial

element of the vanishing ideal. The substitutions (1.1) for G8 made by SV
;
similarly induce linear

equations, though not between the mere seed variables H1 , I1 , . . . , H; , I; but between monomials

in the seed variables, namely the constant monomial and the monomials ICH
3
C for C ∈ [;] and

3 ∈ {0, . . . , = − 1}. In contrast to the setting of RFE, even if we collect all of those equations,

namely = linear equations in =; + 1 unknowns, this does not give us enough information to

derive a nontrivial element of the vanishing ideal.

4 Zoom Lemma

Throughout the paper we make repeated use of a key technical tool, the Zoom Lemma. The

lemma allows us to zoom in on the contributions of the monomials in a polynomial ? that have

prescribed degrees in a subset of the variables. We introduce the following terminology for

prescribing degrees.

Definition 4.1 (degree pattern). Let � ⊆ [=]. A degree pattern with domain � is a �-indexed tuple

3 ∈ ℕ�
of nonnegative integers. A degree pattern 3 matches a monomial < ∈ F [G1 , . . . , G=] if, for

every 9 ∈ �, < has degree exactly 3 9 in G 9 . We say that 3 is in ? if 3 matches some monomial in ?.

For any fixed �, every polynomial ? ∈ F [G1 , . . . , G=] can be written uniquely in the form

? =
∑
3∈ℕ�

?3 · G3
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where G3 �
∏

9∈� G
39
9
and ?3 depends only on variables not indexed by �. We refer to ?3 as the

coefficient of G3 in ?.

The notation ?3 can be viewed as a generalization of the common one for the coefficient of

degree 3 of a univariate polynomial ?.

Our technique allows us to zoom in on the contributions of the coefficients ?3 of degree

patterns 3 that satisfy the following additional constraint.

Definition 4.2 (extremal degree pattern). Let  , ! ⊆ [=]. A degree pattern 3∗ ∈ ℕ ∪!
is

( , !)-extremal in a polynomial ? ∈ F [G1 , . . . , G=] if 3∗ is the unique degree pattern 3 ∈ ℕ ∪!
in ?

that satisfies both

(i) 3 9 ≤ 3∗9 for all 9 ∈  , and

(ii) 3 9 ≥ 3∗9 for all 9 ∈ !.

The notion of extremality in Definition 4.2 is closely related to standard notions of minimality

and maximality of tuples of numbers. A �-tuple 3∗ is minimal in a set � of such tuples if the only

tuple 3 ∈ � that satisfies 3 9 ≤ 3∗9 for all 9 ∈ �, is 3∗ itself. A maximal tuple is defined similarly by

replacing ≤ by ≥. Minimality is equivalently (� ,∅)-extremality, and maximality is equivalently

(∅, �)-extremality.

When  and ! intersect, note that only degree patterns 3 ∈ ℕ ∪!
with 3 9 = 3

∗
9
for all 9 ∈  ∩!

affect whether 3∗ is ( , !)-extremal.

The above terminology lets us state our key technical lemma succinctly.

Lemma 4.3 (Zoom Lemma). Let  , ! ⊆ [=], let ? ∈ F [G1 , . . . , G=], and let 3∗ ∈ ℕ ∪! be a degree
pattern that is ( , !)-extremal in ?. If the coefficient ?3∗ is nonzero upon the substitution

G8 ← I ·
∏

9∈ \!(08 − 0 9)∏
9∈!\ (08 − 0 9)

∀8 ∈ [=] \ ( ∪ !) (4.1)

where I is a fresh variable, then RFE
:
;
hits ? for any : ≥ | | and ; ≥ |!|.

Note that the result of substituting (4.1) into ?3∗ is a univariate polynomial @ in I. In the case

where ? is homogeneous, @ has a single monomial, so @ is nonzero iff @ is nonzero at I = 1.

In general, it suffices for @ to be nonzero at some point I ∈ F . As for the conclusion, the most

interesting settings in Lemma 4.3 are : = | | and ; = |!|. This is because the range of RFE
:
;
is

contained in the range of RFE
:′

;′ for :
′ ≥ : and ;′ ≥ ;. Also, whereas many or our instantiations

of the Zoom Lemma have  and ! disjoint, this is not necessary for the lemma to hold.1

Let us first see how the Zoom Lemma allows us to complete the proof of Theorem 1.3. There

are several ways to do so; we present a fairly generic way.

1In fact, allowing  and ! to overlap is useful in Section 5 (see Proposition 5.10) and Section 8 (see Proposition 8.8).
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Proof of Lemma 3.8 from the Zoom Lemma. Let � ⊆ [=] denote a core of size at most : + 1 for A.

We construct subsets  , ! ⊆ [=]with | | ≤ : and |!| ≤ ;, and a degree pattern 3∗ with domain

 ∪ ! that is ( , !)-extremal in A such that A3∗ is nonzero upon the substitution (4.1). The Zoom

Lemma then implies that RFE
:
;
hits A.

The construction consists of two steps. First, we pick 8∗ ∈ � arbitrarily. (We can assume

without loss of generality that � is nonempty because if � is a core, then so is � with an

additional element.) We also set  � � \ {8∗}, and let 3+ be a degree pattern with domain  that

matches a monomial in A and that is minimal among all such degree patterns. The existence

of 3+ follows from the fact that A is nonzero. By construction, | | ≤ (: + 1) − 1 = : and A3+ is

nonzero.

Second, we pick a degree pattern 3− with domain [=] \ � that matches a monomial in A3+
and that is maximal among all such degree patterns. The existence of 3− follows from the fact

that A3+ is nonzero. Let ! denote the set of indices 9 ∈ [=] \ � on which 3− is positive. The

hypothesis that � is a (: + 1, ;)-core for A implies that |!| ≤ ;. By construction, the restriction of

3− to the domain ! is maximal among the degree patterns with domain ! in A3+ .

Note that  and ! are disjoint, because  ⊆ � and ! ⊆ [=] \ �. We define 3∗ as the degree
pattern with domain  t ! that agrees with 3+ on  and with 3− on !. The minimality and

maximality properties of 3+ and 3− imply that 3∗ is ( , !)-extremal in A. As there is at least

one monomial in A that agrees with the degree pattern 3∗, the coefficient A3∗ is nonzero. Since

 includes all of � but 8∗, A3∗ cannot depend on variables indexed by � other than G8∗ . By the

maximality of 3− on [=] \ � and the fact that ! contains all indices in [=] \ � on which 3− is
positive, A3∗ cannot depend on any variable in [=] \ �. Thus, A3∗ is a nonzero polynomial that

depends only on G8∗ . It follows that substituting (4.1) into A3∗ yields a nonzero polynomial in

I. �

Before giving a formal proof of the Zoom Lemma, we provide some intuition for the

mechanism behind it, and we explain how the choice of the substitution (4.1) and the extremality

requirement arise. We consider : = | | and ; = |!|, and focus on the setting of homogeneous

polynomials ?, in which case we can set I = 1 without loss of generality.

We start with the special case where (i) ℓ = 0, or equivalently ! = ∅, and (ii) the degree

pattern 3∗ ∈ ℕ 
is zero in every coordinate, so G3

∗
is the constant monomial 1. We can zoom

in on ?3∗ by setting all variables G 9 for 9 ∈  to zero. The generator RFE
:
0
allows us to do so by

picking a seed 5 such that 5 (0 9) = 0 for all 9 ∈  , namely

5 () �
∏
9∈ 
( − 0 9). (4.2)

The evaluation of ? at RFE( 5 ) coincides with the evaluation of ?3∗ at RFE( 5 ), which is precisely

(4.1) with I = 1. If the evaluation is nonzero, then evidently RFE
:
0
hits ?, as desired.

In order to handle more general degree patterns 3∗ ∈ ℕ 
, we introduce a fresh parameter �9

for each 9 ∈  , and replace 0 9 in (4.2) by 0 9 − �9 , i. e., we consider the seeds

5̂ () �
∏
9∈ 
( − 0 9 + �9), (4.3)
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where the hat indicates a dependency on the fresh parameters. For each 8, 5̂ (08) is a multivariate

polynomial in �9 , 9 ∈  , and RFE( 5̂ ) applies the substitution G8 ← 5̂ (08) for each 8 ∈ [=]. The
critical property is that 5̂ (08) contains the factor �8 for 8 ∈  but not for 8 ∉  . More precisely,

5̂ (08) =
{
2̂8 · �8 8 ∈  
2̂8 8 ∉  

,

where 2̂8 �
∏

9∈ \{8}(08 − 0 9 + �9) is a multivariate polynomial in the parameters � with nonzero

constant term, namely 28 �
∏

9∈ \{8}(08 − 0 9).
For any monomial < with matching degree pattern 3 ∈ ℕ 

, we have

<(RFE( 5̂ )) = <(2̂) · �3 = <3(2̂) · 2̂3 · �3 .

Here we see that, when <(RFE( 5̂ )) is expanded as a linear combination of monomials in the �9 ,
the combination contains only monomials divisible by �3 and the coefficient of �3 is nonzero
(namely 23).

In the expansion of ?(RFE( 5̂ )), the coefficient of �3
∗

(a) has a contribution <(2) = <3∗(2) · 23
∗
from each monomial < in ? that matches 3∗, and

(b) may have contributions from other monomials < in ? but only from those whose degree

pattern on  is smaller than 3∗, i. e., only if deg9(<) ≤ 3∗9 for all 9 ∈  .

By adding the contributions of all monomials < with degree pattern 3∗ we obtain

?3∗(RFE( 5̂ )) · RFE( 5̂ )3∗ = ?3∗(2̂) · 2̂3
∗ · �3∗ .

By properties (a) and (b) above, we conclude that the coefficient of themonomial �3
∗
in ?(RFE( 5̂ )):

(a’) has a contribution of ?3∗(2) · 23
∗
from the monomials matching 3∗, and

(b’) cannot have any additional contributions provided that there are no degree patterns on  

in ? that are smaller than 3∗.

For a degree pattern 3∗ in ?, condition (b’) can be formulated as the minimality of 3∗ among the

degree patterns on  in ?, which is exactly the requirement that 3∗ is ( , !)-extremal in ? for

! = ∅. Under this condition we conclude that the coefficient of the monomial �3
∗
in ?(RFE( 5̂ ))

equals ?3∗(2) · 23
∗
. Note that 23

∗
is nonzero. Since ?3∗(2) only depends on the components 28 for

8 ∈ [=] \  , and those components agree with (4.1) for I = 1, the coefficient of the monomial �3
∗

in ?(RFE( 5̂ )) is nonzero if and only if ?3∗ is nonzero at the point (4.1) with I = 1. Thus, for a

homogeneous polynomial ?, the hypotheses of the lemma imply that ?(RFE( 5̂ )) is a nonzero

polynomial in the parameters �. It follows that a random setting of the parameters � yields a

seed 5 ′ for RFE
:
0
such that ?(RFE( 5 ′)) is nonzero. This shows that RFE

:
0
hits ?.
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The symmetric case : = 0 can be obtained from the case ; = 0 by transforming G8 ↦→ G−1

8
for

each 8 ∈ [=]. The transformation maps a seed 5 for RFE
0

;
into a seed 5̃ for RFE

;
0
, wherein the

zeroes of 5̃ come from the poles of 5 . Given a polynomial ?(G1 , . . . , G=), we similarly transform

the variables and clear denominators to obtain the polynomial ?̃(G1 , . . . , G=) � ?(G−1

1
, . . . , G−1

= )·G, ,
where , is any degree pattern with domain [=] for which ,8 is at least the degree of G8 in ? for

every 8 ∈ [=]. We apply the previous case of the Zoom Lemma to ?̃ and obtain the new case

of the Zoom Lemma for ?. Note that a monomial with degree pattern 3̃ in ?̃ corresponds to a

monomial with degree pattern 3 = , − 3̃ in ?. It follows that 3̃∗ is minimal in ?̃ iff 3∗ is maximal

in ?, which is exactly the ( , !)-extremality requirement of the Zoom Lemma in the case where

 = ∅.
The above arguments for the special cases ; = 0 and : = 0 carry through for arbitrary

polynomials ? under the assumption that ?3∗ is nonzero upon the substitution (4.1) with I = 1,

i. e., that the univariate polynomial @(I) obtained by substituting (4.1) in ?3∗ is nonzero at I = 1.

The homogeneity of ? was only used to conclude that if @ is nonzero, then @ is nonzero at I = 1.

To handle polynomials ? where @ may be nonzero but zero at I = 1, we run the above argument

with an arbitrary value of I ∈ F where @ is nonzero. We can do so by including an additional

factor of I on the right-hand sides of (4.2) and (4.3), i. e., by considering 5 () � I ·∏9∈ ( − 0 9)
and 5̂ () � I ·∏9∈ ( − 0 9 + �9), respectively. Both expressions correspond to valid seeds for

RFE
:
0
in the roots parametrization.

The case for general : and ; follows in a similar fashion, introducing parameters for the

zeroes as well as the poles of the seed 5 , considering the monomial in those parameters with

degree pattern determined by 3∗, and clearing denominators.

Proof of Zoom Lemma. Let  , !, ?, and 3∗ be as in the lemma statement. Fix I to a value in F

such that ?3∗ is nonzero upon the substitution (4.1). Such a value exists by the hypothesis of

the lemma (for large enough F ). Since the range of RFE
:
;
is contained in the range of RFE

:′

;′ for

:′ ≥ : and ;′ ≥ ;, it suffices to show that RFE
:
;
hits ? for : = | | and ; = |!|. Let �9 for each 9 ∈  

and � 9 for each 9 ∈ ! be fresh indeterminates. We denote by F̂ the field of rational functions in

those indeterminates with coefficients in F , and by + the subset of elements that, when written

in lowest terms, have denominators with nonzero constant terms. Let Φ : + → F map each

element of + to the result of substituting �9 ← 0 for each 9 ∈  and � 9 ← 0 for each 9 ∈ !. The
result is always well-defined.

Define 5̂ ∈ F̂ () as follows:

5̂ () � I ·
∏

9∈ ( − 0 9 + �9)∏
9∈!( − 0 9 + � 9)

.

The substitution RFE( 5̂ ) effects G8 ← 5̂ (08) ∈ F̂ for each 8 ∈ [=]. We claim that ?(RFE( 5̂ )) is
nonzero. This suffices to conclude that RFE

:
;
hits ?, because substituting �9 and � 9 by a random

scalar from F transforms 5̂ into a seed 5 ′ such that, with high probability, 5 ′ is a valid seed for

RFE
:
;
and ?(RFE( 5 ′)) ≠ 0. Henceforth we show that ?(RFE( 5̂ )) ≠ 0.
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For each 8 ∈ [=], there exists 2̂8 ∈ + with Φ(2̂8) ≠ 0 such that

5̂ (08) =


2̂8 · �8�8 8 ∈  ∩ !
2̂8 · �8 8 ∈  \ !
2̂8 · 1

�8
8 ∈ ! \  

2̂8 8 ∉  ∪ !

, (4.4)

namely

2̂8 = I ·
∏

9∈ \{8}(08 − 0 9 + �9)∏
9∈!\{8}(08 − 0 9 + � 9)

.

For 8 ∉  ∪ !, Φ(2̂8) is moreover the value substituted into G8 by (4.1).

Let � denote the set of all degree patterns 3 ∈ ℕ ∪!
that match a monomial in ?. We have

that

? =
∑
3∈�

?3 · G3 . (4.5)

For 3 ∈ �, define @̂3 to be the result of substituting G8 ← 2̂8 into ?3 for each 8 ∈ [=].
Combining (4.4) and (4.5), we obtain

?(RFE( 5̂ )) =
∑
3∈�

@̂3 · 2̂3 ·
�3 | 

�3 |!
, (4.6)

where 3 | and 3 |! respectively are the restrictions of 3 onto the domains  and ! respectively.

Fix any function # : [: + ;] →  ∪ ! such that # establishes a bĳection between {1, . . . , :}
and  and establishes a bĳection between {: + 1, . . . , : + ;} and !. For 9 ∈ {1, . . . , :}, let � 9 be
an alias for �#(9), and for 9 ∈ {: + 1, . . . , : + ;}, let � 9 be an alias for �#(9). For each 3 ∈ ℕ ∪!

,

define a corresponding � ∈ ℤ:+;
given by � 9 = 3#(9) for 9 ∈ {1, . . . , :} and � 9 = −3#(9) for

9 ∈ {: + 1, . . . , : + ;}. Let Δ ⊆ ℤ:+;
consist of the � corresponding to each 3 ∈ �. Finally, for

each 3 ∈ � with corresponding � ∈ Δ, define 2̂� � @̂3 · 2̂3, capturing the first two factors in the

3-th term of (4.6). Rewritten in this notation, (4.6) becomes∑
�∈Δ

2̂� ·
:+;∏
9=1

�
� 9
9
. (4.7)

Our hypothesis that 3∗ is ( , !)-extremal in ? says that the only 3 ∈ � such that 3 9 ≤ 3∗9 for
every 9 ∈  and 3 9 ≥ 3∗9 for every 9 ∈ !, is 3 = 3∗. Translated into a condition on the element

�∗ ∈ Δ corresponding to 3∗, the hypothesis says that �∗ is minimal in Δ. Our other hypothesis

states that ?3∗ does not vanish upon substituting (4.1). As (4.1) equates to substituting G8 ← Φ(2̂8)
for 8 ∉  ∪ !, this hypothesis equivalently states that Φ(@̂3∗) is nonzero. Since for each 9 ∈  ∪ !
we have Φ(2̂ 9) ≠ 0, we conclude that Φ(2̂�∗) ≠ 0. That ?(RFE( 5̂ )) is nonzero now follows from

the next proposition. �
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Proposition 4.4. Let F̂ = F (�1 , . . . , �A) be the field of rational functions in indeterminates �1 , . . . , �A ,
let + ⊆ F̂ consist of the rational functions whose denominator has nonzero constant term, and let
Φ : + → F be the function that maps each rational function in + to its value after substituting � 9 ← 0

for all 9 ∈ [A]. Let

B =
∑
�∈Δ

2̂� ·
A∏
9=1

�
� 9
9

where Δ ⊆ ℤA is some finite set, and we have 2̂� ∈ + for every � ∈ Δ. If there exists �∗ ∈ Δ that is
minimal in Δ and for which Φ(2̂�∗) ≠ 0, then B ≠ 0.

Proof. By clearing denominators, we may assume without loss of generality that, for every � ∈ Δ
and every 9 ∈ [A], � 9 ≥ 0, and that, for every � ∈ Δ, 2̂� is a polynomial in �1 , . . . , �A . In this case,

all quantities in the sum for B are polynomials in �1 , . . . , �A . The minimality hypothesis on �∗

implies that the coefficient of

∏A
9=1

��
∗
9
9
in the monomial expansion of B is precisely the constant

coefficient of 2̂�∗ , and the hypothesis Φ(2̂�∗) ≠ 0 asserts that this coefficient is nonzero. �

5 Membership Test

In this section we develop the structured membership test for the vanishing ideal Van[RFE
:
;
]

given in Theorem 1.8. We begin with some basic results regarding membership to Van[RFE
:
;
]

and then develop a criterion for multilinear polynomials.

Basic properties. It is well-known that Van[SV
;] does not contain any polynomial with a

monomial of support at most ;, i. e., a monomial involving at most ; variables. We generalize

the lower bound on the support to Van[RFE
:
;
] and also establish an upper bound in the case of

multilinear polynomials. Note that for multilinear monomials support conditions translate into

degree conditions.

Proposition 5.1. If a polynomial ? contains a monomial of support at most ;, then RFE
:
;
hits ?. If a

multilinear polynomial ? in the variables G1 , . . . , G= contains a monomial of support at least = − :, then
RFE

:
;
hits ?.

The known proofs of the first part for SV
;
make use of partial derivatives. We establish the

generalization for RFE
:
;
using our generating set in Theorem 1.3, whose analysis hinges on the

Zoom Lemma. A similar argument works for the second part, but we opt to establish it via a

black-box reduction to the first part for multilinear polynomials. The approach illustrates the

utility of our generalization of SV
;
to RFE

:
;
since even for SV

;
we need to consider settings of the

parameters : and ; other than : = ; − 1.

Proof. For the first part, by Proposition 3.4 none of the polynomials EVC
:
; contain a monomial

of support ; or less. The same holds for the nonzero polynomials in the ideal generated by

these polynomials, which by Theorem 1.3 equals Van[RFE
:
;
]. Thus, every polynomial that has a

monomial of support at most ;, is hit by RFE
:
;
.
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For the second part, consider @(G1 , . . . , G=) � G1 · · · · · G= · ?(1/G1 , . . . , 1/G=). Note that if ?

is a multilinear polynomial in the variables G1 , . . . , G= , then so is @. If a multilinear ? has a

monomial of support at least = − :, then @ has a monomial of support at most :. By the first

part, RFE
;
:
hits @. Since the mapping G8 ← 1/G8 transforms RFE

;
:
into RFE

:
;
, we conclude that

RFE
:
;
hits ?. �

Another feature of SV that generalizes toRFE is that the generator separates the homogeneous

components of a given polynomial ?. The feature allows us to reduce the general case of testing

membership in Van[RFE
:
;
] to the homogeneous case, as was already effectively used in the proof

of the Zoom Lemma.

Proposition 5.2. For any polynomial ?, ? vanishes upon substituting RFE if and only if every
homogeneous component of ? vanishes upon substituting RFE.

Proof. For any seed 5 for RFE and any scalar I, the rescaled substitution I · RFE( 5 ) is in the

range of RFE, namely as RFE(I · 5 ). It follows (provided that F is sufficiently large) that ?(RFE)
vanishes if and only if ?(� · RFE) vanishes, where � is a fresh indeterminate. We now consider

the expansion of ?(� · RFE) as a polynomial in �. With ?(3) as the degree-3 homogeneous

component of ?, we have

?(� · RFE) =
∑
3

?(3)(� · RFE) =
∑
3

�3 · ?(3)(RFE).

The coefficient of �3, ?(3)(RFE), has no dependence on �. We deduce that ?(� · RFE) is the zero
polynomial if and only if ?(3)(RFE) vanishes for every 3. �

Criterion for multilinear polynomials. We now develop the full membership test for multilin-

ear polynomials given in Theorem 1.8. Condition 2 in Theorem 1.8 is closely related to the Zoom

Lemma. Note that for multilinear polynomials and disjoint  and !, %!? | ←0
coincides with

the coefficient ?3∗ where 3∗ is the degree pattern with domain  t !, 0 in the positions of  , and

1 in the positions of !. Moreover, since ? is multilinear, the condition that 3∗ be ( , !)-extremal

in ? is automatically satisfied: The only multilinear monomial < with support in  t ! with

degG8
(<) ≤ 3∗

8
= 0 for all 8 ∈  and degG8

(<) ≥ 3∗
8
= 1 for all 8 ∈ ! is < = G3

∗
. This leads to the

following specialization of the Zoom Lemma for multilinear polynomials with disjoint  and !.

Lemma 5.3 (Zoom Lemma for multilinear polynomials). Let  , ! ⊆ [=] be disjoint, and let
? ∈ F [G1 , . . . , G=] be a multilinear polynomial. If %!? | ←0

is nonzero upon the substitution

G8 ← I ·
∏

9∈ (08 − 0 9)∏
9∈!(08 − 0 9)

∀8 ∈ [=] \ ( t !), (5.1)

where I is a fresh variable, then RFE
:
;
hits ? for any : ≥ | | and ; ≥ |!|.
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Observe that the substitution (5.1) in Lemma 5.3 coincides with (1.7) in Theorem 1.8. Thus,

for a multilinear polynomial ?, condition 2 in Theorem 1.8 expresses that there is no way to

show that RFE
:
;
hits ? via an application of Lemma 5.3. The necessity of this condition for

membership of ? in Van[RFE
:
;
] is clear. The necessity of Condition 1 in Theorem 1.8 is just the

special case of Proposition 5.1 for multilinear polynomials.

What remains to argue is that the combination of condition 1 and condition 2 is sufficient for

membership of ? in Van[RFE
:
;
]. Equivalently, it remains to argue the following property for

every multilinear polynomial ? ∈ F [G1 , . . . , G=] that only contain monomials of degrees between

; + 1 and = − : − 1: If ? is hit by RFE
:
;
then there is an application of Lemma 5.3 that exhibits

this fact. We actually prove the property for every multilinear ? of degree 3 with ; ≤ 3 ≤ = − :.
We do so with a two-step strategy similar to one we used for the part of Theorem 1.3 that RFE

:
;

hits every polynomial outside of the ideal generated by instantiations of EVC
:
; :

1. Modulo the ideal � generated by a certain subset of the instantiations of EVC
:
; , ? is equal

to a cored polynomial A with certain parameters. Since ? ∉ Van[RFE
:
;
] and � ⊆ Van[RFE

:
;
],

A needs to be nonzero.

2. For every such cored polynomial A that is nonzero, we can apply Lemma 5.3 to prove that

RFE
:
;
hits A, i. e., condition 2 fails for A.

By linearity and the necessity of condition 2 for multilinear polynomials in Van[RFE
:
;
]), we

conclude that the condition fails for ?, as well.

The crux for the first step in the context of Theorem 1.3 is the transformation in Proposition 3.6,

which gradually gets closer to a cored polynomial with the desired parameters. In general, the

transformation in Proposition 3.6 does not maintain multilinearity. We show how to tweak the

transformation and preserve multilinearity at the expense of an increase in the size of the core.

Proposition 5.4. Let :, ;, =, 3 ∈ ℕ, let � be a (: + 3 − ;)-subset of [=], and let � denote the ideal
generated by the polynomials EVC

:
; [ t !] where  ranges over all (: + 1)-subsets of � and ! ranges

over all (; + 1)-subsets of [=] \  . Consider a multilinear monomial < ∈ F [G1 , . . . , G=] of degree at most
3 such that |supp(<) \ � | > ;. Modulo �, < is equal to a linear combination of multilinear monomials
of the same degree as < but whose non-�-parts have lower degree than the non-�-part of <.

Proof. Consider the subset ! ⊆ supp(<) \ � of size ; + 1 in the proof of Proposition 3.6, and

G! �
∏

8∈! G8 . Since < is multilinear, so is <′ � </G!, and |supp(<′)| ≤ 3 − |!| = 3 − ; − 1.

Provided |� | ≥ (: + 1) + (3 − ; − 1) = : + 3 − ;, there exists a subset  ⊆ � of size : + 1 that is

disjoint from supp(<′). We substitute EVC
:
; [� t !] by EVC

:
; [ t !] in the proof. EVC

:
; [ t !] is

homogeneous and multilinear. By construction  t ! is disjoint from supp(<′), so EVC
:
; [ t !]

does not depend on any variables that <′ depends on. It follows that <′ · EVC
:
; [ t !] is

multilinear and homogeneous of the same degree as <, and so is A in the proof. �

Applying Proposition 5.4 repeatedly in a similar way as Proposition 3.6 in the proof of

Lemma 3.7 yields the following formalization of the first step in the setting of Theorem 1.8.
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Lemma 5.5. Let :, ;, =, 3 ∈ ℕ, let � be a (: + 3 − ;)-subset of [=], and let � denote the ideal generated
by the polynomials EVC

:
; [ t !] where  ranges over all (: + 1)-subsets of � and ! ranges over all

(; + 1)-subsets of [=] \ . Modulo �, every multilinear polynomial ? of degree at most 3 in F [G1 , . . . , G=]
is equal to a (: + 3 − ; , ;)-cored multilinear polynomial with core � that is either zero or else has the same
degree as ?.

The following refinement of Lemma 3.8 from the context of Section 3 represents the

corresponding second step in the context of Theorem 1.8. This is where the degree constraint

comes into play.

Lemma 5.6. Let :, ;, =, 3 ∈ ℕ with ; ≤ 3 ≤ = − :. Let A be a nonzero multilinear polynomial of degree
3 in F [G1 , . . . , G=] that is (3+ : − ; , ;)-cored. There are disjoint sets  , ! ⊆ [=] with | | = : and |!| = ;
so that %!A | ←0

is nonzero upon the substitution (5.1).

Proof. Let � denote the core of size at most 3 + : − ;, and let < be a monomial of A of degree 3

that maximizes |supp(<) \ � |. Let  be a subset of [=] \ supp(<) of size : that contains all of
� \ supp(<). Such a set  exists because |� \ supp(<)| = |� | − |supp(<) ∩� | ≤ |� | − (3− ;) ≤ :,
and |[=] \ supp(<)| = = − 3 ≥ :. Let ! be a subset of supp(<) of size ; that contains all of
supp(<) \ �. Such a set ! exists because |supp(<) \ � | ≤ ; and |supp(<)| = 3 ≥ ;. Note that  

and ! are disjoint.

The monomial < has a nonzero contribution to %!A | ←0
. In general, a monomial <′ has

a nonzero contribution to %!A | ←0
if and only if supp(<′) is disjoint from  and contains !.

The disjointness requirement implies that supp(<′) ∩ � ⊆ � \  = supp(<) ∩ �, where the

equality follows from the choice of  . The inclusion requirement implies that supp(<) \ � =
! \ � ⊆ supp(<′) \ �, where the equality follows from the choice of !. In combination with the

maximality of |supp(<) \ � | among the monomials of A of degree 3, this means that either <′

does not have degree 3 or else supp(<′) \ � = supp(<) \ �. It follows that the only monomials

<′ of A of degree 3 that contribute to %!A | ←0
satisfy supp(<′) ⊆ supp(<). As A only contains

multilinear monomials, A has exactly one monomial of degree 3 that has a nonzero contribution

to %!A | ←0
, namely the monomial <. We conclude that the polynomial @(I) that results from

substituting (5.1) into %!A | ←0
has a nonzero term of degree 3 − ;. �

We now have all ingredients to establish Theorem 1.8.

Proof of Theorem 1.8. The necessity of condition 1 and condition 2 for the membership of a

multilinear polynomial ? ∈ F [G1 , . . . , G=] inVan[RFE
:
;
] immediately follows fromProposition 5.1

and Lemma 5.3, respectively. For sufficiency, we need to show that if ? only contains monomials

of degrees between ; + 1 and = − : − 1 and is hit by RFE
:
;
, then there exist disjoint sets  , ! ⊆ [=]

with | | = : and |!| = ; so that %!? | ←0
is nonzero upon the substitution (5.1).

By Lemma 5.5, we can write ? as ? = @ + A, where @ ∈ Van[RFE
:
;
] and A is a multilinear

(: + 3 − ; , ;)-cored polynomial that is either zero or else has the same degree as ?. Since

? ∉ Van[RFE
:
;
], the case of zero A is ruled out. Thus A is a multilinear (: + 3 − ; , ;)-cored

polynomial of degree 3, where ; + 1 ≤ 3 ≤ = − : − 1. Lemma 5.6 then yields disjoint sets

 , ! ⊆ [=] with | | = : and |!| = ; so that %!A | ←0
is nonzero upon the substitution (5.1). As
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both ? and A are multilinear, so is @ = ? − A. The contrapositive of Lemma 5.3 implies that

%!@ | ←0
is zero upon the substitution (5.1). It follows that %!? | ←0

= %!@ | ←0
+ %!A | ←0

is

nonzero upon the substitution (5.1). �

We conclude this section by detailing the connection between Theorem 1.8 and some prior

applications of the SV generator.

Application to read-once formulas. Westartwith the theorem that SV
1

hits read-once formulas.

The original proof in [41] goes by induction on the depth of �. The critical part is the inductive

step for the case where the top gate is an addition, say � = �1+�2. The argument in [41] involves

a clever analysis that uses the variable-disjointness of �1 and �2 to show that �1(SV
1) and �2(SV

1)
cannot cancel each other out. We present an alternate proof that has a similar inductive outline

but follows a more structured, principled approach based on Theorem 1.8 for the critical part.

Theorem 5.7 ([41]). SV
1 hits read-once formulas.

Alternate proof. We show by induction on the depth the formula � that if � is nonconstant, then

so is �(SV
1). This suffices because it implies that nonconstant formulas are hit by SV

1

, and

nonzero constant formulas are hit as the range of SV
1

is nonempty.

The inductive step consists of two cases, depending onwhether the top gate is amultiplication

gate or an addition gate. The case of a multiplication gate follows from the general property

that the product of a nonconstant polynomial with any nonzero polynomial is nonconstant. It

remains to consider the case of an addition gate.

For a nonconstant formula �, �(SV
1) is nonconstant iff SV

1

hits the variable part of � (which

is a nonzero polynomial). By Theorem 1.8 with : = 0 and ; = 1, the latter is the case iff at least

one of the following two conditions hold:

1. � has a homogeneous component of degree 1 or at least =.

2. For some ! = {8} ⊆ [=], the derivative %G8� is nonzero upon the substitution (1.7).

Consider a read-once formula � with an addition gate on top: � = �1 + �2. The variable-

disjointness of �1 and �2 implies that if condition 1 holds for at least one of �1 or �2, then it

holds for �. The same is true for condition 2. The inductive step in the case of an addition gate

at the top follows. �

The case of an addition gate in the above proof has a clean geometric interpretation along

the lines of the alternating algebra representation that we discussed in Section 1 for polynomials

that are multilinear (which polynomials computed by read-once formulas are). Recall that we

can think of the variables as vertices, and multilinear monomials as simplices made from those

vertices.2 A multilinear polynomial is a weighted collection of such simplices with weights

from F . In this view, Theorem 1.8 translates to the following characterization: a weighted

collection of simplices corresponds to a polynomial in the vanishing ideal of RFE
0

1
iff there

2In this setting the orientation of the simplices does not matter.
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are no simplices of zero, one, or all vertices (condition 1), and the remaining weights satisfy

a certain system of linear equations (condition 2). Crucially, for each equation in the system,

there is a vertex such that the equation only involves weights of the simplices that contain that
vertex, namely the vertex corresponding to the variable G8 where ! = {8}. Meanwhile, the sum

of two variable-disjoint polynomials corresponds to taking the vertex-disjoint union of two

weighted collections of simplices. It follows directly that if either of the two polynomials violates

a requirement besides the “no simplex of zero vertices” requirement, then their sum violates the

same requirement. The “no simplex of zero vertices” requirement holds automatically when

considering the variable parts, and maps to the special handling of the constant term in the

formal proof.

Zero-substitutions and partial derivatives. As mentioned in the overview, several prior

papers demonstrated the utility of partial derivatives and zero substitutions in the context of

derandomizing PIT using the SV generator, especially for syntactically multilinear models. By

judiciously choosing variables for those operations, these papers managed to simplify ? and

reduce PIT for ? to PIT for simpler instances, resulting in an efficient recursive algorithm. Such

recursive arguments can be wrapped into a general framework, similar to the one presented in

[39] for generic ;-independent generators. Whereas the power of the framework in the generic

setting remains open, thanks to Theorem 1.8, we can prove that our framework captures the

full power of the specific ;-independent generator SV
;
. More generally, we exhibit a natural

reformulation within the framework of any argument that RFE hits a certain class of multilinear

polynomials, such as those computable with some bounded complexity in some syntactic model.

For the argument, we assume that we can break up the class in the following way.

Definition 5.8 (grading hypothesis). A class C = ⋃
:,;∈ℕ C:,; of polynomials satisfies the grading

hypothesis if for every :, ; ∈ ℕ and ? ∈ C:,; , at least one of the following holds:

• : = ; = 0 and ? is nonzero.

• : > 0 and there is a zero substitution such that the result is in C:−1,; .

• ; > 0 and there is a partial derivative such that the result is in C:,;−1.

Under the additional mild assumption of closure under variable rescaling, we obtain a

parameter-efficient framework through direct applications of Theorem 1.8.

Proposition 5.9. Let C = ⋃
:,;∈ℕ C:,; be a class of polynomials that satisfies the grading hypothesis and

such that each C:,; is closed under variable rescaling. If RFE
0

0
hits C0,0 then RFE

:
;
hits C:,; for every

:, ; ∈ ℕ.

Proof. The proof is by induction on : and ;. The base case is : = ; = 0, where the claim is

immediate. When : > 0 or ; > 0, our hypotheses are such that ? ∈ C:,; either simplifies under a

zero substitution or a partial derivative. In either case, we show how a violation of the conditions

in Theorem 1.8 for a simpler polynomial ?′ ∈ F [G′
1
, . . . , G′=] translates into a corresponding

violation of the conditions for ? ∈ F [G1 , . . . , G=], where each variable G′
8
is a rescaling of G8 .
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More specifically, by condition 1 of Theorem 1.8, we may assume that ? only has homogeneous

components with degrees in the range ;+1, . . . , =− :−1. We argue in both cases that ?′ similarly

satisfies condition 1 of Theorem 1.8. By the induction hypothesis and closure under variable

rescaling, it follows that %′
!′?
′��
 ′←0

(where the prime in %′ indicates that the partial derivatives
are with respect to the primed variables G′

8
) is nonzero for some  ′ and !′ under a particular

substitution. Out of  ′ and !′ we then construct  and ! such that %!? | ←0
is nonzero upon the

substitution in condition 2 of Theorem 1.8, where variable rescaling between G′
8
and G8 enables

us to match the substitutions for %′
!′?
′��
 ′←0

and %!? | ←0
. We provide the remaining details for

each case separately.

• If ? simplifies under a zero substitution G 9∗ ← 0, then write ? as ? = @G 9∗ + A where @ and

A are polynomials that do not depend on G 9∗ , and set ?′(. . . , G′
8
, . . . ) = A(. . . , G8 , . . . )with

G8 = G
′
8
· (08− 0 9∗). By closure under rescaling, ?′ ∈ C:−1,; , so by induction ?′ is hit by RFE

:−1

;
.

We apply Theorem 1.8 to ?′ with respect to the set of variables {G′
1
, . . . , G′

9∗−1
, G′

9∗+1
, . . . , G′=}

and : replaced by : − 1. As ? only has homogeneous components with degrees in the

range ; + 1, . . . , = − : − 1, so does ?′, and condition 1 of Theorem 1.8 holds for ?′. This
means that condition 2 does not hold for ?′. Thus, there must be disjoint  ′, !′ ⊆ [=] \ { 9∗}
with | ′ | = : − 1 and |!′ | = ; so that %′

!′?
′��
 ′←0

is nonzero upon the substitution

G′8 ← I ·
∏

9∈ ′(08 − 0 9)∏
9∈!′(08 − 0 9)

. (5.2)

Setting  =  ′ ∪ { 9∗} and ! = !′, we have

%!? | ←0
= %!′A | ′←0

= %′!′?
′��
 ′←0

/ ∏
8∈!′
(08 − 0 9∗)

and the substitution (5.2) induces the substitution (1.7).

• If ? simplifies under a partial derivative %G 9∗ , then write ? as ? = @G 9∗ + A where @ and A

are polynomials that do not depend on G 9∗ , and set ?′(. . . , G′
8
, . . . ) � @(. . . , G8 , . . . ) with

G8 = G
′
8
/(08 − 0 9∗). By closure under rescaling, ?′ ∈ C:,;−1, so by induction ?′ is hit by RFE

:
;−1

.

We apply Theorem 1.8 to ?′ with respect to the set of variables {G′
1
, . . . , G′

9∗−1
, G′

9∗+1
, . . . , G′=}

and ; replaced by ; − 1. As ?′ has homogeneous components of degrees one less than ?

does, condition 1 of Theorem 1.8 holds for ?′, so condition 2 must fail. Thus, there are

disjoint  ′, !′ ⊆ [=] \ { 9∗} with | ′ | = : and |!′ | = ; − 1 so that %′
!′?
′��
 ′←0

is nonzero upon

the substitution (5.2). Setting  =  ′ and ! = !′ ∪ { 9∗}, we have

%!? | ←0
= %!′@ | ′←0

= %′!′?
′��
 ′←0

·
∏
8∈!′
(08 − 0 9∗)

and the substitution (5.2) induces the substitution (1.7).

In both cases we conclude that %!? | ←0
is nonzero upon the substitution (1.7), which is the

sought violation of condition 2 of Theorem 1.8. �
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We remark that the mild requirement of closure under variable rescaling in Proposition 5.9

can be dropped completely at the cost of reduced efficiency in parameters.3

Proposition 5.10. Let C = ⋃
:,;∈ℕ C:,; be a class of polynomials that satisfies the grading hypothesis. If

RFE
0

0
hits C0,0 then RFE

:+;
:+; hits C:,; for every :, ; ∈ ℕ.

Proof sketch. The strategy is the same as in the proof of Proposition 5.9, but in the inductive step

the index 8∗ is added to both  ′ and !′ instead of just one of the two sets. This obviates the need

for rescaling to ensure that the substitutions match. Note that the resulting sets  and ! are no

longer disjoint, but the general Zoom Lemma accommodates overlapping sets  and !. �

Theorem 1.8 tells us that derivatives and zero substitutions suffice to witness when a

multilinear polynomial ? is hit by SV or RFE. One can ask, if we know more information about

?, can we infer which derivatives and zero substitutions form a witness? In some cases we know.

For example, if ? has a low-support monomial G1 · · · G; , then it suffices to take derivatives with

respect to each of G1 , . . . , G; . On the other hand, consider that whenever two polynomials ? and

@ are hit by SV, then so is their product ?@. Given explicit witnesses for ? and @, we do not know

how to obtain an explicit witness for the product ?@.

6 Sparseness

By Proposition 3.4, the generators EVC
:
; contain exactly

(:+;+2

;+1

)
monomials. The following

result shows that no nonzero polynomial in the vanishing ideal of RFE
:
;
has fewer monomials.

Corollary 1.6 follows.

Lemma 6.1. Suppose ? ∈ F [G1 , . . . , G=] is nonzero and has only B monomials with nonzero coefficients.
Then, for any :, ; such that

(:+;+2

;+1

)
> B, RFE

:
;
hits ?.

The tactic here is to show that, if ? has too few monomials appearing in it, then there is a way to

instantiate the Zoom Lemma wherein ?3∗ is a single monomial and therefore is nonzero upon

the substitution (4.1).

Proof. For 8 ∈ [=], we define two operations, ↓8 and ↑8 , on nonempty sets ofmonomials. Applying

↓8 to such a set " yields the subset of " consisting of the monomials in which G8 appears with

its least degree among all the monomials in ". We define ↑8 similarly, except we select the

monomials in which G8 appears with its highest degree. We make the following claim:

Claim 6.2. For any nonempty set of monomials with fewer than
(:+;+2

;+1

)
monomials, there is a sequence of

↓ and ↑ operations, with at most : ↓ operations and at most ; ↑ operations, such that the resulting set of
monomials has exactly one element.

3This is a setting where we exploit the possibility of the sets  and ! in the Zoom Lemma to overlap.
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The claim implies the lemma as follows. Let " be the set of monomials with nonzero

coefficient in ?. Apply the claim to " to get a sequence of ↓ and ↑ operations resulting in a

single monomial <0. Let  denote the indices used for the ↓ operations and ! the indices used

for the ↑ operations. Let 3∗ be the degree pattern with domain  ∪ ! that matches <0. By how

the operators are defined, every monomial < in " satisfies either

• degG8
(<) > 3∗

8
for some 8 ∈  (< was removed by ↓8),

• degG8
(<) < 3∗

8
for some 8 ∈ ! (< was removed by ↑8), or

• degG8
(<) = 3∗

8
for every 8 ∈  ∪ !, in which case < = <0.

Accordingly, 3∗ is ( , !)-extremal in ? and the Zoom Lemma applies. As ?3∗ is a single monomial,

it is nonzero upon the substitution (4.1). As | | ≤ : and |!| ≤ ;, we conclude that ? is hit by

RFE
:
;
.

It remains to prove Claim 6.2. We do this by induction on |" |. In the base case, |" | = 1, in

which case the empty sequence suffices. Otherwise, |" | > 1, in which case there is a variable

G8 that appears with at least two distinct degrees among monomials in ". The sets ↓8(") and
↑8(") are nonempty and disjoint. Since " has size less than

(:+;+2

;+1

)
=

(:+;+1

;+1

)
+

(:+;+1

;

)
, either

↓8(") has size less than
(:+;+1

;+1

)
, or ↑8(") has size less than

(:+;+1

;

)
. Whichever is the case, the

claim follows by applying the inductive hypothesis to it. �

7 Set-Multilinearity

Although the generators EVC
:
; provided by Theorem 1.3 are not set-multilinear, the vanishing

ideal of RFE
:
;
does contain set-multilinear polynomials. In this section, we construct some

of degree ; + 1 with partition classes of size : + 2. In fact, we argue that all set-multilinear

polynomials in Van[RFE
:
;
] of degree ; + 1 are in the linear span of the ones we construct.

Our construction is a modification of the one for EVC
:
; .

Definition 7.1. Let :, ;, = ∈ ℕ, and let (1 , . . . , (;+1 ⊆ [=] be ; + 1 disjoint subsets of : + 2 indices

each. The polynomial ESMVC
:
; is an (; + 1) × (; + 1) determinant where each entry is itself a

(: + 2) × (: + 2) determinant. We index the rows in the outer determinant by 8 = 1, . . . , ; + 1,

and the columns by 3 = ; , . . . , 0. In each (8 , 3)-th inner matrix, there is one row per 9 ∈ (8 ; it is[
0:
9

0:−1

9
· · · 01

9
00

9
03
9
G 9

]
.

The name “ESMVC” is a shorthand for “Elementary Set-Multilinear Vandermonde Circulation”.

Similar to EVC, the precise instantiation of ESMVC requires one to pick an order for the sets

(1 , . . . , (;+1 and an order within each set.

Example 7.2. When : = 1 and ; = 2, ESMVC uses three sets of three variables each. To

help convey the structure of the determinant, we name the variable-sets (1 = {G1 , G2 , G3},
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(2 = {H1 , H2 , H3}, and (3 = {I1 , I2 , I3}, and denote the abscissa of G8 by 08 , the abscissa of H8 by

18 , and the abscissa of I8 by 28 . With this notation and using the index ordering, ESMVC is the

following: ���������������������������

���������
01

1
00

1
02

1
G1

01

2
00

2
02

2
G2

01

3
00

3
02

3
G3

���������
���������
01

1
00

1
01

1
G1

01

2
00

2
01

2
G2

01

3
00

3
01

3
G3

���������
���������
01

1
00

1
00

1
G1

01

2
00

2
00

2
G2

01

3
00

3
00

3
G3

������������������
11

1
10

1
12

1
H1

11

2
10

2
12

2
H2

11

3
10

3
12

3
H3

���������
���������
11

1
10

1
11

1
H1

11

2
10

2
11

2
H2

11

3
10

3
11

3
H3

���������
���������
11

1
10

1
10

1
H1

11

2
10

2
10

2
H2

11

3
10

3
10

3
H3

������������������
21

1
20

1
22

1
I1

21

2
20

2
22

2
I2

21

3
20

3
22

3
I3

���������
���������
21

1
20

1
21

1
I1

21

2
20

2
21

2
I2

21

3
20

3
21

3
I3

���������
���������
21

1
20

1
20

1
I1

21

2
20

2
20

2
I2

21

3
20

3
20

3
I3

���������

���������������������������

.

The elementary properties of EVC
:
; from Proposition 3.4 extend as follows to ESMVC

:
; .

Proposition 7.3. For any :, ; ∈ ℕ and index sets (1 , . . . , (;+1 as in Definition 7.1, ESMVC
:
; is

skew-symmetric with respect to the order of the sets (1 , . . . , (;+1, and the choice of order within each
set, in that any permutation thereof changes the construction by merely multiplying by the sign of the
permutation. For any order, ESMVC

:
; is nonzero, homogeneous of degree ; + 1, and set-multilinear with

respect to the partition (1 , . . . , (;+1, and every monomial consistent with the partitions appears with a
nonzero coefficient. When the sets are ordered as (1 , . . . , (;+1 and the variables associated with (8 are
labeled and ordered as (G8 ,1 , . . . , G8 ,:+2) for 8 = 1, . . . , ; + 1, the coefficient of G1,1 · · · · · G;+1,1 equals

(−1)(:+1)(;+1) ·

�������
0 ;

1,1
· · · 00

1,1
...

. . .
...

0 ;
;+1,1

· · · 00

;+1,1

������� ·
;+1∏
8=1

�������
0:
8,2

· · · 00

8 ,2
...

. . .
...

0:
8,:+2

· · · 00

8 ,:+2

������� . (7.1)

Proof. All assertions to be proved follow from elementary properties of determinants, that

Vandermonde determinants are nonzero unless they have duplicate rows, and the following

computation for the coefficient of G1,1 · · · · · G;+1,1: Plug 1 into G8 ,1 for 8 = 1, . . . , ;+1 and 0 into the

remaining variables, and minor expand along the last column each of the inner determinants.

Due to the minor expansions, the elements in the 8-th row of the outer determinant have a

common factor of (−1):+1
times the (: + 1) × (: + 1) determinant for that value of 8 in the product

on the right-hand side of (7.1). After removing those common factors from all ; + 1 rows, the

remaining (; + 1) × (; + 1) outer determinant equals the determinant in the middle of (7.1). �

The following theorem formalizes the roleESMVCplays among thedegree-(;+1)polynomials

with respect to Van[RFE
:
;
].
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Theorem 7.4. Let :, ; ∈ ℕ and let -1 , . . . , -;+1 be ; + 1 disjoint sets of indices (of any size). The linear
span of ESMVC

:
; [(1 , . . . , (;+1], over all choices of (8 ⊆ -8 with |(8 | = : + 2, equals the set-multilinear

polynomials in Van[RFE
:
;
] with variable partition (-1 , . . . , -;+1).

Theorem 7.4 and Proposition 7.3 imply Corollary 1.7 that there are no set-multilinear

polynomials of degree ; + 1 in Van[RFE
:
;
] that have at least one partition -8 of size less than : + 2.

The proof of Theorem 7.4 follows the same outline as the one of Theorem 1.3 in Section 3. We

start by showing that all instantiations of ESMVC
:
; are contained in Van[RFE

:
;
] using a similar

argument as that for EVC
:
; .

Lemma 7.5. For every :, ; ∈ ℕ and every choice of ; + 1 disjoint sets (1 , . . . , (;+1 of : + 2 indices each,
ESMVC

:
; [(1 , . . . , (;+1] vanishes at RFE

:
;
.

Proof. Let ,/ℎ be a seed for RFE
:
;
. Let � be the (; + 1) × (; + 1) outer matrix defining ESMVC, so

that ESMVC � det(�). Recall that the columns of � are indexed by 3 = ; , . . . , 0. Let ®ℎ ∈ F ;+1

be the column vector where the row indexed by 3 is the coefficient of 3 in ℎ(). We show

that, after substituting RFE
:
;
(,/ℎ), the matrix-vector product �®ℎ ∈ F ;+1

yields the zero vector.

It follows that evaluating ESMVC at RFE
:
;
(,/ℎ) vanishes, as it is the determinant of a singular

matrix.

Fix 8 ∈ {1, . . . , ; + 1}, and focus on the 8-th coordinate of �®ℎ. The (8 , 3) entry of � is a

determinant; let �8 ,3 be the inner matrix as in Definition 7.1. As 3 varies, only the last column

of �8 ,3 changes. Thus, by multilinearity of the determinant, the 8-th entry of �®ℎ is itself a

determinant. Recalling that the rows of �8 ,; , . . . , �8 ,0 are indexed by 9 ∈ -8 , the 9-th row of this

determinant is [
0:
9
· · · 00

9
ℎ(0 9)G 9

]
.

After substituting RFE
:
;
(,/ℎ), it becomes[

0:
9
· · · 00

9
,(0 9)

]
.

Since , is a degree-: polynomial, the columns of �8 ,3 are linearly dependent, so the determinant

is zero. �

Next, we argue that every polynomial in Van[RFE
:
;
] that is set-multilinear with respect to

the variable partition (-1 , . . . , -;+1) is in the ideal � generated by the instantiations of ESMVC
:
;

in the statement of Theorem 7.4. We use a similar two-step approach as for Theorem 1.3 in

Section 3.

1. Modulo the ideal �, every polynomial ? is equal to a polynomial A (depending on ?) with

a certain structure (Lemma 7.7).

2. Every nonzero polynomial A that has the structure and is is set-multilinear with respect to

the variable partition (-1 , . . . , -;+1) is hit by RFE
:
;
(Lemma 7.8).
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For step 1, we need a suitable replacement for being (2, C)-cored. The following adaptation

to the set-multilinear setting suffices.

Definition 7.6. Let -1 , . . . , -3 ⊆ [=] be disjoint sets of indices. A polynomial that is set-

multilinear with respect to the partition (-1 , . . . , -3) is (2, C)-multi-cored if there exists a set

� � �1t · · ·t�3, with �8 ⊆ -8 , |�8 | ≤ 2, such that every monomial< of the polynomial satisfies

|supp(") \ � | ≤ C.

We refer to the set � in Definition 7.6 as a multi-core.

Lemma 7.7. Let :, ; ∈ ℕ and let -1 , . . . , -;+1 ⊆ [=] be disjoint sets of indices. Suppose � �
�1 t · · · t �;+1 is a set of indices such that �8 ⊆ -8 and |�8 | = : + 1. Let � be the ideal generated by the
polynomials ESMVC

:
; [�1t{ 91}, . . . , �;+1t{ 9;+1}], where 98 ∈ -8 \�8 . Modulo �, every set-multilinear

polynomial with respect to the variable partition -1 , . . . , -;+1 equals a (: + 1, ;)-multi-cored polynomial
with multi-core �.

Proof. By linearity it suffices to establish the result for any monomial < that is set-multilinear

with respect to the partition (-1 , . . . , -;+1). If supp(<)∩� is nonempty, then< is already (:+1, ;)-
multi-cored with multi-core � because < only has ; + 1 variables in its support. Otherwise, let

< = G 91 · · · G 9;+1
. By Proposition 7.3, the polynomial ESMVC

:
; [�1 t { 91}, . . . , �;+1 t { 9;+1}] can

be written as 2 · < + A where 2 ∈ F is nonzero and A is a linear combination of monomials <′

that are set-multilinear with respect to the partition (-1 , . . . , -;+1) and such that supp(<′) ∩ �
is nonempty. The result for < follows by writing < ≡ −2−1 · A mod �. �

Step 2 is another application of the Zoom Lemma. We make use of the version geared

towards multilinear polynomials, namely Lemma 5.3.

Lemma 7.8. Let :, ; ∈ ℕ and let-1 , . . . , -;+1 ⊆ [=] be disjoint sets of indices. Every nonzero polynomial
that is set-multilinear with respect to the partition (-1 , . . . , -;+1) and that is (: + 1, ;)-multi-cored is hit
by RFE

:
;
.

Proof. Let A satisfy the hypotheses of the lemma with multi-core �. Let <∗ be a monomial

in A for which supp(<∗) \ � is maximal with respect to inclusion. Such a monomial exists

because A is nonzero. Let 9∗ ∈ supp(<∗) ∩ �. Such an index exists since |supp(<∗)| = ; + 1

and |supp(<∗) \ � | ≤ ; by the multi-core property. Let 8∗ ∈ [; + 1] be such that 9∗ ∈ -8∗ . Set

 � �∩-8∗ \ { 9∗} and ! � supp(<∗) \ { 9∗}. Note that | | ≤ (:+1)−1 = : and |!| ≤ (;+1)−1 = ;.

By set-multilinearity, monomials < in A for which %!< | ←0
is nonzero need to have the form

G 9 · G! where 9 ∈ -8∗ \  . The monomial <∗ is of the form with 9 = 9∗. By the maximality of

<∗, any monomial in A of the form has to have 9 ∈ �. Since � ∩ (-8∗ \  ) = { 9∗}, it follows that

<∗ is the only monomial in A that contributes to %!A | ←0
. Since %!<∗ | ←0

= G 9∗ , it follows that

%!A | ←0
is nonzero upon the substitution (5.1). We conclude that RFE

:
;
hits A by Lemma 5.3. �

We now have all ingredients to establish Theorem 7.4.
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Proof of Theorem 7.4. Let S � ((1 , . . . , (;+1) range as in the statement. The linear span of the

polynomials ESMVC
:
; [S] is set-multilinear with respect to the variable partition (-1 , . . . , -;+1)

by Proposition 7.3, and in Van[RFE
:
;
] by Lemma 7.5. In the other direction, the combination of

Lemma 7.7 and Lemma 7.8 imply that every polynomial ? ∈ Van[RFE
:
;
] that is set-multilinear

with respect to the variable partition (-1 , . . . , -;+1) falls inside the ideal � generated by the poly-

nomials ESMVC
:
; [S], i. e., ? =

∑
S @SESMVC

:
; [S] for some polynomials @S . As all polynomials

ESMVC
:
; [S] as well as ? are homogeneous of degree ; + 1, it follows that each @S can be replaced

by its constant term. �

8 Read-Once Oblivious Algebraic Branching Programs

In this section we provide some background on ROABPs and establish Theorem 1.9.

8.1 Background

Algebraic branching programs are a syntactic model for algebraic computation. One forms

a directed graph with a designated source and sink. Each edge is labeled by a polynomial

that depends on at most one variable among G1 , . . . , G= . The branching program computes a

polynomial in F [G1 , . . . , G=] by summing, over all source-to-sink paths, the product of the labels

on the edges of each path.

A special subclass of algebraic branching programs are read-once oblivious algebraic

branching programs (ROABPs). In this model, the vertices of the branching program are

organized in layers. The layers are totally ordered, and edges exist only from one layer to the

next. For each variable, there is at most one consecutive pair of layers between which that

variable appears, and for each pair of consecutive layers, there is at most one variable that

appears between them. In this way, every source-to-sink path reads each variable at most once

(the branching program is read-once), and the order in which the variables are read is common

to all paths (the branching program is oblivious). We can always assume that the number of

layers equals one plus the number of variables under consideration.

The number of vertices comprising a layer is called its width. The width of an ROABP is the

largest width of its layers. The minimum width of an ROABP computing a given polynomial

can be characterized in terms of the rank of coefficient matrices constructed as follows.

Definition 8.1. Let* t+ = [=] be a partition of the variable indices, and let"* and"+ be the

sets of monomials that are supported on variables indexed by* and + , respectively. For any

polynomial ? ∈ F [G1 , . . . , G=] define the matrix

CMat*,+ (?) ∈ F"*×"+

by setting the (<* , <+ ) entry to equal the coefficient of <*<+ in ?.

CMat*,+ (?) is formally an infinite matrix, but it has only finitely many nonzero entries.

When ? has degree at most 3, one can just as well truncate CMat*,+ (?) to include only rows

and columns indexed by monomials of degree at most 3.
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Lemma 8.2 ([42]). Let ? ∈ F [G1 , . . . , G=] be any polynomial. There is an ROABP of width F computing
? in the variable order G1 , . . . , G= if and only if, for every B ∈ {0, . . . , =}, with respect to the partition
* = {1, . . . , B} and + = {B + 1, . . . , =}, we have

rank(CMat*,+ (?)) ≤ F.

We group the monomials in"* and"+ by their degrees and order the groups by increasing

degree. This induces a block structure on CMat*,+ (?)with one block for every choice of A, 2 ∈ ℕ;

the (A, 2) block is the submatrix with rows indexed by degree-A monomials in "* and columns

indexed by degree-2 monomials in "+ . In the case where ? is homogeneous, the only nonzero

blocks occur for A + 2 equal to the degree of ?. In this case the rank of CMat*,+ (?) is the sum of

the ranks of its blocks.

In general, the rank of CMat*,+ (?) is at least the rank of CMat*,+ (?(min)), where ?(min)

denotes the homogeneous component of ? of the lowest degree, 3min. This follows because the

submatrix of CMat*,+ (?) consisting of the rows and columns indexed by monomials of degree

at most 3min has a block structure that is triangular with the blocks of CMat*,+ (?(min)) on the

hypotenuse. The observation yields the following folklore consequence of Lemma 8.2.

Proposition 8.3. Let ? ∈ F [G1 , . . . , G=] be any nonzero polynomial, and let ?(min) be the nonzero
homogeneous component of ? of least degree. If ? can be computed by an ROABP of width F, then so can
?(min).

8.2 Hitting property / lower bound

We now prove the ROABP hitting property of SV given in Theorem 1.9 and the equivalent

ROABP lower bound given in Theorem 1.10. Both theorems follow from the next statement in a

standard way.

Theorem 8.4. For any integer ; ≥ 1, every nonzero multilinear homogeneous polynomial of degree ; + 1

in the vanishing ideal of SV
; requires ROABP width at least (;/3) + 1.

For completeness, before proving Theorem 8.4, we argue how our ROABP hitting property

and lower bound follow.

Proof of Theorem 1.9 and Theorem 1.10. The theorems are equivalent by complementation. We

explain how Theorem 1.9 follows from Theorem 8.4.

Fix ? satisfying the hypotheses of Theorem 1.9. We show that RFE
;−1

;
hits ?; this implies SV

;

hits ? because RFE
;−1

;
and SV

;
are equivalent up to variable rescaling, and rescaling variables

does not affect ROABP width.

If ? contains a monomial depending on at most ; variables, then Proposition 5.1 implies

that RFE
;−1

;
hits ?. The remaining case is when the homogeneous component ?(min)

of the least

degree is multilinear of degree ; + 1. By Proposition 8.3, ?(min)
has ROABP width less than

(;/3) + 1. By Theorem 8.4, ?(min)
is hit by RFE

;−1

;
, and by Proposition 5.2 so is ?. �
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In the remainder of this section we establish Theorem 8.4. We do not try to optimize the

dependence of the bound on ;.

Fix a positive integer ;, and fix an arbitrary variable order, say G1 , . . . , G= . We show that, for

every polynomial ? that is nonzero, multilinear, and homogeneous of degree ; + 1, and that

belongs to the vanishing ideal of RFE
;−1

;
, there exists some B ∈ {0, . . . , =} so that, with respect

to the partition * = {1, . . . , B}, + = {B + 1, . . . , =}, it holds that rank(CMat*,+ (?)) ≥ (;/3) + 1.

Theorem 8.4 then follows by Lemma 8.2.

Let � � CMat*,+ (?). As ? is homogeneous of degree ; + 1, � is block diagonal, with a block

�3 for each 3 ∈ {0, . . . , ; + 1} consisting of the rows indexed by monomials of degree 3 and

the columns indexed by monomials of degree ; + 1 − 3. The block diagonal structure implies

rank(�) = ∑;+1

3=0
rank(�3).

Via condition 2 of Theorem 1.8, the hypothesis that ? belongs to Van[RFE
;−1

;
] induces linear

equations on the entries in the blocks �3. For homogeneous polynomials like ?, the condition

stipulates that for all disjoint subsets  , ! ⊆ [=] with | | = : = ; − 1 and |!| = ;, %!? | ←0

vanishes at the point (1.7) with I = 1. This is a linear equation in the coefficients of %!? | ←0
,

which are entries in the blocks �3 of �. In fact, each of these equations only reads entries from

two adjacent blocks, i. e., blocks �3 and �3′ with |3 − 3′ | = 1. This is because ! has size ;, one less

than the degree of ?, so the only monomials that contribute to %!? | ←0
are those that are one

variable G8 times the product of the variables indexed by !. It follows that the corresponding

linear equation on � reads only entries that reside in the blocks � |!∩* |+1
(for 8 ∈ *) and � |!∩* |

(for 8 ∈ +).

We exploit the structure of these equations and argue that, for an appropriate choice of the

partition index B, rank(�) is high.

Ingredients. Our analysis has four ingredients. The first ingredient is the fact that rank(�) is
at least the number of nonzero blocks �3. This is because a nonzero block has rank at least 1,

and rank(�) is the sum of the ranks of the blocks. This simple observation means we can focus

on situations where relatively few of the blocks are nonzero.

The second ingredient establishes an alternative lower bound on rank(�) in terms of the

minimum distance between a nonzero block �3 and either extreme (3 = 0 or 3 = ; + 1). Another

way to think about this distance is as the maximum C such that every monomial in ? depends

on at least C variables indexed by* and at least C variables indexed by + .

Lemma 8.5. Let ? ∈ Van[RFE
;−1

;
] be nonzero, multilinear, and homogeneous of degree ; + 1, let* t+

be a partition of [=], and let � � CMat*,+ (?). If every monomial in p depends on at least C variables
indexed by* and at least C variables indexed by + , then rank(�) ≥ C + 1.

The proof involves revisiting the equations from condition 2 of Theorem 1.8 and modifying4

the underlying instantiations of Lemma 4.3 to obtain a system of linear equations with a simple

enough structure that we can analyze.

4This is a setting where we exploit the possibility of the sets  and ! in the Zoom Lemma to overlap.
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The remaining ingredients allow us to reduce to situations where either the first or second

ingredient applies. The third ingredient lets us fix any two zero blocks and zero out all the

blocks that are not between them.

Proposition 8.6. Let ? ∈ Van[RFE
;−1

;
] be multilinear and homogeneous of degree ; + 1. Let* t+ be a

partition of [=], and let � � CMat*,+ (?). Suppose that for some 31 , 32 ∈ {−1, . . . , ; + 2} with 31 ≤ 32,
we have �31

= 0 and �32
= 0, where �−1 � 0 and �;+2 � 0. Let ?′ be the polynomial obtained from ? by

zeroing out the blocks �3 with 3 < 31 or 3 > 32. Then ?′ belongs to Van[RFE
;−1

;
].

As zeroing out blocks does not increase the rank of �, our lower bound for rank(�) reduces
to the same lower bound for the rank of CMat*,+ (?′). This effectively extends the scope of the

second ingredient: Alone, the second ingredient requires that all nonzero blocks of � be far

from the extremes; with the third ingredient, it suffices that there exists a subinterval of nonzero

blocks that is surrounded by zero blocks and that is far from the extremes. The proof hinges on

the adjacent-block property of the equations from condition 2 of Theorem 1.8.

The ingredients thus far suffice provided there exists a nonzero block far from the extremes:

Such a block belongs to some subinterval of nonzero blocks that is surrounded by zero blocks,

say �31
to the left and �32

to the right, and the subinterval either is large and therefore has many

nonzero blocks such that the first ingredient applies, or else it is small and therefore stays far

from the extremes such that the combination of the second and third ingredients applies. See

Figure 1 for an illustration. The fourth and final ingredient lets us ensure there is a nonzero

block far from the extremes by setting the partition index B appropriately. In fact, it lets us

guarantee a zero-to-nonzero transition at a position of our choosing.

Proposition 8.7. For every 3 ∈ {−1, . . . , ;}, there is B ∈ {0, . . . , =} such that �3 = 0 and �3+1 ≠ 0

with respect to the partition* = {1, . . . , B}, + = {B + 1, . . . , =}, where �−1 � 0.

Combining ingredients. Let us find out what lower bound on rank(�) the prior ingredients
give us as a function of the position 3 = 31 in the interval where we have a guaranteed zero-to-

nonzero transition as in Proposition 8.7. Starting from position 31, keep increasing the position

index until we hit the next zero block, say at position 32, where we use �;+2 � 0 as a sentinel.

See Figure 1.

1. By the first ingredient, since the middle interval consists of nonzero blocks only, rank(�) ≥
32 − 31 − 1.

2. By the combination of the second and the third ingredient, we have that rank(�) ≥ C + 1

where C = min(31 + 1, ; + 2 − 32) is the minimum length of the leftmost and rightmost

intervals. Indeed, let ?′ be the polynomial obtained from ? by zeroing out the blocks �3
with 3 < 31 or 3 > 32. By Proposition 8.6 ?′ ∈ Van[RFE

;−1

;
]. The polynomial ?′ is nonzero

as it contains the original block �3+1, which is nonzero. It is homogeneous of degree

; + 1 and multilinear as all of its monomials also occur in the homogeneous multilinear

polynomial ? of degree ; + 1. By construction, every monomial in ?′ contains at least
31 + 1 variables indexed by * , and at least ; + 2 − 32 variables indexed by + . As such,
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3 −1 0 · · · 31 31 + 1 · · · 32 − 1 32
· · · ; + 1 ; + 2

�3 0 ∗ ∗ 0 ≠ 0 ≠ 0 ≠ 0 0 ∗ ∗ 0

�′
3 0 0 0 0 ≠ 0 ≠ 0 ≠ 0 0 0 0 0

leftmost interval

31 + 1 blocks

middle interval

32 − 31 − 1 blocks

rightmost interval

; + 2 − 32 blocks

Figure 1: Rank lower bound analysis in terms of the blocks �3 of ? and �′
3
of ?′ (Proposition 8.6)

?′ satisfies the conditions of Lemma 8.5 with C = min(31 + 1, ; + 2 − 32). It follows that

rank(�) ≥ rank(CMat*,+ (?′)) ≥ C + 1.

If the rightmost interval has length at least the leftmost interval (; + 2 − 32 ≥ 31 + 1), then

item 2 yields rank(�) ≥ 31 + 2. Otherwise, the rightmost interval is strictly shorter than

the leftmost interval (31 + 1 > ; + 2 − 32); this implies that the middle interval has length

at least ; − 231 + 1, which by item 1 yields rank(�) ≥ ; − 231 + 1. In any case, the bound

rank(�) ≥ min(31 + 2, ; − 231 + 1) holds. Taking 31 =
⌊
;−1

3

⌋
optimizes this expression, achieving

rank(�) ≥
⌊
;−1

3

⌋
+ 2 ≥ (;/3) + 1. This completes the proof of Theorem 8.4 modulo the proofs of

ingredients two through four.

Proofs. We conclude by proving ingredients two through four. We start with the one that

requires the least specificity (ingredient 4, Proposition 8.7), then do ingredient 3 (Proposition 8.6),

and end with the one that involves the most structure (ingredient 2, Lemma 8.5).

Proof of Proposition 8.7. When B = 0, �0 contains all entries. As B increases by 1, some entries

move from their current block �3′ to the next block �3′+1. Finally, when B = =, �;+1 contains all

entries. For 3 ≥ 0, it follows that every nonzero entry moves from �3 to �3+1 at some time. If

we stop increasing B right after the last nonzero entry of � moves out of �3, we have �3 = 0 and

�3+1 ≠ 0. For 3 = −1, we can pick B = 0 as �−1 = 0 and �0 = � ≠ 0. �

Proof of Proposition 8.6. It suffices to show that whenever ? satisfies the two conditions in

Theorem 1.8, then so does ?′. Both ? and ?′ are homogeneous. Condition 1 holds for ?′ as
?′ either is zero or else has the same degree as ?. Regarding condition 2, as mentioned, the

condition is equivalent to a system of homogeneous linear equations on �′ � CMat*,+ (?′), each
involving only an adjacent pair of blocks in �′. Those that involve only blocks �′

3
with 3 ≤ 31

are met as the equations are homogeneous and the involved blocks are all zero. The same holds

for the equations that involve only blocks �′
3
with 3 ≥ 32. The remaining equations involve only

blocks �′
3
with 3 ∈ {31 , . . . , 32}, on which ? and ?′ agree. As the equations hold for �, they also

hold for �′. �
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It remains to argue Lemma 8.5. Our proof makes use of linear equations that are closely

related to those given by Theorem 1.8, which in turn come from the Zoom Lemma. We revisit

the application of the Zoom Lemma so as to obtain a simpler coefficient matrix—ultimately

a Cauchy matrix—that enables a deeper analysis. To facilitate the discussion, we utilize the

following notation. As ? is multilinear, we only need to consider rows indexed by monomials of

the form

∏
8∈� G8 for � ⊆ * and columns indexed by monomials of the form

∏
9∈� G 9 for � ⊆ + .

This allows us to index rows by subsets � ⊆ * and columns by subsets � ⊆ + . For � ⊆ * and

� ⊆ + we denote by �(� , �) the corresponding entry of �. The following proposition describes

the linear equations we use.

Proposition 8.8. Let ? ∈ Van[RFE
;−1

;
] be multilinear, and homogeneous of degree ; + 1, let* t+ be a

partition of [=], and let � � CMat*,+ (?). For every � ⊆ * and � ⊆ + with |� | + |� | = ;, and for every
9∗ ∈ � ∪ �, ∑

8∈*\�

�({8} ∪ � , �)
08 − 0 9∗

+
∑
8∈+\�

�(� , {8} ∪ �)
08 − 0 9∗

= 0. (8.1)

Proof. Set ! � � ∪ � and  � ! \ { 9∗}, and note that  ⊆ !. Let 3∗ ∈ ℕ!
be the all-1 degree pattern

with domain !, and let <∗ �
∏

8∈! G8 be the monomial supported on ! that matches 3∗. As ? is

multilinear, 3∗ is ( , !)-extremal in ?. Since ? is in Van[RFE
;−1

;
], the contrapositive of the Zoom

Lemma tells us that the coefficient ?3∗ of ? vanishes at the point (4.1) with I = 1.

The multilinear monomials < of degree ; + 1 that match 3∗ have the form < = G8 ·<∗, where

8 ∈ [=] \ !. Thus, we can write the coefficient ?3∗ as

?3∗ =
∑
8∈*\�

�({8} ∪ � , �) · G8 +
∑
8∈+\�

�(� , {8} ∪ �) · G8 . (8.2)

For each 8 ∈ [=] \ !, (4.1) with I = 1 substitutes 1/(08 − 0 9∗) into G8 . Plugging this into (8.2) yields

(8.1). �

Proof of Lemma 8.5. The proof goes by induction on C. The base case is C = 0, where the lemma

holds because the rank of a nonzero matrix is always at least 1. For the inductive step, where

C ≥ 1, we zoom in on the contributions of the monomials that contain a particular variable. More

precisely, for 9∗ ∈ [=], let ? 9∗ denote the partial derivative ? 9∗ � %G 9∗ ?. Consider any 9
∗ ∈ [=] such

that ? 9∗ is nonzero. As ? is multilinear and homogeneous of degree ; + 1, ? 9∗ is multilinear and

homogeneous of degree ;. As every monomial in ? depends on at least C variables indexed by*

and at least C variables indexed by + , every monomial in ? 9∗ depends on at least C − 1 variables

indexed by* and at least C − 1 variables indexed by + . In a moment, we argue that for every

9∗ ∈ [=], ? 9∗ ∈ Van[RFE
;−2

;−1
]. Then we will show the following:

Claim 8.9. There exists 9∗ ∈ [=] such that ? 9∗ ≠ 0 and

rank(CMat*,+ (?)) ≥ rank(CMat*,+ (? 9∗)) + 1. (8.3)

Given 9∗ as in Claim 8.9, we conclude by induction that

rank(CMat*,+ (?)) ≥ rank(CMat*,+ (? 9∗)) + 1 ≥ (C − 1) + 1 + 1 = C + 1.
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To see that ? 9∗ belongs to the vanishing ideal of RFE
;−2

;−1
, we use Theorem 1.8. Note that ? 9∗ is

homogeneous, just like ?. Condition 1 of Theorem 1.8 is satisfied by ? 9∗ since it it is satisfied

by ?, and all of :, ;, =, and the degree of ? 9∗ are one less. Given  and ! as in condition 2 of

Theorem 1.8, we have

%!? 9∗
��
 ←0

= ?3∗ (8.4)

where 3∗ is the degree pattern with domain  ∪ ! ∪ { 9∗} that has 3∗
9
= 1 for 9 ∈ ! ∪ { 9∗} and

3∗
9
= 0 for 9 ∈  . Since ? ∈ Van[RFE

;−1

;
], the contrapositive of the Zoom Lemma applied to

? with  ′ =  ∪ { 9∗}, !′ = ! ∪ { 9∗}, 3∗, says that (8.4) is zero upon the substitution (1.7). So

? 9∗ ∈ Van[RFE
;−2

;−1
] by Theorem 1.8. This concludes the proof of Lemma 8.5 modulo the proof of

Claim 8.9. �

Proof of Claim 8.9. Let *′ ⊆ * be the indices of variables G8 such that ? depends on G8 , and

similarly define +′ ⊆ + . We first consider the possibility that (8.3) fails for every 9∗ ∈ +′. We

show that this can only happen when |+′ | < |*′ |. A symmetric argument shows that if (8.3)

fails for all 9∗ ∈ *′, then it must be that |*′ | < |+′ |. As both inequalities cannot simultaneously

occur, this guarantees the existence of the desired 9∗.
Suppose that (8.3) fails for each 9∗ ∈ +′. Observe that the column ofCMat*,+ (? 9∗) correspond-

ing to a monomial < equals the column of CMat*,+ (G 9∗? 9∗) corresponding to the monomial G 9∗<;

all other columns of CMat*,+ (G 9∗? 9∗) are zero. The matrix CMat*,+ (G 9∗? 9∗) can also be formed

from CMat*,+ (?) by zeroing out all the columns indexed by subsets that do not contain 9∗

(corresponding tomultilinear monomials not involving G 9∗). The failure of (8.3) for 9
∗
implies that

CMat*,+ (? 9∗) has the same rank as CMat*,+ (?), which is to say that the columns of CMat*,+ (?)
indexed by subsets that contain 9∗ span all the columns of CMat*,+ (?). Going block by block,

this implies that for every block �3 of � = CMat*,+ (?), the columns within �3 that are indexed

by subsets containing 9∗ span all the columns of �3. This goes for every 9∗ ∈ +′, as we are

assuming that (8.3) fails for all of them.

Let 3 be minimal such that �3 ≠ 0, i. e., such that ? has a monomial depending on exactly 3

variables indexed by* . We have 3 ≥ C ≥ 1 and �3−1 = 0. The entries of �3 appear in the linear

equations (8.1) given in Proposition 8.8, either with entries from �3−1 or from �3+1. Since �3−1

is zero, the equations involving �3−1 and �3 simplify to equations on �3 only. Namely, for every

� ⊆ * with |� | = 3 − 1, every � ⊆ + with |� | = ; − (3 − 1), and every 9∗ ∈ � ∪ �, equation (8.1)

simplifies to ∑
8∈*\�

�3({8} ∪ � , �)
08 − 0 9∗

= 0. (8.5)

For any fixed 8 ∈ * \*′, all entries of the form �3({8} ∪ � , �) are zero. Thus, we can restrict the

range of 8 in (8.5) from* \ � to*′ \ �:∑
8∈*′\�

�3({8} ∪ � , �)
08 − 0 9∗

= 0. (8.6)

Since �3 ≠ 0, there is at least one fixed � for which not all entries of the form �3({8} ∪ � , �)
are zero as 8 and � vary. Let �∗ be such an �, and let �∗

3
denote the submatrix of �3 that consists
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of all entries of the form �3({8} ∪ �∗ , �) as 8 and � vary. For every � ⊆ + with |� | = ; − (3 − 1) and
every 9∗ ∈ �∗ ∪ �, we have ∑

8∈*′\�∗

�∗
3
({8} ∪ �∗ , �)
08 − 0 9∗

= 0. (8.7)

For each 9∗ ∈ +′, consider the equations (8.7) where � ranges over all subsets of + of size

|� | = ; − (3 − 1) that contain 9∗. Observe that the coefficients
1

08−0 9∗ in (8.7) are independent of

the choice of �. We argued that the columns of �3 indexed by subsets � that contain 9∗ span all

columns of �3. The same holds for �∗
3
, as �∗

3
is obtained from �3 by removing rows. It follows

that (8.7) holds for every subset � of + of size ; − (3 − 1) (not just the ones containing 9∗).
In particular, consider any one nonzero column of �∗

3
. The column represents a nontrivial

solution to the homogeneous system (8.7) of |+′ | linear equations (one for each choice of 9∗ ∈ +′)
in |*′ \ �∗ | unknowns (one for each 8 ∈ *′ \ �∗). The coefficient matrix [ 1

08−0 9∗ ] is a Cauchy matrix,

which is well-known to have full rank. In order for there to be a nontrivial solution, the number

of equations must be strictly less than the number of unknowns. In other words, we have

|+′ | < |*′ \ �∗ | ≤ |*′ |, as desired. �

9 Alternating Algebra Representation

In this section we present in greater detail the alternating algebra-based representation of

(multilinear) polynomials suited to studying the vanishing ideal of RFE. Subsection 9.1 expands

the informal discussion from the overview, describing the representation and characterization

for the setting when ; = 1, : = 0, and degree 3 = 2. Subsection 9.2 provides a brief introduction

to alternating algebra suited to our purpose. Subsection 9.3 formalizes the discussion from

Subsection 9.1 and extends it to the case of multilinear polynomials for general :, ;, and 3.

9.1 Basic case

For the purposes of this subsection, we fix the parameters : = 0, ; = 1, and 3 = 2. That is to say,

we are studying which degree-2 polynomials belong to the vanishing ideal for RFE
0

1
.

In Theorem 1.3, we proved that the polynomials EVC
0

1
[81 , 82 , 83] as 81 , 82 , 83 range over [=]

generate Van[RFE
0

1
]. As these generators are all homogeneous degree-2 polynomials, a degree-2

polynomial ? is in the ideal if and only if it is a linear combination of instantiations of EVC
0

1
.

Consider the generator when expanded as a linear combination of monomials:

EVC
0

1
[81 , 82 , 83] =

����081 1

082 1

���� G81G82 + ����083 1

081 1

���� G83G81 + ����082 1

083 1

���� G82G83 .
We represent it graphically by creating a vertex E8 ∈ + for each variable G8 , an undirected

edge for each monomial, and assigning to each edge a weight equal to the coefficient of that

monomial:
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E81

E82

E83

����081 1

082 1

���� ����082 1

083 1

����
����083 1

081 1

����
Observe that the coefficient of G81G82 has no dependence on 083 . In particular, as 83 varies,

the coefficient of G81G82 in EVC
0

1
[81 , 82 , 83] does not change. In any other instantiation of EVC

0

1

involving both 81 and 82, the coefficient is either the same, or else differs by a sign, according to

whether 81 or 82 precedes the other in the determinant. A similar pattern holds with respect to

all other monomials. This suggests we can modify the graphical representation by rescaling

the weights on edges and suppress the dependence on the abscissas. To capture the signs,

we use oriented edges. More precisely, for each edge {E81 , E82}, we consider either of its two

orientations, say E81 → E82 , and then divide its coefficient by

����081 1

082 1

����. Note that considering the

opposite orientation coincides with flipping the sign of the scaling factor. With these changes,

EVC
0

1
[81 , 82 , 83]may be drawn in any of the following ways (among others).

E81

E82

E83

1 1

1

E81

E82

E83

−1 1

1

E81

E82

E83

−1 −1

1

E81

E82

E83

−1 −1

−1

While different choices of edge orientations lead to different illustrations, any one illustration

can be transformed into any other by considering edges in opposite orientations as needed, and

flipping the sign of each associated coefficient. By identifying each edge in one orientation with

the negative of itself in the opposite orientation, we can view all the illustrations as renditions of

the same underlying object.

In general, we can represent any degree-2 homogeneous multilinear polynomial ? ∈
F [G1 , . . . , G=] in a similar way: For each monomial G81G82 create an oriented edge E81 → E82

and set the weight of the edge to be the coefficient of G81G82 in ? divided by

����081 1

082 1

����. The

representation determines the polynomial: simply undo the scaling on each edge, and read off a

linear combination of monomials. Note moreover that this graphical representation is linear in

the polynomial: adding or rescaling polynomials coincides with adding or rescaling coefficients

on the edges.

Observe that, in every graphical representation of EVC
0

1
[81 , 82 , 83], at every vertex, the sum of

the coefficients on edges oriented out of that vertex equals the sum of the coefficients on edges

oriented in to that vertex. Indeed, we can interpret EVC
0

1
[81 , 82 , 83] as a circulation in which one

unit of flow travels around a simple 3-cycle E81 → E82 → E83 → E81 . The coefficient on an oriented
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edge E1 → E2 measures how much flow is traveling in the direction E1 → E2, with negatives

representing flow in the opposite direction. That the sum of coefficients on outgoing edges

equals the sum of coefficients on incoming edges reflects the defining property of a circulation,

namely that the conservation law holds at every vertex: the total flow in equals the total flow out.

Conservation is maintained under linear combinations. Since every degree-2 polynomial

? in Van[RFE
0

1
] is a linear combination of instantiations of EVC

0

1
, the representation of ? also

satisfies the conservation law at every vertex, i. e., the representation of ? is a circulation. Thus,

conservation is a necessary condition for membership in Van[RFE
0

1
].

Conservation is sufficient for ideal membership, as well. By definition, conservation at every

vertex means that the representation is a circulation. By the well-known flow decomposition

theorem (see, e. g., [5, p. 80-81]), every circulation can be decomposed into a superposition of

circulations around simple cycles. A unit circulation around a simple cycle can be decomposed

into a sum of unit circulations around 3-cycles; this is depicted for a 5-cycle below, where each

edge indicates unit flow:

E
1

E
2

E
3

E
4

E
5

= E
1

E
2

E
3

E
4

E
5

= E
1

E
2

E
3

E
4

E
5

The basis of the first equality in the above figure is that a unit flow E1 → E3 cancels with a unit

flow E3 → E1, and similar for E4 in lieu of E3. Thus, conservation implies that we have a linear

combination of unit circulations on 3-cycles, i. e., a linear combination of instantiations of EVC
0

1
.

In summary, a multilinear homogeneous degree-2 polynomial is in Van[RFE
0

1
] if and only if its

graphical representation satisfies the conservation law at every vertex. This is the representation

and ideal membership characterization in the basic setting with : = 0, ; = 1, and 3 = 2

for multilinear homogeneous polynomials. Note that, in this basic setting, the multilinear

homogeneous degree-2 case represents the core of the problem. The remaining cases contain a

univariate monomial, and are outside of RFE
0

1
by Proposition 5.1.

9.2 Alternating algebra

In order to generalize Subsection 9.1, we need to be able to discuss higher-dimensional analogues

of “flow” and “circulation”, as well as appropriately-generalized notions of “conservation.”

Suited to this purpose is the language of alternating algebra. Alternating algebra was introduced

in the 1800s by Hermann Grassmann [22, 23] and is the formalism underlying differential

geometry and its applications to physics. We give a brief introduction to alternating algebra

here, tailored toward our purposes.

For each 8 ∈ [=], we create a fresh vertex E8 ∈ + , which corresponds to the variable G8 . The

alternating algebra provides a multiplication, denoted ∧, that can be thought of as a constructor
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to make oriented simplices out of these vertices. For example, the ∧-product of E1 with E2,

written E1 ∧E2, encodes the simplex with vertices E1 and E2 in a particular orientation; E2 ∧E1

encodes the same simplex with the opposite orientation. When E1 = E2, E1 ∧E2 is defined to

be zero. ∧-multiplication is associative. Rather than being commutative, the ∧-product is
anti-commutative in the sense that E1 ∧E2 = −E2 ∧E1. In this way the order of the vertices in the

product encodes an orientation. There are only ever two orientations. In a larger product such

as E1 ∧E2 ∧E3, we have

E1 ∧E2 ∧E3 = −E1 ∧E3 ∧E2

= E3 ∧E1 ∧E2 = −E3 ∧E2 ∧E1

= E2 ∧E3 ∧E1 = −E2 ∧E1 ∧E3.

In general, permuting the vertices in a ∧-product by an even permutation has no effect, while

permuting by an odd permutation flips the sign. Any ∧-product that uses the same vertex more

than once is zero.

We can formally extend ∧-multiplication to linear combinations of vertices in + . Denote*

to be the F -vector space with basis + . The ∧-multiplication extends to* by being distributive.
Overall, ∧-multiplication has the following defining properties, for any D1 , D2 , D3 ∈ * :

• Associativity: D1 ∧ (D2 ∧ D3) = (D1 ∧ D2) ∧ D3.

• Distributivity: D1 ∧ (D2 + D3) = D1 ∧ D2 + D1 ∧ D3.

• Alternation: D1 ∧ D1 = 0.

The alternation property implies anti-commutativity5: D1∧D2 = −D2∧D1. The alternating algebra

consists of all formal linear combinations of ∧-products of vertices from + , or equivalently, of

elements from* . We denote the underlying universe as follows.

Definition 9.1 (space of oriented simplices). For each C ∈ ℕ, we let

ΛC(*) � span(D1 ∧ · · · ∧DC : D1 , . . . , DC ∈ *)

denote the space of linear combinations of C-vertex oriented simplices. For a set of indices ), we

write D) �
∧
8∈) D8 , with the convention that the indices are listed in increasing order.

The distributivity and anti-commutativity properties of ∧ imply that

ΛC(*) = span(D[C] : D1 , . . . , DC are distinct elements in +),

which justifies the reference to C-vertex simplices. The properties also imply that changing the

order of the vertices in the wedge product yields the same element up to a sign, namely the

sign of the underlying permutation. This justifies the reference to orientation, where there are

two possible orientations. To emphasize, the C in ΛC(*) counts the number of vertices in the

simplices; this is one more than the usual notion of dimension of a simplex. For C = 0, we have

a distinct simplex corresponding to the empty product, denoted 1, which is an identity for ∧.
Note that not every element in ΛC(*) can be expressed in the form D1 ∧ · · · ∧DC .

To connect this with Subsection 9.1, recall the graphical depiction of EVC
0

1
[81 , 82 , 83]:

5Alternation and anti-commutativity are equivalent provided the characteristic of the field differs from 2.
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E81

E82

E83

1 1

1

Adopting the convention that an arrow E1 → E2 is E1 ∧E2 (and so an arrow E2 → E1 is

E2 ∧E1 = −E1 ∧E2), we can alternatively express the above as

E81 ∧E82 + E82 ∧E83 + E83 ∧E81 .

In general, the graphical representation of a homogeneous degree-2 multilinear polynomial

is some linear combination of 2-vertex oriented simplices. When we go to higher-degree

polynomials, we make use of oriented simplices with more vertices.

To express conservation, we introduce boundary maps, which are parametrized by a linear

weight function F : * → F . The boundary map %F is a linear map that sends each simplex to a

linear combination of its boundary faces (and the empty simplex to zero) according to a formula

reminiscent of the minor expansion of a determinant along a column consisting of the values of

F.

Definition 9.2 (boundary map). For any linear function F : * → F , the boundary map with

weight function F is the linear map %F :

⊕=
C=0
ΛC(*) →

⊕=
C=0
ΛC(*) realizing

D1 ∧ · · · ∧DC ↦→
C∑
8=1

(−1)8+1F(D8)(D1 ∧ · · · ∧D8−1 ∧D8+1 ∧ · · · ∧DC) (9.1)

for all D1 , . . . , DC ∈ * .

The boundary map %F is well-defined. To see this, note that the sign factor (−1)8+1
in (9.1)

ensures well-definedness of the restriction to vertices, i. e., for D1 , . . . , DC ∈ + . This is because
changing the order of the vertices on the left-hand side results in the correct sign change on the

right-hand side. The linearity of F then guarantees that the linear extension of the restriction to

vertices coincides with (9.1). For each C ≥ 1, %F(ΛC(*)) ⊆ ΛC−1(*), while %F(Λ0(*)) = {0}.
In the simplest case, F is the function that is 1 on every E ∈ + . In this case, the boundary of

some 2-vertex simplex is given by

%1(E1 ∧E2) = E2 − E1.

In particular, E1 ∧E2 contributes −1 toward E1 and +1 toward E2. This coincides with the

contribution of the edge E1 → E2 toward the net flow into the vertices E1 and E2. In exactly this

way, conservation is identified with having a vanishing boundary. Note also that for this choice of

weight function

%1(E1 ∧E2 ∧E3) = E2 ∧E3 − E1 ∧E3 + E1 ∧E2 = E1 ∧E2 + E2 ∧E3 + E3 ∧E1.
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Thus, unit circulations on 3-cycles are in one-to-one and onto correspondence with the images

under %1 of oriented 3-simplices on the vertices. By the decomposition discussed in the

Subsection 9.1, it follows that circulations are in one-to-one and onto correspondence with the

elements of %1(Λ3(*)). This means that %1(Λ3(*)) = ker(%1) ∩Λ2(*).
In general, for every linear F : * → F

im(%F) = ker(%F), (9.2)

or equivalently, %F(ΛC(*)) = ker(%F) ∩ ΛC−1(*) for every C ∈ [=]. This key relationship

implies that taking the same boundary multiple times always vanishes. That is, for any F,

%F ◦ %F = 0, often written as %2

F = 0. Another property is that for any F, F′ and �, �′ ∈ F ,

%�F+�′F′ = �%F + �′%F′, which is to say that the boundary maps themselves are linear in F. It

follows from these that, for any F, F′, %F ◦ %F′ = −%F′ ◦ %F . This means that the boundary maps

themselves behave like an alternating algebra, with ◦ as the multiplication rather than ∧. For any
F1 , . . . , F:+1, write $ = F1 ∧ · · · ∧F:+1, and define %$ = %F:+1

◦ · · · ◦ %F1
. That is, F1 ∧ · · · ∧F:+1

means apply %F1
, then %F2

, and so on, up to %F:+1
. The result is well-defined, and we borrow

the shorthand notation introduced in Definition 9.1: F) �
∧
9∈) F 9 , where ) ⊆ [: + 1] and the

indices in the wedge product are taken in increasing order.

The image-kernel relationship (9.2) extends as follows: For any linearly independent

F1 , . . . , F:+1,

im(%F1 ∧ · · · ∧F:+1
) =

:+1⋂
A=1

ker(%FA ). (9.3)

IfF1 , . . . F:+1 are linearly dependent, then %F1 ∧ · · · ∧F:+1
vanishes. In fact, a further generalization

holds and will be useful. We include a proof for completeness. (9.3) corresponds to the special

case Δ = 0.

Proposition 9.3 (generalized image-kernel relationship). For :,Δ ∈ ℕ and any linearly independent
linear functions F1 , . . . , F:+Δ+1 : * → F

span

�⊆[:+Δ+1]
|�|=:+1

im(%F�) =
⋂

�⊆[:+Δ+1]
|�|=Δ+1

ker(%F�). (9.4)

Proof. Extend F1 , . . . , F:+Δ+1 to a basis F1 , . . . , F= of all linear functions * → F . We can

interpret F1 , . . . , F= as a basis of the dual space*
∗
, and the mapping (F, D) ↦→ F(D) as a bilinear

form *∗ × * → F . This means we can construct a dual basis D1 , . . . , D= ∈ * such that for

8 , 9 ∈ [=], F 9(D8) is 1 if 8 = 9 and 0 if 8 ≠ 9.

In this particular basis D1 , . . . , D= , the boundary maps with weight functions F 9 take a very

simple form: The only term in (9.1) that remains for F = F 9 is the one with 8 = 9. More generally,

for �, ) ⊆ [=],

%F�(D)) =
{
±D)\� if � ⊆ )
0 otherwise.

(9.5)
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With this characterization, we can see that both the span of the images and the intersection of

the kernels coincide with

span(D( : ( ⊆ [=]with |( ∩ [: + Δ + 1]| ≤ Δ).

Weobtain±D( as %F�(D)) if and only if) = �t(. Such a choice of) and �with � ⊆ [:+Δ+1]
and |�| = :+1 exists if and only if there are at least :+1 elements in [:+Δ+1]\(, or equivalently,
|( ∩ [: + Δ + 1]| ≤ (: + Δ + 1) − (: + 1) = Δ. This proves the equality for the span of the images.

On the other hand, D( falls within ker(%F�) if and only if � * (. This is case for every

� ⊆ [: + Δ + 1] with |�| = Δ + 1 if and only if ( contains at most Δ elements in [: + Δ + 1]. This
proves the equality of the intersection of the kernels. �

In the following subsection, we will need an explicit formula for computing %$(D)) for
generic D1 , . . . , D= ∈ * and ) ⊆ [=]. From a concrete perspective, the effect of a single boundary

map in Definition 9.2 resembles one level of determinant minor expansion, so composing

boundary maps should produce a partially expanded determinant. We formalize that intuition

with the following proposition, which characterizes the boundary of a C-simplex after applying

: weighted boundaries as a linear combination of (C − :)-simplices. Each (C − :)-simplex is

indexed by a subset � of ).

Proposition 9.4 (composed boundary maps). Let F1 , . . . , F:+1 : * → F be linear functions, ) a set
of indices, and D8 ∈ * for 8 ∈ ).

%F[:+1](D)) =
∑
�t�=)
|� |=:+1

(−1)XInv(� ,�) · det

[
FA(D8)

] A∈[:+1]
8∈� · D� , (9.6)

where in the determinant, the rows from top to bottom and the columns from left to right are in increasing
order of index 8 and A, respectively.

Proof. Observe that %F[:+1](D)) ∈ ΛC−:−1(*) and, by Definition 9.2, can be written as a linear

combination of D� over all � ⊆ ) with |� | = |) | − : − 1. It suffices to show that the coefficients of

each D� match the ones given above.

Without loss of generality, let ) = [C], as this does not change the relative order of any

determinants or ∧-products. Consider the terms formed by iteratively expanding %F[:+1](D)) �
%F1 ∧ · · · ∧F:+1

(D)) by Definition 9.2. Each term is in one-to-one correspondence with the choices

of 8 wemake in the expansions of Definition 9.2. In particular, the terms that yield D� correspond

to the bĳections � : [: + 1] → �, where � = ) \ �. For a given �, the corresponding coefficient is

equal to

(−1)(
∑
8∈� 8)+:+1−|{A,A′∈[:+1]:A′<A,�(A′)<�(A)}|

∏
A∈[:+1]

FA(D�(A)).

The |{A′ < A, �(A′) < �(A)}| term accounts for the fact that, when each A is selected, some terms

of ) may have been previously removed, shifting the relative rank of A. Since for any distinct

A, A′ ∈ [: + 1], either �(A′) > �(A) or �(A′) < �(A), we can rewrite |{A′ < A, �(A′) < �(A)}| =(:+1

2

)
− |{A′ < A, �(A′) > �(A)}|.
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As for the term

∑
8∈� 8, writing 8 as 8 = |{8′ ∈ � : 8′ ≤ 8}| + |{ 9 ∈ � : 9 < 8}| and summing over

all 8 ∈ �, we have that

∑
8∈� 8 =

∑:+1

A=1
A + XInv(� , �) =

(:+2

2

)
+ XInv(� , �).

As

(:+2

2

)
=

(:+1

2

)
+ : + 1, we get that the coefficient of D� equals∑
�:[:+1]→�

(−1)XInv(� ,�)+|{A′<A,�(A′)>�(A)}|+2:+2

∏
A∈[:+1]

FA(D�(A)),

and by definition of the determinant and simplifying, this is equal to

(−1)XInv(� ,�)
det

[
FA(D8)

] A∈[:+1]
8∈� . �

In the next subsection we will apply Proposition 9.4 with D8 = E8 . For the choice of D8 in the

proof of Proposition 9.3, the matrix in (9.6) is the identity matrix and thus has determinant 1,

which results in (9.5).

9.3 General case

With the notation of alternating algebra in hand, we turn now to generalizing the characterization

of Van[RFE
:
;
] based on the representation of polynomials that we introduced in Subsection 9.1,

henceforth the simplicial representation. We focus on multilinear polynomials, but the parameters

:, ; ∈ ℕ may be arbitrary. For starters, we still restrict to degree 3 = ; + 1. We then generalize to

multilinear polynomials of arbitrary degree and present an alternate proof to Theorem 1.8. We

end with some thoughts about the non-multilinear case.

As before, we associate each variable G8 with a distinct vertex E8 ∈ + , where * � span(+)
denotes an underlying vector space over F . We view a polynomial as a linear combination of

monomials and represent each degree-C multilinear monomial as an oriented simplex with C

vertices. The representation makes use of the Vandermonde determinants det(�)) for ) ⊆ [=],
where �) refers to the notation that we introduced in (3.2) for the Vandermonde matrix built

from the abscissas 08 for 8 ∈ ) in increasing order. The Vandermonde determinant det(�)) can
be written as the product of pairwise differences:

det(�)) =
∏

8 , 9∈),8< 9
(08 − 0 9). (9.7)

In particular, as the abscissas are distinct, det(�)) is always nonzero.

Let E) �
∧
8∈) E8 , where the indices are listed in increasing order. We represent themonomial

G) �
∏

8∈) G8 for ) ⊆ [=] by the element E)/det(�)). Formally, we define the following “decoder

map,” which maps a simplicial representation to the polynomial it represents.

Definition 9.5 (representation). � :

⊕=
C=0
ΛC(*) → F [G1 , . . . , G=] is the linear map extending

E) ↦→ det(�)) · G) (9.8)

for every ) ⊆ [=].
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Note that (9.8) holds irrespective of the order of the indices, as long as the same order is used

for both E) and det(�)). This is because exchanging any two indices changes the sign of both

the left-hand side and the determinant on the right-hand side. The mapping � induces a vector

space isomorphism between Λ;+1(*) and the space of multilinear homogeneous degree-(; + 1)
polynomials.

The strategy for our membership test in Van[RFE] consists of two steps: First express

Van[RFE] in terms of � and the image of the boundarymaps %F , and then apply the (generalized)

image-kernel relationship from alternating algebra. In Definition 9.2, F is taken to be a linear

function from* to F . As a linear function, F is completely defined by its values on the basis

+ . By Lagrange interpolation, every function F from + to F can be viewed as a univariate

polynomial of degree less than = � |+ | restricted to the abscissas, namely the polynomial

interpolating 08 ↦→ F(E8) for 8 ∈ [=].

Definition 9.6 (degree of boundary map). Let F : * → F be linear and 01 , . . . , 0= be distinct

elements of F . We say that F is interpolated by @ ∈ F [] if F(E8) = @(08) for 8 ∈ [=]. We say that F

is of degree 3 if F is interpolated by a degree-3 polynomial @.

Furthermore, given fixed 01 , . . . , 0= , the correspondence between a weight function F and

its interpolating polynomial @ forms an isomorphism; if F1 , F2 are interpolated by @1 , @2, then

F1 + F2 is interpolated by @1 + @2, and 2F1 is interpolated by 2@1. From now on, we directly

refer to a weight function by the polynomial in F [] that interpolates it. We will be interested in

the boundaries that are weighted by low-degree polynomials.

Multilinear case for degree 3 = ; + 1. In the case of degree 3 = ; + 1, the first step of our

approach boils down to finding a simplicial representation for the generators EVC
:
; . We do so

using composed boundary maps of degree at most :.

Lemma 9.7. For any :, ; ∈ ℕ and ( ⊆ [=], |( | = : + ; + 2,

EVC
:
; [(] = �

(
%: ∧ · · · ∧0

(
E(

))
. (9.9)

That is, EVC
:
; is the polynomial formed from a given (: + ; + 2)-vertex simplex by iteratively

applying to it the : + 1 boundaries weighted by : , :−1 , . . . , 0
respectively, where A stands

for the weight function interpolated by the polynomial A .

Proof. Using our notation, the explicit expression (3.3) in Proposition 3.4 can be rewritten as

EVC
:
; [(] =

∑
 t!=(
| |=:+1

(−1)XInv( ,!) · det(� ) · det(�!) · G!. (9.10)
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For the right-hand side, we use Proposition 9.4 to get:

�
(
%: ∧ · · · ∧0

(
E(

))
=

∑
 t!=(
| |=:+1

(−1)XInv( ,!) · det(� ) · �
(
E!

)
=

∑
 t!=(
| |=:+1

(−1)XInv( ,!) · det(� ) · det(�!) · G!.

The sum is identical to (9.10). �

Lemma 9.7 yields the following characterization of the part of Van[RFE
:
;
] of degree ; + 1.

We state it in a format to which we can directly apply the image-kernel relationship (9.3).

Corollary 9.8. For any :, ; ∈ ℕ, the set of polynomials of degree ; + 1 in Van[RFE
:
;
] is given by

�(%: ∧ · · · ∧0(Λ:+;+2(*))).

Proof. Since every degree-(; + 1) polynomial ? in Van[RFE
:
;
] is a linear combination of instantia-

tions of EVC
:
; , Lemma 9.7 allows to us to express the subset in Van[RFE

:
;
] as

span

(⊆[=]
|( |=:+;+2

�(%: ∧ · · · ∧0(E()).

The result follows by linearity and the fact that* = span(+). �

The image-kernel relationship (9.3) then leads to the following membership test. Recall that

� induces an isomorphism from the space of (; + 1)-vertex oriented simplices Λ;+1(*) to the set

of multilinear polynomials of degree ; + 1, so �−1
is well-defined on multilinear polynomials.

Theorem 9.9. Let :, ; ∈ ℕ. For any multilinear polynomial ? ∈ F [G1 , . . . , G=] of degree ; + 1,
?(RFE

:
;
) = 0 if and only if ? is homogeneous of degree ; + 1 and

%F(�−1(?)) = 0

for every weight function F of degree at most :.

Proof. The criterion in Corollary 9.8 can be rewritten as

�−1(?) ∈ %: ∧ · · · ∧0(Λ:+;+2(*)).

By Proposition 9.3, this is equivalent to

�−1(?) ∈
(
:⋂
A=0

ker(%A )
)
∩Λ;+1(*).

The intersectionwithΛ;+1(*)means that ? is homogeneous of degree ;+1. For such polynomials

?, we have that ?(RFE
:
;
) = 0 if and only if %A (�−1(?)) = 0 for A = 0, . . . , :, which by linearity is

equivalent to %F(�−1(?)) = 0 for all weight functions F of degree at most :. �
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Theorem 9.9 states that a multilinear polynomial ? of degree ; + 1 is in the vanishing ideal

of RFE
:
;
if and only if it is homogeneous of degree ; + 1 and the simplicial representation of ?

satisfies conservation with respect to all degree-: boundaries. This is the representation and

ideal membership characterization for such polynomials for general : and ; in the special case

of degree 3 = ; + 1. As we will argue in Proposition 9.14, the characterization coincides with the

membership test from Theorem 1.8 for multilinear polynomials of degree ; + 1.

In Section 9.1 we considered the special case with : = 0 and ; = 1. In that basic setting,

the only weight functions of degree : are the constant functions, and only F ≡ 1 needs to be

considered in Theorem 9.9. The resulting criterion is exactly the conservation criterion that we

developed in Section 9.1.

Note that the restriction in Theorem 9.9 to multilinear polynomials ? is just to ensure that

�−1(?) is well-defined. For polynomials of degree ; + 1 that are not multilinear, one could

interpret the non-existence of �−1(?) as not satisfying the criterion. This is consistent with

Proposition 5.1, which implies that polynomials of degree ; + 1 that are not multilinear are

automatically outside Van[RFE
:
;
] since they necessarily have a monomial supported on ; or

fewer variables.

Through Lemma 9.7, the property that %F(�−1(EVC
:
; )) = 0 for every weight function F of

degree at most : can be viewed as an application of %F∧: ∧ · · · ∧0 = 0 to ΛC(*)with C = : + ; + 2.

The equations (1.6) follow in a similar way from an application with C = : + ; + 3.

Multilinear case of arbitrary degree. The two-step approach underlying Theorem 9.9 extends

to multilinear polynomials of higher degrees. Whereas in the special case of degree 3 = ; + 1

we only needed simplicial representations for EVC
:
; [(] in the first step, we now need them for

polynomials of the more general form EVC
:
; [(] · G" where " ⊆ [=] is disjoint from (. We can

handle the additional term G" in Lemma 9.7 by including a multiplicative factor

�"() �
∏
9∈"
( − 0 9) (9.11)

in each of the weight functions. The extra factor acts as a masking term and ensures that in the

expansions of (9.1) the terms with 8 ∈ " vanish, so under � the factor G" remains.

Lemma 9.10. For any :, ; ∈ ℕ, ( t" ⊆ [=] with |( | = : + ; + 2, and �"() �
∏

9∈"( − 0 9),

EVC
:
; [(] · G

" =
det(�()

det(�(t")
· �(%�" (): ∧ · · · ∧�" ()0(E(t")). (9.12)

Proof. Expand %�" (): ∧ · · · ∧�" ()0(E(t") by Proposition 9.4. Notice that the only nonzero

terms in the expansion correspond to subsets � that contain ". Substituting � ←  and

� ← ! t", and factoring out the �"(08) terms from the determinant, we can write

%�" (): ∧ · · · ∧�" ()0(E(t") =
∑
 t!=(
| |=:+1

(−1)XInv( ,!t") ·
(∏
8∈ 

�"(08)
)
· det(� ) · E!t" .
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Applying � yields

�(%�" (): ∧ · · · ∧�" ()0(E(t")) =
∑
 t!=(
| |=:+1

(−1)XInv( ,!t") ·
(∏
8∈ 

�"(08)
)
·det(� ) ·det(�!t") ·G!t" .

(9.13)

Applying (9.7) to ) = ! t", ) = !, and ) = ", rearranging terms, and remembering that �)
takes rows in increasing index, we obtain

det(�!t") = (−1)XInv(!,") · ©«
∏

8∈!,9∈"
(08 − 0 9)ª®¬ · det(�!) · det(�"). (9.14)

We can expand (−1)XInv( ,!t")
as the product (−1)XInv( ,!)(−1)XInv( ,")

because XInv( , ! t")
equals the sum XInv( , !)+XInv( , "). By the definition of �" , we can expand

∏
8∈ �"(08) as∏

8∈ ,9∈"(08 − 0 9). Those expansions and (9.14) allow us to write the summand on the right-hand

side of (9.13) as

(−1)XInv( ,!)(−1)XInv( ,")(−1)XInv(!,") · ©«
∏

8∈ t!,9∈"
(08 − 0 9)ª®¬ · det(� ) · det(�!) · det(�") · G!t"

Using the similar fact as above that (−1)XInv( t!,") = (−1)XInv( ,")(−1)XInv(!,")
, recalling that

 t ! = (, and pulling out the terms independent of the choice of  , we obtain

�(%�" (): ∧ · · · ∧�" ()0(E(t"))

= (−1)XInv((,") · ©«
∏

8∈(,9∈"
(08 − 0 9)ª®¬ · det(�") · G"

∑
 t!=(
| |=:+1

(−1)XInv( ,!) · det(� ) · det(�!) · G!

=
det(�(t")

det(�()
· G"

∑
 t!=(
| |=:+1

(−1)XInv( ,!) · det(� ) · det(�!) · G! ,

where the last step applies (9.14) with !← (. By Proposition 3.4, this establishes the result. �

The multilinear elements in Van[RFE
:
;
] are exactly the linear combinations of terms of the

form (9.12) where ( ⊆ [=] ranges over subsets of size : + ; + 2 and" ⊆ [=] over subsets disjoint
with (. In order to obtain a simpler characterization of the same type, as well as one to which

we can apply the generalized image-kernel relationship, we show that we can replace the weight

functions on the right-hand side of (9.12) by generic weight functions of the same degree or by

Lagrange interpolants with respect to a subset of abscissas of size one more.

Proposition 9.11. Let : + 1, <, C ∈ ℕ with C ≥ : + 1, � ∈ ΛC(*), and # ⊆ [=] with |# | = : +< + 1.
Let !#,9 for 9 ∈ # denote the Lagrange interpolants for the subset of abscissas {08}8∈# , i. e., !#,9
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denotes the unique univariate polynomial of degree at most |# | − 1 satisfying !#,9(08) = 1 for 8 = 9 and
!#,9(08) = 0 for 8 ∈ # \ { 9}. For all weight functions F1 , . . . , F:+1 of degree at most : + <,

span

"⊆#
|" |=<

%�" (): ∧ · · · ∧�" ()0(�) = span

F1 ,...,F:+1
∈F []

deg(F1),... deg(F:+1
)≤:+<

%F[:+1](�) = span

�⊆#
|�|=:+1

%!�
#
(�). (9.15)

Some explanation of the compact notation on the right-hand side of (9.15) is in order. First,

we use !#,9 to differentiate with the notation ! 9 for Lagrange interpolants that we introduced

in Definition 1.1, where ! 9 corresponds to ![=], 9 . Second, for a subset � ⊆ # , we write !�
#
as a

shorthand for

∧
9∈� !#,9 , where the indices in the wedge product are taken in increasing order.

Finally, in the composed boundary operator %!�
#
, the Lagrange interpolant !#,9 represents the

weight function interpolated by !#,9 as in Definition 9.6.

Proof. The inclusion ⊆ of the first equality in (9.15) follows because theweight functions �"()A
for A ∈ {0, . . . , :} have degree at most : + |" | = : + <.

To argue the inclusion ⊆ of the second equality in (9.15), note that the Lagrange interpolants

!#,9 for 9 ∈ # are linearly independent and that there are as many of them as the dimension of

the space of polynomials of degree at most |# | − 1 = : + <, so they form a basis for that space.

In particular, we can write all weight functions F1 , . . . , F:+1 of degree at most : + < as linear

combinations of the Lagrange interpolants !#,9 , 9 ∈ # . By the distributivity and antisymmetry

of the wedge product, this implies that

%F[:+1](�) ∈ span

�⊆#
|�|=:+1

%!�
#
(�).

It remains to argue that the right-most side of (9.15) is included in the left-most side. Fix

a subset � ⊆ # of size |�| = : + 1. Since the polynomials !#,9 for 9 ∈ � individually have

roots in all but one element of {08}8∈# , they collectively have common roots among exactly

|# | − |�| = < of these abscissas, which form a set " ⊆ # . Each !#,9 can therefore be written as

the product of �" and a polynomial of degree at most :, or equivalently, as a linear combination

of �"(): , . . . , �"()0
. Once again, by the distributivity and antisymmetry of the wedge

product, we have that

%!�
#
(�) ∈ span

"⊆#
|" |=<

%�" (): ∧ · · · ∧�" ()0(�). �

The first equality in (9.15) connects weight functions as on the right-hand side of (9.12) with

generic ones of the same degree. This leads to the following simple characterization of the

multilinear part of Van[RFE
:
;
] in terms of � and the image of composed boundary maps. The

characterization naturally decomposes into separate ones for the homogeneous components of

the various degrees 3.

Corollary 9.12. For any :, ; ∈ ℕ, the set of multilinear polynomials ? ∈ F [G1 , . . . , G=] in Van[RFE
:
;
]

is given by the direct sum ⊕=−:−1

3=0
�3 of homogeneous components of degree 3 ∈ {0, . . . , = − : − 1} given

by
�3 � span �(%F[:+1](Λ:+3+1(*))), (9.16)
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where F1 , . . . , F:+1 range over all weight functions of degree at most : + 3 − ; − 1.

For 3 ≤ ;, the only possible choices for the weight functions F1 , . . . F:+1 in Corollary 9.12

are linearly dependent, which implies that %F[:+1] vanishes and therefore �3 only contains the

zero polynomial. This is consistent with Proposition 5.1, as is the restriction 3 ≤ = − : − 1.

Proof. By Theorem 1.3 and the fact that all the instantiations EVC
:
; are homogeneous of degree

; + 1, the multilinear elements in Van[RFE
:
;
] are exactly the linear combinations of terms of the

form (9.12) where ( ⊆ [=] ranges over subsets of size : + ; + 2 and" ⊆ [=] over subsets disjoint
with (. The homogeneous component of degree 3 equals the contributions of the combinations

((, ")where |" | = < � 3 − ; − 1. Since ( t" ⊆ [=] and |( | + |" | = : + 3 + 1, it follows that

3 ≤ = − : − 1.

Since the weight functions on the right-hand side of (9.12) are of degree at most |" | + : =
: + 3 − ; − 1, the homogeneous component of degree 3 falls inside �3. For the other inclusion,

consider � = E) for ) ⊆ [=]with |) | = C � : + 3 + 1. The first equality in (9.15) applies for any

# ⊆ [=]with |# | = : +< + 1 = C − ; − 1. If we pick # ⊆ ), we have that" ⊆ # ⊆ ) and we can

write ) as ) = ( t" where |( | = |) | − |" | = : + ; + 2. Thus, each term on the left-most side of

(9.15) is of the form of the boundary expression on the right-hand side of (9.12). By Lemma 9.10

and linearity, it follows that all of �3 can be realized as homogeneous components of degree 3

of polynomials in Van[RFE
:
;
]. �

For 3 = ; + 1, up to constant factors, there is only one nontrivial composed boundary

map %F[:+1] up to scalar multiplication, namely the map %: ∧ · · · ∧0 from Corollary 9.8. Thus,

Corollary 9.8 represents the special case of Corollary 9.12 for degree 3 = ; + 1.

The second equality in (9.15) from Proposition 9.11 leads to another characterization of the

multilinear part of Van[RFE
:
;
] in terms of � and composed boundary maps, one that is more

technical but to which we can directly apply the generalized image-kernel relationship. This

leads to the following test for membership of multilinear polynomials in Van[RFE
:
;
]. Consistent

with the characterization in Corollary 9.12 and with Proposition 5.2, the test decomposes into

independent ones for each of the homogeneous components.

Theorem 9.13. Let :, ; ∈ ℕ. For any multilinear polynomial ? ∈ F [G1 , . . . , G=], ?(RFE
:
;
) = 0 if and

only if the homogeneous components ?(3) of ? for all degrees 3 satisfy the following requirements:

1. ?(3) = 0 if 3 ≤ ; or 3 ≥ = − :.

2. For all 3 = ; + Δ + 1 with Δ ∈ {0, . . . , = − : − ; − 2} and all weight functions F1 , . . . , FΔ+1 of
degree at most : + Δ ,

%F1 ∧ · · · ∧FΔ+1
(�−1(?(3))) = 0. (9.17)

Proof. Consider the characterization (9.16) of the homogeneous components�3 in Corollary 9.12.

We already argued that �3 only contains the zero polynomial for 3 ≤ ; and that there are no

terms for 3 ≥ = − : − 1. This gives us condition 1.
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In the remainder of the proof we consider the requirements for 3 ∈ {; + 1, . . . , = − : − 1}.
For multilinear ?, �−1(?) is well-defined. Applying �−1

and the second equality in (9.15), we can

alternately write (9.16) as

�−1(�3) = span

�⊆#
|�|=:+1

%!�
#
(Λ:+3+1(*)), (9.18)

where # ⊆ [=] can be any fixed subset of size |# | = : + 3 − ;, namely by setting < = 3 − ; − 1,

which we know is non-negative. For easier notation, we pick # = [: + 3 − ;]. By Proposition 9.3

with F 9 � !#,9 and Δ � 3 − ; − 1, we can further rewrite the right-hand side of (9.18) as

�−1(�3) =
⋂

�⊆[:+Δ+1]
|�|=Δ+1

ker(%!�
#
) ∩Λ3(*).

Thus ?(3) ∈ �3 if and only if

(∀� ⊆ [: + Δ + 1]with |�| = Δ + 1) %!�
#
(�−1(?(3))) = 0. (9.19)

Another application of the second part of Proposition 9.11, this time with : ← Δ, < ← :, C ← 3,

� = �−1(?(3)), and # = [: + Δ + 1], shows that if (9.19) holds for the particular choice of weight

functions F 9 = !#,9 , then (9.19) holds for all choices of weight functions F 9 of degree at most

: + Δ. The statement follows. �

As we will argue in more detail below, by another application of the first part of Proposi-

tion 9.11, it suffices in condition 2 of Theorem 9.13 to consider weight functions of the form

F 9() = � ()Δ−9+1
for 9 ∈ [Δ + 1], where  ranges over all subsets of size : of some fixed

# ⊆ [=]with |# | = : + Δ + 1. In this case, (9.17) becomes

%� ()Δ ∧ · · · ∧� ()0(�−1(?(3))) = 0. (9.20)

The left-hand side of (9.20) lives in Λ;(*), and the condition is equivalent to requiring that

the coefficient of E! vanishes for every subset ! ⊆ [=] \  of size |!| = ;. Those coefficients

can be expressed in terms of evaluations of %!?(3)
��
 ←0

, where we take the partial derivative

with respect to the variables G8 for 8 ∈ ! and set the variables G8 for 8 ∈  to zero. Intuitively,

whereas in Lemma 9.10 the effect of the masking factors �" was to retain only contributions of

monomials that contain G8 for every 8 ∈ ", in this dual setting the effect of � is to cancel the

contributions of monomials that contain G8 for at least one 8 ∈  .

Proposition 9.14. Let ? ∈ F [G1 , . . . , G=] be a multilinear polynomial, let  , ! ⊆ [=] be disjoint subsets
with | | = : and |!| = ;, andΔ ∈ ℕ. Let 2 ,! denote the coefficient of E! in %� ()Δ ∧ · · · ∧� ()0(�−1(?)),
and 4 ,! denote the value of %!? | ←0

upon the substitution G8 ← � (08)/�!(08) for 8 ∈ [=] \ ( t !).
Then 2 ,! = 4 ,!/det(�!).

Proof. By linearity, it suffices to establish the result for monomials ? = G) where ) ⊆ [=]. In
such a case �−1(?) = E)/det(�)).
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If ! * ), then 2 ,! vanishes because boundary maps can only remove components from a

wedge product, not insert new components (see (9.5)). On the other hand, %!G)
��
 ←0

is identically

zero because we are taking a partial derivative with respect to a variable that does not appear,

so 4 ,! vanishes and the equality holds.

If ! ⊆ ), then by applying Proposition 9.4 to E) and scaling,

2 ,! = (−1)XInv(",!)
∏
8∈"

� (08) · det(�")/det(�)),

where" � ) \ !. Note that if  ∩" ≠ ∅ then the term

∏
8∈" � (08) vanishes, hence 2! vanishes.

On the other hand, %!G)
��
 ←0

is identically zero because we are setting a variable to zero that

appears in the monomial G) . So, 4 ,! vanishes and the equality holds.

The remaining cases are those where ! ⊆ ) and  ∩" = ∅. By (9.14)

det(�)) = det(�"t!) = (−1)XInv(",!) · ©«
∏
8∈"

∏
9∈!
(08 − 0 9)ª®¬ · det(�") · det(�!).

Combining this with the notation �!(08) �
∏

9∈!(08 − 0 9), we can rewrite the expression for 2 ,!
as

2 ,! =

(∏
8∈"

� (08)
�!(08)

)
· 1

det(�!)
. (9.21)

On the other hand, we have that %!G)
��
 ←0

= G" , and the value upon the substitution G8 ←
� (08)/�!(08) for 8 ∈ [=] \ ( t !) equals

4 ,! =
∏
8∈"

� (08)
�!(08)

. (9.22)

The result follows by comparing (9.21) and (9.22). �

In combination with Theorem 9.13, the connection in Proposition 9.14 yields an alternate

proof of Theorem 1.8. It provides a membership test for the ideal generated by the instantiations

of EVC
:
; that, beyond the machinery of alternating algebra developed in this section, only

requires the elementary properties of EVC
:
; stated in Proposition 3.4. In particular, it does not

make use of the Zoom Lemma, which we developed as a tool to obviate the need for alternating

algebra after we had obtained our results. Note that the alternate approach to Theorem 1.8 still

relies on the Zoom Lemma for the connection to RFE, namely in the argument that the ideal

generated by the instantiations of EVC
:
; includes all of Van[RFE

:
;
].

Alternate proof of Theorem 1.8. Consider themembership test given by Theorem 9.13. Condition 1

is equivalent to condition 1 in Theorem 1.8. It remains to argue that condition 2 is equivalent to

condition 2 in Theorem 1.8.

FixΔ ∈ {0, . . . , =−:−;−2} and consider Proposition 9.11with : ← Δ,< ← :, C ← 3 � ;+Δ+1,

and � = �−1(?(3)). Set # ⊆ [=] to be an arbitrary subset of size # = : + Δ + 1 and rename the
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set " as  . The application of the first equality in Proposition 9.11 tells us that the combined

requirements (9.17) over all choices of weight functions F1 , . . . , FΔ+1 of degree at most : + Δ
are equivalent to the combined requirements (9.20) over all subsets  ⊆ # of size :, or, because

of the arbitrariness of # , over all subsets  ⊆ [=] of size :. The left-hand side of (9.20) is a

linear combination of terms of the form E!, where ! ⊆ [=] is a subset of size |!| = 3 − Δ − 1 = ;

and is disjoint from  because of the masking factor � in all weight functions. Thus, (9.20)

holds if and only if the coefficient 2 ,!,3 of E
!
on the left-hand side vanishes for every such

!. By Proposition 9.14, 2 ,!,3 = 0 is equivalent to 4 ,!,3 = 0, where 4 ,!,3 denotes the value of

%!?(3)
��
 ←0

upon the substitution G8 ← � (08)/�!(08) for 8 ∈ [=] \ ( t !).
In summary, condition 2 in Theorem 9.13 stipulates that for all disjoint subsets  , ! ⊆ [=]

with | | = : and |!| = ;,

(∀3 ∈ {; + 1, . . . , = − : − 1}) 4 ,!,3 = 0. (9.23)

The value 4 ,!,3 is also the coefficient of degree 3 − ; of the univariate polynomial in I obtained

from %!? | ←0
after the substitution (1.7) from condition 2 in Theorem 1.8. Since the range of 3

in (9.23) covers all terms of this univariate polynomial in I, (9.23) is equivalent to the polynomial

being zero, which is exactly condition 2 in Theorem 1.8. �

Beyond multilinearity. Theorem 9.13 does well for understanding the multilinear elements

of the vanishing ideal. For non-multilinear elements, one may do the following. Let Λ̂C(*) be
ΛC(*) except that coefficients may be arbitrary polynomials in F [G1 , . . . , G=] rather than just

scalars in F . The decoder map � and boundarymaps %F carry over to Λ̂C(*) directly, though now

� is no longer injective. The following variation of Theorem 9.9 characterizes ideal membership

for arbitrary polynomials.

Proposition 9.15. Let :, ; ∈ ℕ. For any polynomial ? ∈ F [G1 , . . . , G=], ?(RFE
:
;
) = 0 if and only if

there exists � ∈ Λ̂;+1(*) with �(�) = ? such that, for every weight function F of degree at most :,

%F(�) = 0.

Proof. For the forward direction, we consider polynomials of the form ? = EVC
:
; [(] · <, where

( ⊆ [=]with |( | = : + ; + 2 and < is a (not necessarily multilinear) monomial in F [G1 , . . . , G=].
One choice of � ∈ Λ̂;+1(*) forwhich �(�) = ? is � = (−1)(:+1)(;+1)%: ∧ · · · ∧0(E()·<, by Lemma 9.7.

For this choice of � and any weight function F of degree at most :, %F(�) = 0. The forward

direction follows since every polynomial ? for which ?(RFE
:
;
) = 0 can be expressed as a linear

combination of polynomials of the described form.

For the backward direction, suppose there exists � ∈ Λ̂;+1(*) such that �(�) = ? and

%F(�) = 0 for all weight functions F of degree at most :. We can write � =
∑
< $< ·< as a linear

combination of monomials < ∈ F [G1 , . . . , G=], each with coefficient $< ∈ Λ;+1(*). Since %F
does not affect polynomial coefficients by nonconstant factors, we have that for each <, %F($<)
vanishes for all F of degree at most :. Theorem 9.9 implies that �(%F($<)) is not hit by RFE

:
;
.

By linearity, �(�) is not hit by RFE
:
;
. �
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While Proposition 9.15 applies to a broader class of polynomials, it has the drawback

that representing polynomials with Λ̂;+1(*) is too redundant. Specifically, whenever ? has a

representation in Λ̂;+1(*), there are many � ∈ Λ̂;+1(*) that represent ?, and most of them do

not satisfy the boundary conditions, even when ? belongs to the vanishing ideal. This erodes

the utility of the characterization. Theorems 9.9 and 9.13 yield straightforward tests: Given ?,

form the unique � with �(�) = ?, and then check whether the boundary conditions hold for �.
Proposition 9.15, on the other hand, leaves � underspecified.
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