Small Set Expansion in the Johnson Graph

by Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra

Theory of Computing, Volume 21(2), pp. 1-43, 2025

Bibliography with links to cited articles

[1]   Mitali Bafna, Boaz Barak, Pravesh K. Kothari, Tselil Schramm, and David Steurer: Playing unique games on certified small-set expanders. In Proc. 53rd STOC, pp. 1629–1642. ACM Press, 2021. [doi:10.1145/3406325.3451099]

[2]   Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett: Hypercontractivity on high dimensional expanders. In Proc. 54th STOC, pp. 185–194. ACM Press, 2022. [doi:10.1145/3519935.3520040]

[3]   Mitali Bafna and Dor Minzer: Solving unique games over globally hypercontractive graphs. In Proc. 39th Comput. Complexity Conf. (CCC’24), pp. 3:1–15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2024. [doi:10.4230/LIPIcs.CCC.2024.3, arXiv:2304.07284]

[4]   Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David Steurer: Making the long code shorter. SIAM J. Comput., 44(5):1287–1324, 2015. [doi:10.1137/130929394]

[5]   William Beckner: Inequalities in Fourier analysis. Ann. Math., 102(1):159–182, 1975. [doi:10.2307/1970980]

[6]   Aline Bonami: Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier, 20(2):335–402, 1970. Also accessible via Numdam. [doi:10.5802/aif.357]

[7]   Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar: Direct sum testing. SIAM J. Comput., 46(4):1336–1369, 2017. [doi:10.1137/16M1061655]

[8]   Philippe Delsarte: The association schemes of coding theory. In Marshall Hall Jr. and Jacobus H. van Lint, editors, Combinatorics, pp. 143–161. Springer, 1975. [doi:10.1007/978-94-010-1826-5_7]

[9]   Philippe Delsarte: Association schemes and t-designs in regular semilattices. J. Combin. Theory–A, 20(2):230–243, 1976. [doi:10.1016/0097-3165(76)90017-0]

[10]   Irit Dinur and Venkatesan Guruswami: PCPs via the low-degree long code and hardness for constrained hypergraph coloring. Israel J. Math., 209(2):611–649, 2015. [doi:10.1007/s11856-015-1231-3]

[11]   Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra: Towards a proof of the 2-to-1 games conjecture? In Proc. 50th STOC, pp. 376–389. ACM Press, 2018. [doi:10.1145/3188745.3188804]

[12]   Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra: On non-optimally expanding sets in Grassmann graphs. Israel J. Math., 243(1):377–420, 2021. Preliminary version in STOC’18. [doi:10.1007/s11856-021-2164-7]

[13]   Irit Dinur, Elchanan Mossel, and Oded Regev: Conditional hardness for approximate coloring. SIAM J. Comput., 39(3):843–873, 2009. [doi:10.1137/07068062X]

[14]   Irit Dinur and Inbal Livni Navon: Exponentially small soundness for the direct product Z-test. Theory of Computing, 19(3):1–56, 2023. Preliminary version in CCC’17. [doi:10.4086/toc.2023.v019a003]

[15]   Irit Dinur and Samuel Safra: On the hardness of approximating Minimum Vertex Cover. Ann. Math., 162(1):439–485, 2005. [doi:10.4007/annals.2005.162.439]

[16]   Uriel Feige and Gideon Schechtman: On the optimality of the random hyperplane rounding technique for MAX CUT. Random Struct. Algor., 20(3):403–440, 2002. [doi:10.1002/rsa.10036]

[17]   Yuval Filmus: Friedgut-Kalai-Naor theorem for slices of the Boolean cube. Chicago J. Theoret. Comp. Sci., 2016(14):1–17, 2016. [doi:10.4086/cjtcs.2016.014]

[18]   Yuval Filmus: An orthogonal basis for functions over a slice of the Boolean hypercube. Electr. J. Combinat., 23(1):P1.23, 2016. [doi:10.37236/4567]

[19]   Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer: Invariance principle on the slice. ACM Trans. Comput. Theory, 10(3):1–37, 2018. Preliminary version in CCC’16. [doi:10.1145/3186590]

[20]   Yuval Filmus and Elchanan Mossel: Harmonicity and invariance on slices of the Boolean cube. In Proc. 31st Comput. Complexity Conf. (CCC’16), pp. 16:1–16:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. [doi:10.4230/LIPIcs.CCC.2016.16]

[21]   Ehud Friedgut: Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998. [doi:10.1007/PL00009809]

[22]   Ehud Friedgut: Sharp thresholds of graph properties, and the k-SAT problem. J. AMS, 12(4):1017–1054, 1999. With an appendix by Jean Bourgain. [doi:10.1090/S0894-0347-99-00305-7]

[23]   Christopher Godsil and Karen Meagher: Erdős-Ko-Rado theorems: Algebraic approaches. Cambridge Univ. Press, 2016. [doi:10.1017/CBO9781316414958]

[24]   Leonard Gross: Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975. [doi:10.2307/2373688]

[25]   Tom Gur, Noam Lifshitz, and Siqi Liu: Hypercontractivity on high dimensional expanders. In Proc. 54th STOC, pp. 176–184. ACM Press, 2022. [doi:10.1145/3519935.3520004]

[26]   Johan Håstad: Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. [doi:10.1145/502090.502098]

[27]   Shlomo Hoory, Nathan Linial, and Avi Wigderson: Expander graphs and their applications. Bull. AMS, 43(04):439–562, 2006. [doi:10.1090/s0273-0979-06-01126-8]

[28]   Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson: New direct-product testers and 2-query PCPs. SIAM J. Comput., 41(6):1722–1768, 2012. [doi:10.1137/09077299X]

[29]   Jeff Kahn, Gil Kalai, and Nathan Linial: The influence of variables on Boolean functions (extended abstract). In Proc. 29th FOCS, pp. 68–80. IEEE Comp. Soc., 1988. [doi:10.1109/SFCS.1988.21923]

[30]   Daniel M. Kane and Raghu Meka: A PRG for Lipschitz functions of polynomials with applications to sparsest cut. In Proc. 45th STOC, pp. 1–10. ACM Press, 2013. [doi:10.1145/2488608.2488610]

[31]   Peter Keevash, Noam Lifshitz, Eoin Long, and Dor Minzer: Hypercontractivity for global functions and sharp thresholds. J. AMS, 37(1):245–279, 2024. [doi:10.1090/jams/1027]

[32]   Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007. [doi:10.1137/S0097539705447372]

[33]   Subhash Khot, Dor Minzer, and Muli Safra: On independent sets, 2-to-2 games, and Grassmann graphs. In Proc. 49th STOC, pp. 576–589. ACM Press, 2017. [doi:10.1145/3055399.3055432]

[34]   Subhash Khot, Dor Minzer, and Muli Safra: Pseudorandom sets in Grassmann graph have near-perfect expansion. Ann. Math., 198(1):1–92, 2023. [doi:10.4007/annals.2023.198.1.1]

[35]   Subhash Khot and Assaf Naor: Nonembeddability theorems via Fourier analysis. Mathematische Annalen, 334:821–852, 2006. Preliminary version in FOCS’05. [doi:10.1007/s00208-005-0745-0]

[36]   Subhash Khot and Nisheeth K. Vishnoi: The Unique Games Conjecture, integrality gap for cut problems and embeddability of negative-type metrics into 1. J. ACM, 62(1):8:1–39, 2015. [doi:10.1145/2629614]

[37]   Tzong-Yow Lee and Horng-Tzer Yau: Logarithmic Sobolev inequality for some models of random walks. Ann. Probab., 26(4):1855–1873, 1998. [doi:10.1214/aop/1022855885]

[38]   Prasad Raghavendra: Optimal algorithms and inapproximability results for every CSP? In Proc. 40th STOC, pp. 245–254. ACM Press, 2008. [doi:10.1145/1374376.1374414]

[39]   Prasad Raghavendra and David Steurer: Graph expansion and the Unique Games Conjecture. In Proc. 42nd STOC, pp. 755–764. ACM Press, 2010. [doi:10.1145/1806689.1806792]

[40]   Prasad Raghavendra, David Steurer, and Madhur Tulsiani: Reductions between expansion problems. In Proc. 27th IEEE Conf. on Comput. Complexity (CCC’12), pp. 64–73. IEEE Comp. Soc., 2012. [doi:10.1109/CCC.2012.43]

[41]   Karl Wimmer: Low influence functions over slices of the Boolean hypercube depend on few coordinates. In Proc. 29th IEEE Conf. on Comput. Complexity (CCC’14), pp. 120–131. IEEE Comp. Soc., 2014. [doi:10.1109/CCC.2014.20]