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Abstract: Schnorr’s algorithm for finding an approximation for the shortest nonzero vec-
tor in ann-dimensional lattice depends on a param&tdde proved that for a fixed < n

his algorithm (block R-reduction) provides a lattice vector whose length is greater than
the length of a shortest nonzero vector in the lattice by at most a fact@pf/k. (The

time required by the algorithm dependslohWe show that ik = o(n), this bound on the
performance of Schnorr’s algorithm cannot be improved (apart from a constant factor in
the exponent). Namely, we prove the existence of a badis'iwhich is KZ-reduced on

all k-segments and where the ratib; || /shortest(L) is at leastk®¥. Noting that such

a basis renders all versions of Schnorr’s algorithm idle (output = input), it follows that the
quantityk®K is a lower bound on the approximation ratio any version of Schnorr’s algo-
rithm can achieve on the shortest vector problem. This proves that Schnorr's analysis of
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the approximation ratio of his algorithm is optimal apart from the constant in the expo-
nent. We also solve an open problem formulated by Schnorr about the Korkine-Zolotareff
lattice constantsy. We show that his upper bourwk < k'K js the best possible apart
from a constant factor in the exponent. We prove a similar result about his upper bound
Pk < 4k?, wherep is another lattice constant with an important role in Schnorr’s analysis
of his algorithm.

1 Introduction

1.1 Historical background, related results

One of the most important tasks of the algorithmic theory of lattices is to find a short nonzero vector in
a given lattice. Although there is no known polynomial time algorithm which finds a shortest nonzero
vector in am-dimensional lattice, La&sz’s algorithm also known as LLL reduction published in a paper
of A. Lenstra, H. Lenstra, L. Laxsz [L2], finds a vector which is longer than the shortest vector by a
factor of at most 2-1/2. |n this algorithm we repeatedly have to find short bases in two-dimensional
lattices. The two-dimensional problem was already solved by G#&lis&e also Lagranged.]]). In
1987 C. P. Schnorr gave an algorithm which is a generalization of the LLL reductionl@gelf this
algorithm we have to find short bases kxdimensional lattices. If we want a polynomial time algorithm
then we may use the maximaWhere a short basis can be found in polynomial time. Schnorr has proved
that if k is fixed then the approximation factor in his algorithm is at m@gy2"/k.

We will prove that Schnorr’s upper bound about his algorithm cannot be improved apart from a
constant factor in the exponent. The proof is based on the construction of allatidea basibs, . .., b,
in it, with the property that Schnorr’s algorithm, given ..., b, as an input, immediately terminates and
givesb; as an approximation of the shortest nonzero vectar &for a more detailed formulation of this
result we need the following two (well-known) definitions.

Definition 1.1.

1. Leth,,...,by be a basis of the lattide. Applying the Gram-Schmidt orthogonalization to this ba-
sis we get a sequence of vectbis. . ., b, with the property thab;, i = 1,2,...,nare pairwise or-
thogonalp; =bj and foralli=1,...,nwe haved’ =b; — zij;:li‘lli’jb]f wherey; j = (b; -b]-*)Hb’j‘ 2.

If B is the projection of th@-dimensional space onto the subspace orthogonal to.,b;_1 then

b’ = Rbi. We call the basi®y,...,by size-reduced ify; j| <1/2forall 1< j<i<n. Itis
important for us that given an arbitrary babis. . ., by, it is easy to construct a size-reduced basis
di,...,dysothaty =d*fori=1,...,n.

2. Letby,..., by be a basis of the-dimensional latticé. For each =1,...,nletR be the orthogonal
projection of then-dimensional space onto the subspace orthogonal to the vbgtors b;_;. Let
b =Rb. by, ..., by is a Korkine-Zolotareff basis (or a Korkine-Zolotareff reduced basis, 5§ [
if it is size-reduced, anld’ is a shortest nonzero vector in the lattige, foralli=1,...,n.
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We show that (apart from a constant factor in the exponent) the mentioned upper bound, about the
performance of Schnorr’s algorithm, cannot be improved. Namely there d5:ar® so that for every
k < €’'nthere exists a lattice and size reduced bdmsis, ., by in it so that, forevery=1,...,n—k+1,
the vector®b;, ..., Pbi «_1 form a Korkine-Zolotareff basis in the subspace generated by them. Conse-
guently, Schnorr’s algorithm is inactive dm, . .., b, and so the short vector produced by the algorithm
is b;. However the construction will show that the ratio|bh || /A1 (L), whereAd,(L) is the length of the
shortest nonzero vector In is at leask®”K. So starting from this basis the output of Schnorr’s algorithm
is not better than the proven upper bound (apart from the mentioned constant factor). R. Kooan [
structed a lattice with these properties for LLL reduction, that is, folktke2 case. His construction
is explicit while our present construction for an arbitr&ris probabilistic. Still we keep several im-
portant properties of Kannan’s example. Although we give a tight lower bound on the approximation
provided by Schnorr’s algorithm, still two questions remain open. (1) What is the l&rgésre a short
basis, in the sense of Schnorr’s algorithm, can be found in time polynomi&l (&) It is possible that
if the same lattice is presented with another basis then Schnorr’s algorithm gives a better result. (The
largestk for which there is a known polynomial time deterministic algorithmis4s O(logn/loglogn)
given by R. Kannan in9], and for probabilistic algorithms it ik = O(logn) given by M. Ajtai, R. Ku-
mar, and D. Sivakumar ird]. Therefore the approximation factor in deterministic polynomial time
version of Schnorr’s algorithm is ex@((loglogn)?(logn)~'n)) while in the probabilistic version it is
exp(O((loglogn)(logn)~*n)).)

In a recent paperlp], Schnorr describes a practical algorithm for finding short vectors in lattices
which in practice outperforms the known algorithms (there is no proven upper bound guaranteeing the
good performance). There are concepts about lattice bases which play a role ib3atid the present
paper. The two papers complement each other in the sense that one shows the positive the other the
negative effect of a basis with random behavior on the performance of algorithms.

1.2 The main results

Our proof about the worst-case performance of Schnorr’s algorithm is based on the following random
construction of &-dimensional latticé = Ly .

Definition 1.2. Assume the random variablgsj, 1 < j <i—2 < k—2 are independent and uniformly
distributed over the intervdl-1/2,1/2). We define a lower trianguldrx k matrix

The definition of the entries is the following.

A =k oK fori=1,....k
Aj-1= %Aifl,ifl = %k_c(i_l)/k, fori=2,...,k and
Aj = i A, fl<j<i—-2<k-—2.

This implies that théth row of the matrix(A; ;) is of the following form:

Nle_C/k ”U_zk—c(i—Z)/k %k—c(i—l)/k k—ci/k 0...0
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Lkc will denote the lattice ifR¥ generated by the rows @)

The following theorem describes the properties of the latticewhich will be crucial in our proof
about the worst-case behavior of Schnorr’s algorithm.

Theorem 1.3. For all sufficiently small c> 0 there is ana > 0 so that for all sufficiently large positive
integers k with a probability of at leagt— e ¢ we have the following. Let;de the ith row of the
matrix A9, Then a,...,ay is a Korkine-Zolotareff reduced basis of the lattiog.L In particular the
first row of this matrix is a nonzero shortest vector of the lattice, with Iengjthqu*C/k. Moreover
foralli =2,...,k, if B is the projection ofR to the subspace orthogonal tq.a..,a;_1 then in the
(k—i)-dimensional lattice Ry ¢, the vector Ry is a nonzero shortest vector with lengty A k—ci/k,

The theorem implies that if we apply the Gram-Schmidt orthogonalization to thedasis, ax of
Lk then we get a basi' (of R) with aF = k~%/kg, wheresg is theith unit vector.

We will use the latticelx. in the way described below. We will construct (at random)nan
dimensional lattice given with a badhs,...,b,, so that for every segmefit, ..., bs, k1 of this ba-
sis, if we take the orthogonal projections of the vectioys.. bs.x 1 to the subspace generated by
by,...,bsik—1, then the resulting sequenbg...,b,,, , is like the basis,...,ac from Theorem1.3
multiplied by a constant factor. This and the described properties of the dasis, ax will make it
possible to show that Schnorr’s algorithm is inactive on the Hasis.,b,. (The length of a shortest
nonzero vector in the lattice generateddy. . ., b, will be estimated through Minkowski's convex body
theorem.)

The basidy, ..., b, has a very concise definition similar to the definition of the lattige (although
for the proofs we will reformulate it into a longer but more natural definition.) Our construction will
depend on a constant> 0 and we show that i€ is sufficiently small then the constructed lattice and
basis meet our requirements. Assume now that a constart is fixed. Theith unit vector inR" will
be denoted bg.

Definition 1.4. Letn, k, k < nbe positive integers and let> 0 be a real number and I§t= kS"—i+1/kg
fori=1,...,n. Suppose further that ;,i =1,...,n, j =1,...,i — 2 are mutually independent random
variables, uniformly distributed over the interval1/2,1/2). Letb; = f; and for alli = 2,...,nlet

bi = fi+(1/2)fi_1+ zij;zlui,j fj. Itis easy to see that the vectdss ..., b, are linearly independent.
Let A(n,k,c) be the lattice generated Hy, ..., b,. The basigbs,...,by) will be denoted byB(n,k,c).

If the values of, k, c are fixed them\(n, k,c) andB(n,k,c) are random variables.

Clearly this definition implies that thex n matrix whose rows aréy, ..., f, is lower triangular, and
itsith row is

1

‘ui’lkcn/k‘“ 'ui‘iizkc(n—(i—Z)-&-l)/k) ékc(n—(i—1)+1)/k kc(n—i+1)/k 0...0

As a consequenchy . = k™YKL, - and we get the basks, . .., by of Ak ¢ by multiplying the rows
of the matrixA(™® by ke(n+1)/k,
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Theorem 1.5. For all sufficiently small c> 0, there exists’ > 0 so that if n is a sufficiently large
integer, and k is an integer with K ¢'n then the following holds. Assume that (b,...,b,) are
the corresponding random values of the random varialés k, c), B(n,k,c). Then with a positive
probability the following conditions are satisfied.

(1. [1b1| = exp(cilogk), Aa(L) < 2n*?exp(c2logk), and so
|||/ A (L) > %nfl/zkc(”*l)/(Zk) > Ke(3)

(2). foralli=1,...,n—2k+ 1, the vector®b;,...,Pbi, 2 1 form a Korkine-Zolotareff basis of the
lattice generated by them.

Corollary 1.6. The quantity KV (3 is a lower bound on the approximation ratio any version of Schnorr’s
algorithm can achieve on the shortest vector problem, hence Schnorr’'s upper bound on the approxima-
tion ratio of his algorithm is optimal apart from the value of the constant in the exponent.

Proof. Take a basis satisfying the properties guaranteddhaoreml.5. Then all versions of Schnorr’s
algorithm are idle on this basis (they do not change the basis). Therefore the algorithm’s guess at
the shortest vector ib;, which is a factor ok (3% Jonger than the shortest vector in the lattice by
Theoreml.5. O

Remark 1.7.

1. The theorem does not provide a lower bound on the “positive probability” so it does not give a
way to construct a lattice and a basis with the properties described in the theorem. We will see,
however, from the proof that for all; > O there is ac; > 0 so that ifk > c;logn thenL and
(bg,...,bn) meet the requirements of the theorem with a probabpity 1 —n—“. For smaller
values ofk, p can be exponentially small, so in this case the theorem does not give a construction.
We will see that even in this case there is a probabilistic construction &ord (by, . .., bn) with
the required properties.

2. The theorem holds, e. g., with aay< c¢/10 (this is not the best upper bound g, and the final
inequality n—/2ke("-1/(Z) > (1/2)ke" (%) follows from this inequality. However i§’ is much
larger tharc, then the final inequality does not hold since the factol2 will dominate and so
we will have (1/2)n~1/2ken-D/(24) < 1,

In this paper we also solve an open problem asked by Schnorr about the geometry of lattices, which
is related to the analysis of his algorithm.

Definition 1.8. For all positive integers, the Korkine-Zolotareff constant igx = sup||by||2/|/b; ||,
where the supremum is taken over ldtlimensional latticeg and over all Korkine-Zolotareff bases
bi,...,bcin L.

Schnorr proves thaty < kX*1°9 and asks whetham = k°. We show that actually his upper
bound is optimal up to a constant factor in the exponent. Namely we prove the following.
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Theorem 1.9. There is are > 0 so that the value of the Korkine-Zolotareff constegis at least K'°9k
forallk=1,2,...

We will prove this result inSection4. It will be an immediate consequence Tfieorem4.2. We
note that the proof oTheoreml.5 and Theorem1.9 are both based on random lattice constructions.
The two random constructions are similar but not identical. In fact, the construction used in the proof of
Theoreml.9requires sharper estimates and so that proof involves more work.

Another lattice constarfl is even more important for the determination of the approximation factor
provided by Schnorr’s algorithnfl defined as

k—sup{( IGEN ||b*||) %) /k}

where the supremum is taken over dlt@mensional latticeg and over all Korkine-Zolotareff bases
bs,...,bo of L. Schnorr gives the upper boufd < 4k? and uses it in the analysis of his algorithm. We
show that this upper bound is tight apart from a constant in the exponent, that is, thesesidleso that
B>k forallk=1,2,....

To prove the lower bound ofk we will use the random lattice = A(2k, 2k, c) with a sufficiently
smallc > 0 and show that with a high probability the baBi®k, 2k, c) is a Korkine-Zolotareff basis in
L. (SinceA(k,k,c) = kSk+D/KL, ., Theoreml.3implies this statement withkdn the place ok.) For the
lower bound oy we use a modified form of the random lattisék, k, c), namely we will have| f;|| =
exp(—c(log(k—i+1))?) for i = 1,...,k—cy, and||fi|| = exp(—c(logcy)?) for i =k—cy +1,....K,
wherec; is an integer sufficiently large with respectagbut it does not depend df). Otherwise the
definition remains unchanged and we prove that with high probaBilityk, c) is a Korkine-Zolotareff
basis for the modified.

1.3 Motivation

The main motivation for this work is that Schnorr’s algorithm gives the best proven approximation of
the shortest nonzero vector in ardimensional lattice. So it is important to know how good is its
performance. Moreover, no algorithm is known outside the framework of LLL and Schnorr’s algorithm
which gives comparable results. Therefore a lower bound on the algorithm shows the hardness of the
approximate shortest vector problem at least according to our present knowledge. This limit on our
knowledge seems to be serious since the approximation factor of Schnorr’'s algorithm has not been
improved since its publication in 1987, apart from the increase of the lakgstt can be used in
poly-time (see4]), but this did not affect the overall structure of thelimensional algorithm. Another
possible use of the lattices constructed in this work is that we may try to find a better algorithm for
finding an approximation of the shortest nonzero vector in a lattice by attacking this problem in the case
of the counterexamples. Our probabilistically constructed lattices may be very good from this point of
view because there seems to be no easy way to find a shorter vector in them than the one produced by
Schnorr’s algorithm. Motivated by this we formulate an open problem. In this open problem we present
a specific random lattice\( n, k, c) for some choice ok andc) with the shortest known nonzero vector

in it (which is b1) and ask for a polynomial time algorithm which finds a nonzero vector shorter (or
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much shorter) thah;. We may expect that a solution for this problem will contain some new idea about
lattice algorithms, while it seems easier to attack the approximate shortest vector problem in a specific
lattice than in its generality. On the other hand if no solution for this problem will be found for a long
time then the lattice (which may also be generated together with a known short vector) may be useful
for cryptographic purposes.

Open problem. Give a probabilistic algorithnd and a positive integec; so that for all positive
integerg, sand for all sufficiently large integersif A getsc = 1/t, k= |slogn], n, and a random value
of B(n,k,c) = (b,...,by) as an input then with a probability of at least?1(for the randomizations of
bothB and.A) and in timen® the algorithmA finds a vectox € A(n,k, c) so thatx # 0 and

(i) IX|] < ||by|l, or (a stronger requirement)
(i) [IX] < 3llbu]l

Remark 1.10. The choice ok in the open problem is based on the fact that currently the lakgest
that a Korkine-Zolotareff basis can be found in probabilistic polynomial timle=isO(logn) (see #]),
and so Schnorr’s algorithm can be used with block lekgthherefore our open problem can be solved
by improving this bound and still using Schnorr’s algorithm.

In the proof of Theoreml.5we represent our lattice elements by sequences of integers in a similar
way as it was done by R. Kannan @] In fact his estimate about the number of such sequences which
correspond to a short lattice vector remain valid in our case and is used in our proof. A similar bound
was also used by M. Furst and R. Kannan5h [

1.4 The history of the problem with some technical details

The history of finding short vectors in lattices starts with the works of Lagrange and Gauss. Both of them
considered the problem of finding a shortest nonzero vector in two-dimensional lattices. In the nineteenth
century Hermite, Zolotareff and Minkowski considered the problem-dimensional lattices as part of

the reduction theory of quadratic forms. Although a large number of theorems in the theory of lattices
were dealing with the existence of short vectors in lattices (e.g. Minkowski's convex body theorem)
these were mainly existence theorems without giving any efficient method for finding short vectors.
In 1983 A. Lenstra, H. Lenstra and L. Lasz found the first polynomial time algorithm for factoring
polynomials with rational coefficients. Their solution was based on an algorithm which finds a vector
not longer than ?-1/2 times the shortest nonzero vector. Since then this method, the LLL reduction,
has been used for the solution of a large number of both theoretical and practical problems. For example
it was used to disprove the Mertens conjectur@ pnd to break several proposed cryptosystems (see
e.g. [7]).

The LLL reduction starts with an arbitrary basis . .., b, of the latticeL and then it gradually “im-
proves” the basis. In each step we replace two consecutive elements of the basis by two new elements.
Roughly speaking the goal of these exchanges is to get a size reducelo; basi®, where for eachiin
the two-dimensional latticK generated byab; andRb;, 1, the shortest vector Bb; and (Rbi, Rbi1)
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is a size reduced basis & We try to reach this goal by picking @nwhere this is not true and re-
placingb;, bi+1 by two other vectors so that they satisfy this condition. (In order to do this we have to
find the shortest nonzero vector &y extend it into a size-reduced basiskf this way we have the

new Rb;, R, 1b;, then find the corresponding ndw andb; ;. All of these steps can be done easily.)

In picking i we give preference to those pairs where we are far away from our goal according to some
reasonable measure. In a polynomial number of steps, although we will not necessarily reach a situation
where each pair satisfies the condition, still we can ensure that each pair will be close to it. This will
guarantee that the ratigis|| /|| b, , | remain below a constant bound, namghy|| /|| b7, ,|| < v/2 for all
i=1,...,n. Itis easy to see thal; (L), the length of the shortest nonzero vector, is bounded from below
by min ||b¥|| and so||by|| < 2"Y/224(L). (Indeed ifu is a shortest nonzero vector then we consider
the sequencBu, i = 1,...,n. We have||u|| = ||Puu|| > ||Pul| > ... > ||Pyu|| = 0. Let ] be the smallest
integer so thaiPjul| = 0. By the definition ob;- we have thaPj_,u = kbj, wherek # 0 is an integer

and sojlul| > b5

C. P. Schnorr has improved the approximation factor of the algorithm by workingkvzitimsecu-
tive basis elements;, ... b, k1 instead of just 2. This generalization creates significant new problems.
What should be our goal for theblocks of basis elements and what will play the role of the inequal-
ity ||bf[|/[|bf,4]| < v2? Perhaps most important is the difficulty that we have to prove everything for
k-dimensional lattices instead of two-dimensional lattices where the arising problems do not cause sig-
nificant difficulties.

Schnorr gave the following answers to these questions. (We just give a rough simplified sketch of
his algorithm.) The goal is that every blobk. .., bj . x_1 should have the property thBb;, ... ,Rbi 1
Korkine-Zolotareff basis in the lattice generated by them. Therefore in each step we select somehow
ani so that this does not hold and replace kheasis vector;, ..., b 1 by k new vectors so that we
have now a Korkine-Zolotareff basis. (For this step we have to find a Korkine-Zolotareff basis in the
k-dimensional lattice generated Byp;, ..., Rb; k1. For polynomial time algorithms as we mentioned
already this limits the size dfto O(logn) or O(logn/loglogn).) Again we cannot hope in polynomial
time to reach a stage where every block of lerigthovides a Korkine-Zolotareff basis, but we may reach
a stage where every block is close to it according to some reasonable measure. We may get an upper
bound on||by[[/A1(L) essentially by getting an upper bound|dsi|| /||b;, 4[| foralli=1,...,n—k+1.
This leads to the task, of finding an upper bound|dtj|?/||d; ||? for everyk-dimensional latticd, where
di,...,dx is a Korkine-Zolotareff basis id. In other words we need the value of the Korkine-Zolotareff
constant defined earlier. Schnorr gave the upper boyrdk!'°9 and from this he got an upper bound
on ||bs1]|/A1(L). However, with another method (that we describe shortly), he gave a better upper bound
on||by||/A1(L) which made likely that the truth ig, < kO (this would have provided the same upper
bound on||bs||/A1(L)). In this paper we show that surprisingly Schnorr’s upper boundois tight,
that is, there is as > 0 with o > k&'°9 for all k.

The other method used by Schnorr which gives the better upper boufildh b1 (L) is the fol-
lowing. Instead of considering blocks of lendttet us consider blocks of basis elements of lendth 2
bi,...,biox_1. (We may simplify the picture and speed up the algorithm if we consider only the case
whenn = mkandi = tk+1.) The algorithm will be the same but now instead)|bf||?/||b;,,_,[|* we
are interested in the geometric mean of such ratios on an interval of lengthmat is, we consider the

THEORY OF COMPUTING, Volume 4 (2008), pp. 21-51 28


http://dx.doi.org/10.4086/toc

OPTIMAL BOUNDS FOR LATTICE PARAMETERS ANDSCHNORR S ALGORITHM

guantity
i+k—-1 i+2k—1 o\ 1/
(CTT I C sy ~2)
J=l j=i+k

This quantity also can be used to give an upper bounfibefi/A,(L). Again we need an upper bound

on the ratio, that is, we need an upper bound for the corresponding ratio for évdip@nsional lattice

with every possible choice of a Korkine-Zolotareff basis. By our definition given earlier the smallest
such upper bound is the lattice constgatSchnorr proved tha < 4k? and this lead him to the upper
bound(2k)2"k on the approximation factor. In this paper we show that this upper bound is tight apart
from a constant factor in the exponent, that is, there is a0 so thatBx > k¢ for all k.

The lower bound ok only shows that the analysis given by Schnorr about his algorithm cannot
be improved by improving the upper bound gnbut does not prove in itself that the algorithm cannot
perform always better. We prove this latter statement by constructing a latiod a basids, ..., by
so that applying Schnorr’s algorithm to this basis the resulting approximation factor, thiad/jgA: (L)
is only ké"/% for some constant, that is, apart from the factar > 0 it is the same as Schnorr’s upper
bound. Our basibs,...,b, will have the property that it is size-reduced and for any consecutive block
of 2k basis vector$;, . .., b, 1, the vectordR by, ..., Bbi 1 form a Korkine-Zolotareff basis of the
lattice generated by them and

o\ Lk

i+k—1 5 i+2k—1
[ IRI% ) (] IIRG;I > ke
J=l

j=it+k
wheree > 0 is a constant.
Remark 1.11.

1. In Schnorr’s paperl4] several different algorithms are presented. Our lower bounds are valid
even for the versiong:reduction and blockRreduction, where there is no polynomial time limit
on the running time of the algorithm. The reason is that the basis that we provide for the lower
bound has the property that starting from it Schnorr’s algorithm immediately terminates.

2. A random lattice construction has been used to create problems with worst-case/average-case
equivalence J]. Another random lattice construction lead to a conjecturedlOaw for lattice
properties testable in polynomial time.

The present way of randomizing lattices is different from both of these although the choice of
randomization was motivated by the randomization method]of [

2 Sketch of the proofs of Theoremd..3and 1.5

First we give an equivalent definition for the random latéide, k, c), which is longer but more natural
and has a clear motivation.
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We will construct a size reduced ba$ks, ..., b,) so that

n—i+1

b= fi= exp(c Iogk) 8,
i =1,...,n. Assume that we have such a lattice. Minkowski’s convex body theorem implies that
2n*/2(detL)*" is an upper bound on the length of the shortest nonzero vector in any lattice. Now

LI n+1
(dett) " — ([ 1) = exp (€5 ok ).
=

Since||bs1|| = exp(c(n/k)logk), we get (using thak < &£'n and that we may choos® with, e.g.,&’ <
¢/10) that||by|| /A1 (L) > k&, (This is the only point where we use the assumpkiene’n. For larger
values ofk we would need a better upper boundAriL)). This holds also i{by,...,by) = B(n, 2k, c).
For the proof ofTheoreml.5we have to show thaRb;,...,Rbi 1) is a Korkine-Zolotareff basis in
the lattice generated by them fioe 1,...,n—2k+ 1.

The vectordj, ..., by, are already fixed and we have to deflme.. ., by. bj,... by, uniquely deter-
mine the projectionB. IndeedP, was defined as the orthogonal projectioridfonto the subspac®or-
thogonal taby, ..., bi_1. The vectordy,...,bj_1 generate the same subspace as the veljors b ;.
ThereforeS, and soR, are uniquely determined Wy, ...,b". We do not define the vectols directly
but define first the vectorBjb; for j =n,...,1 recursively by recursion op starting atn and going
downwards. (At the end we gbtsinceP,b; = b;.) This means that we build up the vectbrérom their
projected images by going backwards through the sequence of projetid¢its j = n we do not have
any choices, by the definitions bf andP; we haveR,b; = 0 if i < nandR,b, = by,.

The basic principle of this process is the following. Assume Byathas been already defined for
a fixed j and for alli. These elements generate n j + 1-dimensional latticd ; in then— j 4 1-
dimensional subspace generatedtby...,b;. We will define a(n— (j — 1) + 1)-dimensional lattice
Lj-1 in the subspace generatedtly ;. ..., b; so thatPjLj_1 =L;. Therefore ifL;_1 is given somehow
thenP;j_1b; must be an elementof L;j_; with the property thaPjx = P;b;. Since we want our basis to
be size reduced there are at most two possible choicesfoceP;_1b; andb’j‘_l has been already fixed.
If in the definition of a size reduced basis we replace the requirefpgit< 1/2 by —1/2 < y; ; < 1/2
then the choice dlfj is uniquely determined by the lattitg_;. Therefore our only task is the selection
of the latticeL j_; if we know already the lattick;. The conditions for this selection are the following:
lattice Lj_; must be chosen from a given space whose dimension is larger by 1 than the dimension of
Lj, it must contain a given vectds;_, orthogonal td_j, and we have to choose it in a way that a given
orthogonal projection will majh;_; ontoL;. There are infinitely many different choices floy_; with
these properties. We will see that there is a very natural way to do it at random. However we will not
do it completely at random since we want, that with a high probability, the végteb;_; = b]-[l isno
longer than the vectd?,_1b; (this is a consequence of the requirement Byatb;_1 is the first element
of a Korkine-Zolotareff basis.) To make this requirement easily satisfiable we try to Fiaks which
is an inverse image dfj as large as possible, otherwise we choose everything at random. Below we
formulate this lattice selection problem in an abstract setting and define the randomization there.

We formulate a lemma below describing the random extension of an arlitrdimensional lattice
L. We will apply this lemma witm:=n—j+ 1 andL :=L;. Assume now, for the formulation of
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the following lemma, that is an arbitrary lattice ifR™ anda € L so thata is contained in a basis
of L. Assume further thak > 0. Let P be the orthogonal projectioR of R™? to R™ defined by
P(Y1,...,Ym Ymi1) = (Y1,...,Ym). We are interested in latticé$ in R™1 so that(0,...,0,x) € K,
PK = L, the shortest vectaw € K with Pw = a is as long as possible, otherwikeis random in some
sense.

The assumptior0, ... ,0, k) € K implies that for everyK we have||w||? < ||a||? + (x/2)? if w e K
andPw = a. However this upper bound is reached for the ve¢#ok/2), therefore we will deal only
with latticesK so that(a, k/2) € K. The following lemma describes a natural randomization of a lattice
K with these properties. The definition of the randomization formally depends on an arbitrarily chosen
basis ofL containinga but the lemma states that the randomization is in fact independent from the choice
of this basis.

Lemma 2.1. Assume that m is a positive integerCLR™ is a lattice, ac L, a# 0, k > Ois a real number
and x,...,Xm-1 € L sothat{xy,...,Xm_1,a} is a basis of L. Depending on,m,L,a,x1,...,Xm_1 We de-
fine a random variable Y whose values will be latticeRTH*. We pick m- 1 real numbersty, ..., En 1
independently and with uniform distributions from the inter(@l1). A random value K of Y will be
the lattice inR™+! generated by the vecto(s;,&x), i = 1,...,m— 1, the vector(a, x/2) and the vector
(0,...,0,x). Then the distribution of Y does not depend on the choice of the vegtors,x,_1 and

it does not change if we replace the vector a by the veetmrMoreover for each possible value K of Y
and for each » L there is a unique real number, —1/2 < oy < 1/2 so that(x, oxk) € K and if X is
linearly independent of the vector a then the distributiompfs uniform over the intervgl-1/2,1/2).

We return now to our basis construction. We will isssnmaz2.1 with the following substitutions:
m:=n—j+1;L:=Lj a:=bj; R™M is the subspace generated . ... by R™1 is the subspace
generated byj_1,bj, ..., by (0,...0,k) := b]-gl.

Let K be the random lattice defined in the lemma. The propéaty/2) € K implies that
(1/2)bj_; +bj € Lj—1 and clearlyP;((1/2)bj_; + bj) = bj. The other elements df; depend on the
random choices defined by the random variablef the lemma.

As we have told, ifL;_; is given, the choice foPj_1b; is unique with the conditiony j_; €
(—1/2,1/2]. This completes the definition &_1b; for all i and so the definition of the badis, ..., by.

It is an immediate consequence of the definition that. ., b, are linearly independent ar is really
the vector that we have selected in advance for this role. The conglition € (—1/2,1/2] guarantees
that it is a size reduced basisemmaz2.1implies that this definition is equivalent to our original defi-
nitions of A(n,k; c), B(n,k,c). Indeed, since we could pick the basis elemdmi$ in an arbitrary way,
using the basi®;bj, ..., Pjb, gives the original definition.

We prove that with a positive probability for the randomizatiom\gh, k,c) we have that for each
i=1,...,n—k+1the elementBb;,... Rb; .« 1 form a Korkine-Zolotareff basis of the lattice generated
by them, provided that > 0 is a sufficiently small constant. For this proof we do not need the wirole
dimensional lattice. The lattice construction can be described by restricting our attention to the elements
of thisk-dimensional lattice. In fact if we multiply every element of this lattice by a suitable real number
(depending om, k, andi) we get a lattice whose distribution is the same as the distributidrilok, c).

We will show thatbs, ... by is a Korkine-Zolotareff basis iM\(k,k,c) with a probability of at least
1—e “wherea > 0 is a constant. This implies that there is a constant0 so that ifk > ¢’ logn then
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the probability thaBby, ..., Rbj.k_1 is a Korkine-Zolotareff basis for ail=1,...,n—k+1, is close to

1. (For smaller integells this probability is not close to 1 but still it is not 0. For the proof of this fact we
may either use Laasz’s Local Lemma, or a more direct argument which also provides a construction.)
This completes the sketch of the proofidieoreml.5.

3 The proofs of Theoremsl.3and 1.5

First we proveTheoreml.5together with the lower bound Bk, and then the lower bound ax. The

proof about the lower bound om has the same structure than the lower bound prooffobut in

places it requires different and somewhat sharper and more difficult estimates. In principle it would be
possible to give the proof fg8y only and then point out the differences. However in this case, it would

be very difficult to check the correctness of the second proof. Therefore we include the complete proof
for ax as well, although this includes some repetitions.

Definition 3.1. If nis a positive integer then the sft, ..., n} will be denoted byN,. Np will be the
empty set.

We will use the following observation in the proof bémma2.1

Lemma 3.2. Suppose thafy, ..., & are independent random variables, uniformly distributed over the
interval (0,1). Assume further that A {&; j } is a k by k matrix with integer entries and with determinant
+1. Foreachi=1,... ,kletp; = le(:la.j7j§j and letv; = pi — | pi |, where|x] is the largest integer which

is not greater than the real number x. Then eagis uniformly distributed ovef0, 1) and the random
variablesvs, ..., vx are independent.

Proof. It is sufficient to show that the vectovs, ..., vx) is uniformly distributed over tha-dimensional

unit cubeQk. The vector(py, ..., pk) is in thek-dimensional parallelepipg@lwhich has a vertex at 0 and
whose edges starting from 0 are the columnA.ofhe linear transformatioA takesQ into P. Since the
determinant oA\ is =1 we have that the distribution of the vece= (p1, ..., pk) is uniform overP. We

get the vectow = (v1,..., ) by reducing it moduld). Since bothQy andP are basic parallelepipeds

of the same lattice (the lattice of points with integer coordinates) this reduction is a one-to-one map
which preserves thk-dimensional volume. Therefore the fact thats uniformly distributed oveP
implies thatv is uniformly distributed oveQx. O

Proof ofLemma2.1 Sincea,Xs,...,Xn_1 are linearly independent and=+ 0 we have that the vectors
(x%,&x),i=1,....m—1, (a k/2) and the vectofO,...,0, k) are also linearly independent and so they
form a basis oK. We will use this fact in the proof.

Letz,...,zn 1 € Lsothatz,...,z, 1,ais a basis ol.. Assume that we take a random vakief
Y using the basigy, ..., Xn_1,a. Itis sufficient to show that with probability 1, for eack-1,... m—1
there is a unique real number € (0,1) so that(z, vix) € K, moreover the random variables i =
1,...,k defined this way are uniformly distributed oy&; 1) and they are mutually independent.

First we consider the special case when there are intégers 1,...,m— 1 so thatz = x +tja,
i =1,...,m— 1. By the definition of; we have(x;, {x) € K. This can be written in the form df; —
tia, & k) € K. Using that(a, k/2) € K we get tha(z, (§ +ti/2)k)) € K and s0(0,...,0, k) € K implies
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the existence o#;. If v; is not unique therf0, .. .,0, ¥ k) € K for somed € (0,1), in contradiction to the
fact that(0,...,0, k) is a basis vector d. Sincev; is the fractional part of; +t; /2 andé; is uniformly
distributed over0, 1), we have that; is also uniformly distributed ove0, 1).

We consider now the general case assuming only (that..,zy1,a) is a basis ofl.. We have
z = tig + z?‘;ll 0 jxj fori=1,...,m—1, where all of the coefficients and ¢; ; are integers. Let
w =z —ta i=1,...,m—1. Clearly(wi,...,wn_1,8) is a basis oL. It is sufficient to prove that our
assertion holds with :=wi, i =1,...,m—1, since if this is true then we may apply the already proven
special case withy; := wj;. In other words, we have to prove now the assertion for the special case when
the basis vectors,, ..., z,_1 can be written in the formg = z?";ll 0 jXj, 1 =1,...,m—1, whereg; j is
anintegerfoi=1,...,m—1,j=1,...,m—1. Since both(z,...,zn_1,a) and(xy,...,Xm,a) are bases
of L, we have that the determinalot;| is £1.

By the definition ofK we have(x;,&;x) € K. For each fixed we take the linear combinations of
these vectors with coefficients ;. We get tha(z, (z?‘;ll ai,jj)x) € K. Letv; be the fractional part of

zﬁ“;ll 0 j&;. Clearly with a probability 1 we have; € (0,1). MoreoverLemma3.2implies that eaclv;
is uniformly distributed ove(0, 1) and the random variables, ..., vk are independent.

Letx € L. We havex =ta+ z{‘;‘llbix;, wheret, by, ...,bn_1 are integers. Sincex,éix) €K, i=
1,...,m—1and(a, x/2) € K we have thatx,o’'x) € K, wheres’ =t/2+ 5" bi&. Let o the unique
element of the intervdl-1/2,1/2) so that for a suitable integewe haves’ +s= oy. (0,...,0,k) €
K implies that(x, oxk) € K. Assume that contrary to our assertiogp is not unique. By taking the
difference of the two vector&, oxx) for two different values ob we get that there is & € (0,1) with
(0,...,0,9k) € K which contradicts to the fact thé, ..., 0, k) is a basis vector df. O

Definition 3.3.

1. Assume thamis a positive integel, C R™ is a lattice,k > 0 is a real number ande L, a # 0.
The random variabl¥ defined inLemmaz2.1will be denoted byextm i | a.

We define a random variabteind,, whose values will be lattices IR". The definition depends
on two parameters: a positive integeand a functiorh with the property domaifh) O {1,..,n},
(only the values oh on {1,...,n} will be used in the definition, but notationally it will be more
convenient to allow functions with larger domains). The valudswiil be positive real numbers.
Assume thah andh are given. We define the random variabkend,, by recursion om. At
the same time we will prove by induction anthat for each possible value of rand,p there
is a minimal positive real number(L) so that(0,...,0,v(L)) € L. rand;p will be always the
one-dimensional lattice consisting of all of the real numlief$), wherei is an integer. Clearly
v(L) ish(1). Assume that the random varialiend, 1 » has been defined with valuesit~* for
somen > 1. Then first we take a random valluef rand,_1 . Leta=(0,...,0,v(L)) € L. Now
we randomizeext,_1pn)La- IS Value is a lattic& C R", this will be the value of the random
variablerand, n. By the definition ofextp, n) L a the vector(0,...,0,h(n)) is in K which proves
the existence of (K).

2. If nis a positive integer thenm(:" will denote the orthogonal projection & ontoR' defined by
a0y, VLYt Yn) = (Ya,- .-, Yi). %7 will be that map ofR" into the zero-dimensional
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spaceR? (consisting only of the vector 0). If the value ofs clear from the context we will write
() for z0-M
'V for £,

3. We say that the lattice C R" is triangular if it has a basig = (0 1,...,@in), i =1,...,nso that
foralli=1,...,n, 0;; #0and forallj = 1,...,i — 1 we haveg; j = 0. (The conditiono;j # 0
can be omitted since for a basis it follows from the other conditions). We will say that the basis
ai,...,an is atriangular basis df.

We can formulate the definition of triangularity in the following equivalent fotnis triangular
iff for eachi = 1,...,nthere is a real numbex # 0 so that(0,...,0, ) € £ (L).

Remark 3.4. The triangularity of the lattice depends on the way itis embeddedrih In particular this
property isnotinvariant under isometric isomorphisms of lattices. Namely there is a lattic®" and
there is a unitary transformatidh of R" so thatl is triangular butJL is not, wherdJL = {Ux | x € L}.

The following lemma is an immediate consequence of the definitions.

Lemma 3.5. Assume_ that m are positive integers, £ n, LC R" is a triangular lattice, them()L is a
triangular lattice inRR'.

Lemma 3.6. Assume that n is a positive integer, h is a function defined on the set of all positive inte-
gers whose values are positive real numbers. Then each value L of the random vasadle is a
triangular lattice.

Proof. The recursive definition of the random varialtend,, 1, implies that for alli = 1,...,n we have
that(0,...,0,h(i)) € () (L), which proves the triangularity af. O

Suppose that C R" is a triangular lattice. Our next goal is to associate with eagh. a sequence
of integersay, ..., an, which will behave in a similar way as sequence of coefficients in an orthogonal
basis. In particular we will want to get a lower bound [xj|? using the sequencay,...,a,. We
will derive this sequence by applying an integer version of the Gram-Schmidt orthogonalization to the
triangular basis and following the projections of vectaturing this orthogonalization. We will be able
to achieve integrality since we will use lattice vectors during the whole process. These lattice vectors
will not be necessarily in the lattide Triangularity implies that for eadh=1,...,n, z()(L) C R'is an
i-dimensional lattice. We will be able to use these lattices insteadhbthe corresponding stages of the
process. As a first step we define a sequence of vegiors a®(L),i=1,...,ns0 thatg | ande are
parallel (inR(")). We may consideg | as the result of the orthogonalization of the triangular basis.

Definition 3.7. Suppose that C R" is a triangular lattice. For each= 1,...,n there is av =
(Vo,...,Vi) € nL sothatyy = ---=v;_; =0 andy; > 0. vis unigue up to a constant factor, so there
is a unigue vectoy with this property if we add the requirement tivats minimal. We will denote this
vector by . Clearly every triangular basis af) (L) containsg | or —g | .

Remark 3.8. We will defineg; in the following way. We consider the set

Sc={nVx) +t@aL [t=0+1,42,...}.
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From the elements d8 we take aryo = ') (x) +togar . whoseith component is minimal in absolute
value (preferring 12 over—1/2). g will be defined by the equatiom(i)(x) =Yot+aL.

The setS; can be also defined & = {y € z0)(L) | z(~Y(y) = (-9 (x)}. Then we gety as a
function of z(-Y(x). Since we will need this function later, we will use it in the final definitiorapf
given inLemma3.10below.

Definition 3.9. If L C R" is a triangular lattice, then for eaéke [0,n— 1] we define a functioril; .
whose domain will ber() (L) and whose range will be inl+1 (L). We claim that for eack € (V) (L),
there is a unique real numbérin the interval(—1/2,1/2] so that(x,0) + £ @11 € (*+(L). Indeed,
sincex = n(y for somey € L we have thax’ = 7ty e 7(+DL and we get the vectot by extending
X with a new component. Singe 1 is contained in a triangular basis of +Y (L) we can writex’ in
the form of(x,0) + & @ 11L.. The uniqueness df follows also from the fact thag, | is contained in a
triangular basis. We define a functidi, mappingr()L into (Y by Ui | (x) = (x,0) + & 1,1 Where
& is the unique real number i-1/2,1/2] so that(x,0) + &, 1 € A0V (L).

Lemma 3.10. Assume that n is a positive integercLR" is a triangular lattice. Then for all xc L there
is a uniguely determined sequence of integers.a, a, so that for all j=1,...,n we have

allx= Uj—q (7 Al )+aJJOJL

For this sequencesa. .., a, we have

X2 > z(

Proof. The vectorstjx andU;_1 (z{/~Yx) differ only in their jth coordinates. Since both ares)L
their differenced = jx— Uj_1  (r~Vx) is a vector int!)) L whose only nonzero coordinate is tjté
one. @ is a basis vector o)) (L) therefored = a;@;, L for some integemr;. Sincep; # 0, g; is
unique. Letx = (xy,...,%). By the definition oflj_1, (z1~Vx), the jth coordinate of(j_q (x(1=Vx)
can be written in the form of ;. whereé € (—1/2,1/2]. Thereforex; = (£ +aj) ;L. If §; anda,
has identical signs a&; = 0 then|& +a;| > |aj|. Otherwise|§ +aj| > ||aj| —1/2|. This and the fact
that the numberg; are integers imply the final sequence of inequalities. O

1) el > 4za 1312

Definition 3.11.

1. If nis a positive integet, C R" is a triangular lattice, ¥ i < | < nare integers ange L then the
unique sequenca= (a,...,an) Whose existence is guaranteedllmma3.10will be denoted
HOL) = (9 i),

2. If a=(ay,...,a) is a sequence of integers thetart(a) will be the largest positive integeiso
thatay = --- = & = 0. If there is no such positive integer thepart(a) = 0. 4. Assume thalt
is a triangular lattice. For eaohe L andi =1,...,nlety(i) be the unique element &f so that
xWx = zWy(i) andU;  (zWy(i)) = zU+Vy(i) for eachj =i,...,n— 1. The uniqueness ofi)
follows from the equality(i) = Un—1, (... Ui,L(X)...). We will denote the vectoy(i) by @(xi).
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3. If Lis atriangular lattice then we define a basis, i = 1,...,nin the following way.by | = fn
andforalli=2,....,n—1,bj| = @(fn_it1,n—i+1).

4. In the following we will assume thak® C R* C ... CR". Namely ifi < j we will identify the
vector(xy, ..., %) € R with the vector(xy, ..., x,0,...,0) € Rl. (A cleaner way to do this would
have been to defirnR" as the set of all of the infinite sequencgs .., Xy, Xn11, . . . Of real numbers
sothat 0= Xy 1 =Xpi2 =---.)

Lemma 3.12. Assume that L is a triangular lattice. Then the basis, i = 1,...,n is size reduced.

Proof. By the definition ofbj . we haver™+Yb;; = @, i,1.. Since relative to the baslg we

haveR = ("1 whereR is from the definition of the Gram-Schmidt orthogonalization, we have
thatb;jL = @h-i+1L- We haveb; | = Un_1 (... Un—it1L(@n—it1L)--.). When we applyl,_j . we get
the n— j + 1th coordinate of the vectds; . which is y; j. Therefore the definition dil implies that

uij € (—1/2,1/2] and so|y; j| < 1/2. O
Definition 3.13.

1. Let o = sup|bs|?/|b;|2, where the supremum is taken overlatiimensional latticet and over
all Korkine-Zolotareff baseby, . .., bk in L. The quantityay is the Korkine-Zolotareff constant.

2. We define another lattice constgitwhich depends on lattices of dimensiok 2

BKZS“F’{(QIijﬂF) (1] |rbru)2)”k}

i=k+1

where the supremum is taken over dttdimensional latticeg and over all Korkine-Zolotareff
basedy, ..., by of L.

In [14] Schnorr proves thaty < k}°9k and asks whethemy = kY. In Theorem4.2 we will
show that actually Schnorr’s upper bound is tight namely there is ard so thatey > k&'°9 for all
k=1,2,.... In Theorem3.14we show that Schnorr’'s upper bound B Bk < 4k? is also the best
possible apart from a constant factor in the exponent. Schnorr’s estimate of the approximation factor of
his algorithm depends on the an upper boung@ganTheorem3.14implies that this analysis cannot be
improved by giving a better upper bound gn This in itself does not imply a lower bound on the worst-
case performance of the algorithm. However based on the probabilistic lattice construction in the proof
of Theorem3.14we will be able to construct a lattice with a basis which shows that the approximation
factor in the worst-case is the same as in the upper bound apart from a constant factor in the exponent
(Theorem3.22andTheorem3.23).

Theorem 3.14.There is ar > 0 so that if c> Ois a sufficiently small real number, n is a positive integer,
and L is a random value of the random variabkend, n, where tfx) = exp((cx/n)logn) = n™/", then the
following holds: With a probability of at leadt—e~*" the sequence b=b;,i=1,...,nis a Korkine-
Zolotareff reduced basis of the n-dimensional lattice L. Moreover the Gram-Schmidt orthogonalization
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procedure applied to the basig b..,b, yields the orthogonal vectors b= @h_ir1, i=1,...,n. If
n = 2m where m is an integer then we have

2m 1/m

(1) 7 i) )

This theorem clearly impliesheoreml.3

C

Proof of Theorem 3.14 In the proof we will use the following properties of the latticewhereL is a
random value ofandp .

Lemma 3.15. Suppose that n is a positive integer, h is an arbitrary function on the set of positive integers
with positive real values and L is a possible value of the random variedae, n. Then the following
requirements are met.

(3). Lis a triangular lattice and for ail=1,...,n, z0) @ = (0,...,0,h(i))
(4. Wi(@L) = (0,...,0,h(i), 3h(i+ 1)) foralli=1,....,n—1
(5). foralli=1,....,n— 1 and for all integers we havell;(tg ) = (0,...,0,th(i), 3h(i + 1))

Remark 3.16. In this lemma the functioh is not necessarily the same as the function defindtheo-
rem3.14

Proof. (3) The triangularity ofL is an immediate consequence of the definitionsaafd andext. @ |
takes the role of the vectdp, ..., 0, k) in the definition ofext;_; , [, where in our casé = a=D(L)
andk = h(i). o

(4) By the definition ofrand, , we have thatr(+9 (L) = extp 11 a, Wherex = h(i+1), L' = 70 (L),
anda= @ = (0,...,0,h(i)). This definition also implies thdg, k/2) € L, that is,

(0,...,O,h(i),%h(i +1) ex ).

Therefore the definition dfl; andg11 = (0,...,0,h(i + 1)) implies (4). (5) is an immediate conse-
guence of4). O

We return to the proof oTheorem3.14 First we estimate the probability of the following event
A: “n is not a shortest nonzero vectorlii’ Let a= (ay,...,a,) be a sequence of integers. We
estimate the probability of the eveiy: “there is arx € L, x # 0 so that|x|| < ||@n|| andd®b) = a” Let
start(a) =i. This implies that < n otherwise because af = - -- = a, = 0 we would havex= 0. The
conditionstart(a) = 0 also impliest)x = 0, z+Vx + 0. The latter inequality holds since otherwise
we would haver(+Yx = (0)+ai+11+1,L = 0 and thereforey; 14141, = 0 which is impossible since
ai+1 7 0 and@ ;1L # 0. We distinguish four cases dependingion

In the proof we will use repeatedly the following simple fact

(6). If h(x) = exp(%logn) thenh(n—n(logn)~1) = h(n)eC.
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Case Li > n—n(logn)~* or n < (5/4)1/(2, We show that in this case(A,) = 0 since there is
nox ¢ L with ||x|| < ||&n] and®*t = a. Indeed, assume that there is»aa L with these properties.
start(a) =iimpliesa; =--- = a = 0 and so according to the definition#f*") = awe haver!)(x) =
Oforj=1,...,i. a1 # O thereforen(V) (x) = 0 implies

(%) =a 1@ = (0,...,0,a1h(i +1)).

If i =n— 1 this implies||x|| > o in contradiction to our assumption. Therefore n— 1. (5) implies
that

. . . 1 .
TC(H_Z) (X) = Ui+1(ai+17t(l+l)m7L) - (oa e 707 ai+1h(| + 1)7 éh(l + 2)) .
Consequently

i . 1 . i 1, i
X2 > (202 > (h(i+ 1) + 3 (h(i +2))2 = 0P 4 20 > e,
So the condition > n— n(logn)~* implies that
2.9 2c(n—n(logn)~H)n-1 5 -1 5 2clogn-—2c clogn 2
|2 > ZnPen-neon It — 2 exp(2c(1- (logn) 1) logn) — L&*1%"e % > 9" — | g |

in contradiction to our assumption. We consider now the conditien(5/4)(%°), We have
5 o 5 [ 5

2 D 2ci/n) _ > ia—1 _ . -1 ).

log||x||“ > Iog(4n ) Iog4+20|n logn chogn<n+(20Iogn) log 4)

To give a lower bound on this we use timat (3)¥/(2%) implies (2clogn)~tlog3 > 1. Therefore

log||x||? > 2c|ogn(ln + 1) > 2clogn > log | on.||2.

Case Il.n—n(logn)~ > i, n > (5/4)%(% and|S,| > (n—i")/10 wherei’ = max{i,[n/2]} and
Sa={j €[i’,n] | aj # 0}. We show that in this cade(A,) = 0 since there is ng € L with 9*- = aand
IX|| < ||4n]|- Indeed assume that there isxag L with these properties. Byemma3.10we have

1 . . 1 1 v
X% > ZZ{HJOJ'HZ laj#0,jefi’,n]} > Z\SXIHMHZ > 21Sd(h(i")? >

}i(n—i’)ex 2CE|O n —i(n—i’)exp(ZClo n)ex —ch_i/ logn ) >
410 PL%n 9" = 20 gnexp nj=
%(n— i") exp(2clogn) exp<—2cnr/12 Iogn> > %(n— n(logn)~1)e~c°9"| g7 .

Sincen > (5/4)Y/(%) andc is sufficiently small we havek(n — n(logn)~1)e=¢°9" > 1 and therefore
IX|| > ||| in contradiction to our indirect assumption.

Case lll.n—n(logn)~>i,n> (5/4)Y(%), || < (1/10)(n—i") andi > |n/2]. (The last inequality
impliesi’ =i.) For each fixed > |n/2|, we estimate the probability of the evefyf A start(a) = i.
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Suppose thdt anda are fixed so that there is ane L with 9*b) = a, i = start(a). By the definition
of ™), x is unique with this property. Le® = [i + 2,n— 1]\S.. If j € Qthen 19]-("’” =aj =0and so
7 (x) = Uj_1(x1~Yx) and therefore by the definition &f;_1, we have thatr()(x) = 7~ (x) +
pj; for a uniquely definegh; € (—1/2,1/2]. LetM = h(n)(h(i))~* and letA, be the event that “the
number of integer§ € Qwith |pj| < (n—i)~Y/*M is at leas{n—i)/2.” We show tha#\, impliesA, and
thereforeP(A,) < P(A,), then we will prove an upper bound &{A’). Assume that-A,. Then there
are at least 31— i)/10 integerg € Q so that|pj| > (n—i)~Y/°M. Therefore

X% > %p;l!pjl|2_1o —i)(n—i)"2/PM2(h(i))? >

3 : - , 3 ,
10" 1)%/5(h(m)(h(D))~H?(h(i)? = 0" D¥5(h(n)? > [l gl

that is,—A, holds, which completes the proof of the implicatidh=- A,.
Now we estimaté>(A;). Supposg € Q. pj was defined by the conditions

2l () = 20 9(x) + py 3.

pj € (—=1/2,1/2]. Therefore the definitions afand, ext andLemma2.1implies that ifz(~(x) is
linearly independent gb;_; thenp is uniformly distributed ovej—1/2,1/2]. However ifzI=Y (x) # 0
andg;_1 are linearly dependent then (§) start(a) = j — 1. Sincel = start(a),i < j,QC[i+2,n]

this contradicts tg € Q. Therefore the distribution gf; is uniform over[—1/2,1/2]. The definition of
rand implies that random variablgs;, j € Q are mutually independent. Therefore the probability that
“the number of integerg € Q with |pj| < (n—i)~Y>M is at leas{n—i)/2” is no more than 27 (2(n—
i)~1/5M)1/200-1) We get that

(7). P(Aa) < P(A) < 27 (2(n—i) ¥/5M) /20,

Definition 3.17. Assume thanh is a positive integeh is an arbitrary function defined on the set of
positive integers with positive real valuds,is a possible value of the random variakiend,n and
a=(a,...,an) is a sequence of integers. We say that the sequeiscacceptable if there is at least one
possible valué. of the random variableand, , and anx € L with a = 9*L and||x|| < || |-

The following lemma is an estimate on the number of acceptable sequences. It was formulated and
proved, in a somewhat different context and with different terminology, by R. Kanna3].irThese
differences however do not affect the validity of the upper bound and its proof.

Lemma 3.18 (Kannan). Assume that - O and ni, i <n are positive integers, h is an arbitrary function
defined on the set of positive integers with positive real values, L is a possible value of the random
variable rand,, and a= (ay,...,a,) is an acceptable sequence withart(a) =i. Then for all j=

.,nwe havea;j| < h(n)(h(j))~*. Moreover the number of acceptable sequences stitirt(a) > i
is at most

(L+2h(n)(h(j)) " < 3" ﬁ(h(n)(h(j))’l)-

1>

J
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Remark 3.19. In this lemma the functioh is not necessarily the same aslineorem3.14

Proof ofLemma3.18 Assume that is an acceptable sequence andldte a value otrandnp Where
there is anx € L with ||x|| < @n and®*Y) = a. According to the definition oy we haver!) (x) =
(Uj—1L(mU=Yx)) +aj 0 L. Therefore

h(n) = l@ncll > [IXI| > | 79x] > [aj[| @]l = aj]h(])

which implies the inequalitya;| < h(n)(h(j))~*.
If ais an acceptable sequence wittert(a) > i thena; =0 forall j =1,...,i. By the inequality
proven above, for each> i the number of choices fa; is at most 1 2h(n)(h(j)) 1. O

We continue now the proof of Case Ill. For a fixed n/2 let p; be the probability of the following
event: there is an acceptable sequemse thatA,. Clearly

pi < Z{P(Aa) | ais acceptable anid= start(a)}.

Using our upper boun(?) on P(Ay) and the upper bound inemma3.18for the number of acceptable
sequences we get

Py < 22— i)Y "2 [ () ()
=1

Using that for allj € [i,n] we haveh(n)(h(j))~* < h(n)(h(i))~1 = M we get that
pi < 3n—i2(n—i)/2M3(n—i)/2(n_ i)—(n—i)/lo'

We give an upper bound avi.

M =h(n)/h(i) = exp<cnni Iogn> = exp(cnni(lognii +log(n— i))) .

Since the functioril/x) logx takes its maximum at= e in the interval1, o), we have thaf1/x)logx <
1/e< 1if x> 1. This yields

M < e"exp(cn;I log(n— i)> < €091 < ef(n—j)°.

Substituting this into the upper bound @nand using that is sufficiently small we gep; < (n—
i)‘(”")/zo. Therefore the probability that there is aso thatA, holds for a suitably chosemis at most
n—n(logn)~?!
(n_ i)—(n—i)/ZO.
i=n/2

It is easy to see that in this sum the largest term (withn — n(logn) 1) is greater than the sum of the
others. So we get

_ n \-1/202% 1 . a1
pi < Z(E) < 2exp<—20n— nloglogn(logn) > <e .
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Case IV.n > (5/4)Y(29) || < (n—i’)/10 andi < [n/2]. (The last inequality implieg = [n/2].)
For each acceptable sequenagith start(a) < n/2 we will give an upper bound on the probability

of the eventd,. Then we will estimate the number of acceptable sequences with this property.
Suppose that anda are fixed so that there is are L with 91 = a. We have

AV (x) = (Uj_1.L(xUV)x) + a2
forall j=0,...,n—1. LetQ=[n/2,n—1\S,. If j € Qthen

19_(X,L)

=a=0 andso zW(x)=Uj_y (z1Vx)

and therefore by the definition df;_1 we have thatr()) (x) = z(=Y (x) + p; ; for a uniquely defined
pj € (—1/2,1/2]. Let A, be the event that “the number of integérs Q with |pj| < n™ 7 is at leasnh/4,"
wheret < 1/4 is chosen so thatis sufficiently small with respect to. (This definition is somewhat
different from the corresponding definition in Case Ill.) We show thaimplies A, and therefore
P(Aa) < P(A}); then we will prove the claimed upper bound BfA').

Assume that-A;. Then there are at least5 integersj € Q so that|p;| > n~*. Therefore

1 hny2z 1 hny 2
25 21 112> T2t (D) tqt2e (TN
4= 5 ofle = g () =""(3)

_ 1 1-27 n—(n/2) _ 1 1-2t,,—C
75n exp< 2c . logn | = 5n n—"°.

Sincet < 1/4 andc > 0 is sufficiently small with respect tothis implies thaf|x||? > n? = (h(n))? =
2, that is,—Aq holds, which completes the proof of the implicatiéip=- A,.

In Case Ill we have seen that the random varialpleare independent and uniformly distributed
over[—1/2,1/2]. Therefore the probability that “the number of integeesQ with |p;| < n~" is at least
n/4” is no more than 22(2n~7)"4, We get that

(8). P(Aq) < P(AY) < 2V/2(2n~7)"4,

Now we estimate the number of acceptable sequencesswitht(a) < n/2. This is no more than
the total number of acceptable sequences without any restrictiongemyna3.18 this number is at
most|‘|'j‘:13”h(n)(h(j))—1. Therefore ifp is the probability of the event that there is an acceptable
sequence so thatstart(a) < n/2 andAy holds then using our upper bounds we get

n

SZn/Z on* n/43n h( )(h ) 71).
P (2n77) B( n)(h(j))

Using thath(j) = exp((cj/n)logn) we can calculate the value of the product exactly:

L i\ — _ clognyn n(n+1) _ nil
J|:|1(h(n)(h(1)) 1) = (efloam) exp(—c on Iogn) _exp<c2 Iogn) .
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Substituting this inequality in the upper bound pwe get:
logp < glogZ— 7(logn+ IogZ)?1 + nIogBJrc%L logn.

Sincec > 0 is sufficiently small with respect tothe term—(tn/4)logn will dominate in absolute value
thereforep < n~""/8. This is our upper bound on the probability that there isaL\ {0, £ } with

IXI] < llgnll-
Summarizing the results of the four different cases we get the following:

Lemma 3.20. If L is the random lattice defined itheorenB.14 then the probability thags, | is not a
shortest nonzero vector of L is at m@st /21,

Suppose that is a random value ofand,. We show now that with high probability for aill=
1,...,Nn, & nis a shortest nonzero vectorat (L). Indeed if we multiply every element af!)L by the
numberh(n)(h(i)) ! we get ari-dimensional triangular lattic€. We havep; x = h(n)(h(i)) 1go;  for
all j=1,...,i. Therefore

= N1 o [ = n o i
1]l = hm)(() 21| = exp(clogn) exp( ~c; ogn ) exp( 2 logn)

= exp(cn_(ri]_j) Iogn) =h(n—(i—1])).

Thereford| @ k|| =h(n), |[@-1k| =h(n—1), ... ||#1k]|| =h(n—i+1). This and the definition afand
implies that the latticé& can be embedded into another triangular latfise that@g k = n 3, -1k =
Fn-13;-- - 1K = 11 (n-i)y andJ is a random value otandnp. Lemma3.20 implies that with a
probability of at least 1- 3”2 we have thatzny = @ x = h(n)(h(i)) "1 L is a shortest nonzero
vector inJ. Suppose that for some outcome of the randomization it is a shortest nonzero vektor in
SinceK C J, it is also a shortest nonzero vectomirand finally sincer' (L) = h(n)~1(h(i))K, the vector
@1 =h(n~(h(i))@k is a shortest nonzero vector ii(L) with a probability of at least + 3e~"/2,
The probability that this happens for ak= 1,...,n simultaneously is at least-13ne /21 > 1 — e /22

if nis sufficiently large. The definition of the basis= b; | implies thatyt(i)bn_i+1 = gL, therefore if
we apply the Gram-Schmidt orthogonalization procedure to the basisn we geb = ¢ and so the
probability thath; is a Korkine-Zolotareff basis is at least-le"/22. Now

1211 ="(i) = exp( ] foan)

implies the last equation of the Theorem.
This concludes the proof datheorem3.14 (andTheoreml.3).

Definition 3.21. Assume thaB = (by,...,bn) is a basis of the lattice and 1<i <n. ThenPi(B) will
denote the orthogonal projectionlobnto the subspace orthogonakig...,b;_1.
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Theorem 3.22. There exists amx > 0, so that if c> 0 is sufficiently small, Jn are positive integers
2<k<n,andL isarandom value afand,g where j) = exp((cj/k)logk), b =b; fori=1,...,n,
and B= (by,...,bn), then the following holds. Assume thajis the probability of the following event:
“Foralli =1,...,n—kthe orthogonal projections of@ bi,..., Pi(B) b, k_1 is a Korkine-Zolotareff basis
of the k-dimensional lattice generated by these vectors” Thgr#0and gy >1—(n— K)e ok,

Proof. The second inequality is an immediate consequendéebrem3.14 Indeed for a fixed let K
be the lattice generated WB)bi, s R(B)bi+k_1. CIearIyPi(B)bi = ni)b;. Therefore

exp (ckk_l log k) K

is a value of the random variabtendy , whereh(j) = exp((cj/k)logk). Therefore, byrheorem3.14

the probability thaPi(B) bi,..., Pi(B) b k_1 is not a Korkine-Zolotareff basis is at most%. The fact that
there are at most— k choices foii implies the second inequality in the conclusion of the theorem.

If nis sufficiently large with respect tothen the proven second inequality does not immjy # O.

Still it can be shown by the Lasz Local Lemma that it holds. Actually the present situation is a very
simple special case of L&gz's lemma so a direct proof and a corresponding probabilistic construction
can be easily given based on the following observation.

Let 0< € < 1/10. Suppose thaD(x,y) is a binary relation on the finite sét so that ifx,y are
chosen at random, independently and with uniform distribution flothenP(Q(x,y)) > 1—¢€. For
eacht > 0 letA; be the set of alk € A with the property that if we take a randoyre A with uniform
distribution therP(Q(x,y)) > 1— 7. Then|A|~!|A;| > 1—¢/7. Indeed if we count the number of pairs
(x,y) with =Q(x,y) for all x € A\A; together then we get that this number is at ¢t — |A;|)T|A.

On the other hand from our assumption we know that this number is ataj#g$twhich implies that
claimed inequality.

If we pick nowt = /€ then we haveéA|~1|A;| > 1— \/e. Therefore for eack € A; the number of
elementsy € A; with Q(x,y) is at leasfA| — 2\/¢|A|. This implies that ifxy € A; then we may pick a
sequence of elements, X1, Xy, . .., Xy recursively (for an arbitrary) so thatforali = 1,...,m, x € A;
andQ(xi—1,%). This recursive construction can be turned into an algorithm if the validity of the relation
Q(x,y) can be algorithmically decided. This implies that although we may not be able to decide with
high probability whether an element isAg but we can tell about all of the elementsAgf;, with high
probability that they are ii\;. Therefore picking random elements and testing them whether they are in
A (with high probability) we can build the sequenggxy, ..., Xm.

This recursive procedure makes it possible to prove the existence of a basis with high probability
and with the required properties even in the case whisrsmall compared ta. To get a construction
we need that for dimension at mdsive are able to verify whether a given vector is a nonzero shortest
vector of the lattice. However if we are able to perform Schnorr’s algorithm with paraieten we
have already this ability. (By polynomial time computation we can find the shortest vector in dimension
O(logn). This seems to match the lower bound for khehere with high probability we get Korkine-
Zolotareff bases in all of the blocks of lengthHowever it is not clear whether the constant factors of
lognin the bounds really overlap.) O
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Theorem 3.23. There existt > 0,&’ > 0 so that for all positive integers,h, k< €'n, there is an n-

dimensional lattice L and a basis b..,b, in L so that if Ij,..., b}, are the orthogonal vectors that
we get through Gram-Schmidt orthogonalization from the basis h b, then the following holds. For
eachs=1,... n—2k—1we have

2k /

(7 16i12) ( ﬂﬂnbru)z)l k

i=s+1

logk
< ko9,

I[ba|/A2(L) > k&K, whereA (L) is the length of the shortest nonzero vector in L.

Proof. L will be a lattice whose existence is guaranteed’hgorem3.22with 2k in the place ok. We
have

b = g(n—i+1) = exp<Cn_2|k+1IogZ<> |

This implies the first inequality. According to Minkowski’s convex body theorem we have
1/n

Aa(L) < i (dett) " = (] 1)

Using that andk < &'n we get||by||/Ax(L) > keVK, O

4  The lower bound on the Korkine-Zolotareff constant oy

Definition 4.1. For each positive integérand real numbec we define a functior¥y . whose domain
is the set of all positive integers. For ak=1,... k let F (i) = €0°90” and for alli = k,k+1,... let
Freeli) = ecllogh?,

Theorem 4.2. Assume that ¢ 0 is a sufficiently small real number and & 0 is a sufficiently large
positive integer. Foralln=1,2,... if L is a random value of the random variabiandn‘gclrc then the
following holds. With a probability of at leadt/2 the sequence;jb=b;, i =1,...,n is a Korkine-
Zolotareff reduced basis of the n-dimensional lattice L. Moreover the Gram-Schmidt orthogonalization
procedure applied to the basisg b. ., b, yields the orthogonal vectors b= i+ 11, i=1,...,n. Ifnis

sufficiently large with respect ta @and ¢ then we havigh ||||bs|| 1 > nelogn ¢lo9¢:,

Theoreml.9formulated inSectionl.2is an immediate consequenceldfeorend.2.

Proof of Theorem4.2  In the following lemma we summarize some of the elementary properties of
the functionJy c.

Lemma 4.3. There existy > 0, a2 > 0 so that if0 < ¢ < 1 and Kk is a positive integer then there is an
as > 0 so that for all positive integers n, i, r i the following inequalities hold.
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9). if i > 0 then

?k.,c(n)(sfkﬁc(i))fl < aanClog(n/i) ;

if i >3 > kthen

Fiee(N) (Fre(i)) ™ > aen®9D;
(10). for all 6 > 0 if ¢ > 0 is sufficiently small and mgx, k} > n— 2logn then
(1-6)TFke(n) < Fieli);

(11). if 0 < & < 1, cis sufficiently small with respect t§, n is sufficiently large with respect toand
&,n/2<i<n—lognthenJyc(n)(Fuc(i)) "t < (n—i)s .
Proof. (9). a1 and o, are chosen wheo andk are already fixed so we may assume thabdn are
sufficiently large with respect toandk. ThereforeFy ¢(n) = €%/°9"* andFi (i) = e*109)”,
2 2
c(logn)? = c(logi + Iogiﬂ) = c(logi)?+ 2clogi IogTn +c<|ong)
2
= c(logi)?+ 2c|ogn|ogTn + 2c(logi — logn) IogiD + c(log ?) .

The assumptiom > i > n/2 implies that the absolute values of the last two terms remain below an
absolute constant. Therefore the ratioggf;(n)n—2¢'°90"1) and Jy (i) remains between two positive

constants.
(10). We have

Fic(n—2logn) = eXp(C(Iog(n _2 Iogn))z)
= e(c{oa(n(1-272)) ") =ex0(c(oan-oa(a-23))’)

— eCUogn)zexp(ZoIognIog(l— 2'?“) + (Iog(l— 2I<r)]gn>)2> .

The assumption that > 0 is sufficiently small implies that we may assume thas sufficiently
large. Sincelog(1— (2logn)/n)| < 2(2/n)logn the exponent in the second factor remains betow
in absolute value for any > 0 if n is sufficiently large and the first factor i ¢(n). SinceJFy(i) is
monotone in the intervah — 2logn, n] this implies(10).

(12). Inequality(9) implies that there is an absolute constgnt- 0 so that

Fre(N) (Fee(i)) ™2 < conPelos/i)

Therefore we have to prove that —i)%c, tn~2090/1) > 1 provided than/2 <i < n—logn, ¢ > 0
is sufficiently small with respect t§ andn is sufficiently large with respect toand&. Taking the
logarithm of both sides of the inequality we get

Elog(n—i)—logc, — 2clogn(logn—logi) > 0.
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We consider the left hand side as a functiom. dfet f (x) = £ log(n— x) —logc, — 2clogn(logn—logx).

The derivative off is
F(x) = — & +2c|ogn.
n—x X

The functionf’(x) is continuous on the intervih/2,n— 1] and it has a single root

n
~ 1+&/(2clogn)

in it (for this latter fact we use that is sufficiently large with respect tg). Thereforef’(n/2) > 0
and f'(n— 1) < 0 implies that the functiorf is increasing frorm/2 till xo and then it is decreasing
from Xo till N—1. So we can prove our inequalitylog(n—i) — logc, — 2clogn(logn —logi) > 0
for all i € [n/2,n—logn| by checking it at the endpoints. if=n/2 then logh— logi < log2 and
log(n—i) > (1/2)logn, therefore the assumption thats sufficiently small with respect t§ implies
the inequality. Ifi = n—logn then lognh — logi < 2n~tlogn so the term containinglogn — logi) is
negligible compared t§ log(n—i) > £ loglogn. O

Xo

In this proof we will write 5" for I, c. First we estimate the probability of the following eveft
“fonL is not a shortest nonzero vectorlii’ Let let a= (a4,...,an) be a sequence of integers. We
estimate the probability of the eveit: “there is arx € L, x # 0 so that|x|| < ||gn|| and®*Y = a” Let
start(a) =i. ThenA, implies thati < n (otherwise we would have= 0). We also haverl) (x) = 0,
7(+1(x) # 0. We distinguish four cases dependingipim each case, we shall estimaA,).

Case |. maxi,c;} > n— (logn)2. We show that in this cage(A,) = 0 since there is n& € L with
IX| < ||| and 9>t = a. Indeed assume that there isxaa L with these propertiesstart(a) = i
impliesa; = --- = a = 0 and so according to the definition 8f*Y) = a we haver))(x) = 0 for
j=1,...i.an#0andr Y (x) =a 1Y@, 1 =(0,...,0,81F(i+1)). If i =n—1this implies
|IX|| > gon,L in contradiction to our assumption. Therefore n— 1. (5) implies that

L3i+2).

22 (%) = Uisa (a7 V@) = (0,...,0,a14F (1 + 1), 2

Consequently
12 > |12 > (34 1) + 3 (5 +2))%

So the assumption méxc; } > n— (logn)? and(10) implies that||x||? > (F(n))? = ||#n.||? in contra-
diction to our indirect assumption.

Case Il.n— (logn)? > max{i,c; } and|S,| > (1/10)|n—i’| wherei’ = max{i, [n/2]} andS, = {j €
[i",n] | a; # 0}. In this case we will use the following inequality:

(12). for all v > 0, for all c with 0 < ¢ < 1/20, for all sufficiently largen and for allx with n/2 < x <
n— (logn)2 we have(n— x)n—409(n/) > .

Taking the logarithm of the left hand side of the inequality weetlog(n— x) — 4clogn(logn —
logx). Sincex > n/2 we have log— logx = [ 1/ydy< [;'1/(n/2)dy= 2n"1(n—x). This implies
that? > log(n —x) —8cn~1(n—x)logn. If n—x < y/n then the assumptian< n— (logn)? implies that
¢ > log((logn)?) — 8cn~n/2logn > logy if nis sufficiently large.
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If n—x>,/nthen¢ > (1/2)logn—8cnnlogn > (1/2)logn—8clogn. Sincec < 1/20 this implies
that? > logy which completes the proof ¢i.2).

We return now to the discussion of Case Il. We show that in this case Bg&in = O since there is
nox € L with 9%t = aand||x|| < | #nl|. Indeed assume that there isyaa L with these properties. By
Lemma3.10andLemma4.3we have

x| > 4Z{IIJOJH |aj #0,j € [i',n} > 2184l 2= [Sd(F1))?

1.1 -1\ —4clog(n/i’) 2_ .21 i"yn—4clog(n/i) 2
> Loz L (n i) 40 ()2 = 0 ()40 2

.b

Sincei’ > n/2 andc is sufficiently small, inequality{12) is applicable with the substitutions:= i’,

v 1= 40a; % and we get|x||? > |gn]|? in contradiction to our indirect assumption. (Our assumption
— (logn)? > max{i,c; } implies thatn > c;. c; is sufficiently large with respect by the assumptions

of Theorenm4.2, and s is also sufficiently large with respect tas required ir{12).)

Case lll.n— (logn)? > max{i,c1}, |Sa| < (n—1")/10 andi > [n/2]. (The last inequality implies
i =1.) We estimaté®(a) in terms ofi.

Suppose that anda are fixed so that there is ane L with 1) = a. By the definition ofg L),

X is unique with this property. Moreover if we follow the recursive definition of the randomization of
L = rand, 5 then in each step together witth!) (L) we also getr! (x) since by the definition of*! we
haven(”(x) = (Uj_17L(7t(j‘1))x) +aj ;.

LetQ=[i+2,n—1\S. If j € Q then ﬁj(X’L> =a; = 0 and sor(x) = Uj_1 (zU~Yx) and
therefore by the definition df(j_1, we have thatt))(x) = =Y (x) + p;g; for a uniquely defined
pj € (—1/2,1/2]. LetM = F(n)(F(i)) " and letA, be the event that “the number of integgrs Q with
lpj| < (n—i)~Y5M is at leas{n—i)/2.” We show tha#\, impliesA, and therefor®(A,) < P(A,), then
we will prove an upper bound dA(A’). Assume that-A,. Then there are at leasftr—i)/10 integers
j € Qsothat|p;| > (n—i)~¥5M. Therefore

X1 > ZDPIHJOJHZ_H) —i)(n—1)"%/°M3(5 (i)

> 2= )YE(FE0) Y F0) > o)W >

so we reached a contradiction. Therefer®, holds, which completes the proof of the implication
A, = A

Now we estimatéP(A,). Supposg € Q. p; was defined by the conditions' ) (x) = zU0~1(x) +
P, Pj € (—1/2,1/2]. Therefore the definitions afand, ext andLemma2.1imply that if 70~ (x) is
linearly independent gb;_; thenp; is uniformly distributed ovej—1/2,1/2]. However ifz=Y (x) # 0
andg;_1 are dependent then §§) start(a) = j — 1. Sincel = start(a), Q C [i+2,n| this contradicts
to j € Q. Therefore the distribution @fj is uniform overi—1/2,1/2]. The definition ofrand implies that
the random variableg;, j € Q are mutually independent. Therefore the probability that “the number of
integersj € Qwith |pj| < (n—i)"Y5M is atleas(n—i)/2” is no more than21(2(n—i)~¥/5M)("-1/2,
We get that

(13). P(Aq) < P(AL) < 271 (2(n—i)~Y/5Mm) (=172,
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We use here the notion that a sequeaee(ay, . .., a,) is acceptableas defined before the statement
of Lemma3.18 In this case we use the definition with= F.

For a fixedi > n/2, let p; denote the probability that there is an acceptable sequaneith
start(a) =i so thatAy holds. By the union boundy < S {P(Aa) | ais acceptable angltart(a) =i}.

Py < 2773 (2(n— i) /5 /23 () () Y.

Using that for allj € [i,n] we have
F)(F(1) F <FM)(EF(0) =M

we get thatp; < 3"-12301-0/2M300-1)/2(n —j)=("=D/10 By (11)M < (n—i)* for a small constanf >0
so we getp; < (n—i)~(")/20, Therefore the probability that there is iaso thatA, holds for a suitably

chosem is at most
n—(logn)? _ ®
(n_i)f(nfl)/ZOS z kfk/ZO.

i=n/2 k=(logn)?

We have thak*/20/(k+1)~(+1/20 > (k4 1)1/20 therefore the first term in the sum (wikh= (logn)?)
is greater than the sum of the others so we get that the probability is smaller than

2((logn)?)~(109m?/20 < exp<_<'°@m>l'cl>g'°9n>

if nis sufficiently large; this, however, follows from- (logn)? > c;.

Case IV.n— (logn)? > max{i,c1}, |Sa| < (n—i")/10 andi < [n/2]. (The last inequality implies
i"=1{n/2].)

For each acceptable sequenaeith start(a) < n/2 we will give an upper bound on the probability
of the eventd;. Then we will estimate the number of acceptable sequemegth A;.

Suppose that and a are fixed so that there is ane L with 9*Y = a. We haver()(x) =
(Uj—1L(m0-Y)x) +ajp; forall j =0,...,n—1.

Let Q= [n/2,n—1\S,. If j € Q then ﬂj(x’L) =a; = 0 and sor(x) = Uj_1 (x"Yx) and
therefore by the definition df(j_1, we have thatt))(x) = =Y (x) + p; g for a uniquely defined
pj € (—1/2,1/2]. Let A, be the event that “the number of integgrs Q with |p;| < n~7 is at least
n/4,” wheret < 1/4 is chosen so thatis sufficiently small with respect to. (This definition is some-
what different from the corresponding definition in Case Ill.) We showAgamplies A, and therefore
P(Aa) < P(A}), then we will prove an upper bound &tA}). Assume that-A,. Then there are at least
n/5 integersj € Q so that/pj| > n~*. Therefore

X7 5 oflen | = gnm > (3(y2) = g (3 (0/2)

Thus (11) implies that||x|> > (F(n))? = 2, that is, =A; holds, which completes the proof of the
implication A = Aa.
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In Case Ill we have seen that the random varialpleare independent and uniformly distributed
over[—1/2,1/2]. Therefore the probability that “the number of integpesQ with |p;| < n~" is at least
n/4” is no more than 22(2n~7)"4, We get that

(14). P(Aa) < P(A,) < 2V2(2n~7)"4,

Let p denote the probability that there is an acceptable sequewith start(a) < n/2 so thatA,
holds. Again by the union boung,< ¥ {P(As) | ais acceptable ansitart(a) < n/2}. We use(14) as
an upper bound oR(A;). The number of acceptable sequences with the given property is not greater
than the total number of acceptable sequences and for this we use the upper’hql}mpﬂn)(&"(j))*l
provided byLemma3.18

To get an upper bound on this product we need a lower bourp‘@lj‘g[(?(j))*l >C |‘|’j‘:1e*°('°91')2,
wherec, > 0 depends only on andc;. Using that

/(Iogx)zdx: x(logx)? — 2xlogx+2x+C

we give an upper bound d§_; c(log j)2. Since the functiorilogx)? is monotone we have

n n
> c(log j)? < c/ (logx)?dx+ (logn)?
=1 1
= c(n(logn)? — 2nlogn+2n— 2+ (logn)?) .
Substituting this inequality in the upper bound pmwe get:

p < 2"/2(2n~7)/4gngenllogn)? exp(—c(n(log n)2 — 2nlogn+2n— 2+ (log n)2)>
< 2"2(2n")V43"exp(2cnlogn — 2cn— c(logn)? + 2¢)) .

Therefore, ifc > 0 is sufficiently small with respect to then p < n—*"/8, In other words in Case IV
the probability that there is amso thatA, holds for some suitably choseris at mosin~*"/8 assuming
T < 1/4 andc is sufficiently small with respect to.

Summarizing the results of the four different cases we get the following:

Lemma 4.4. If L is the random lattice defined ifiheoremé.2, then the probability thajo, is not a
shortest nonzero vector of L is at mastp(—(1/12)lognloglogn). If n < c; then g, is always a
shortest nonzero vector.

Suppose that is a random value aofandn . The definition of the random variabtend implies
that )L for anyi < nis a random value afand; 5. ThereforeLemma4.4implies that the probability
gn of the event that there is ar< n such that@ | is not a shortest nonzero vectomﬁ)(L) is at most

n (logt)loglogt
z exp<—21) :

t=C1

Asn— oo, this series converges (because it is dominateglibyt —2); therefore, ifc; is sufficiently large
theng, <1/2. Ifi<cg thenz()L has an orthogonal basis consisting of vectors of the same length so each
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of them is a shortest nonzero vector. This also impliesdhat O for n < ¢;. Thereforeg, < 1/2 for all
positive integers. The definition of the basis; , i = 1,...,nimplies thatn(”*i“)bi,L = h-i+1L and
so applying the Gram-Schmidt orthogonalization process to it indeed yields the v@ctergh_i 1.,
i=1,...,n. The fact thalz | is a shortest vector im0 (L) for alli = 1,...,nthen implies thab; | is a
Korkine-Zolotareff basis. The final inequality of the theorem holds sjitogg = || gn || = F(n) > nclogn
and||b;|| = [l || = ¢S, This concludes the proof Gheoremé.2
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