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Abstract: Schnorr’s algorithm for finding an approximation for the shortest nonzero vec-
tor in ann-dimensional lattice depends on a parameterk. He proved that for a fixedk≤ n
his algorithm (block 2k-reduction) provides a lattice vector whose length is greater than
the length of a shortest nonzero vector in the lattice by at most a factor of(2k)2n/k. (The
time required by the algorithm depends onk.) We show that ifk = o(n), this bound on the
performance of Schnorr’s algorithm cannot be improved (apart from a constant factor in
the exponent). Namely, we prove the existence of a basis inRn which is KZ-reduced on
all k-segments and where the ratio‖b1‖/shortest(L) is at leastkcn/k. Noting that such
a basis renders all versions of Schnorr’s algorithm idle (output = input), it follows that the
quantitykcn/k is a lower bound on the approximation ratio any version of Schnorr’s algo-
rithm can achieve on the shortest vector problem. This proves that Schnorr’s analysis of
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the approximation ratio of his algorithm is optimal apart from the constant in the expo-
nent. We also solve an open problem formulated by Schnorr about the Korkine-Zolotareff
lattice constantsαk. We show that his upper boundαk ≤ k1+lnk is the best possible apart
from a constant factor in the exponent. We prove a similar result about his upper bound
βk ≤ 4k2, whereβk is another lattice constant with an important role in Schnorr’s analysis
of his algorithm.

1 Introduction

1.1 Historical background, related results

One of the most important tasks of the algorithmic theory of lattices is to find a short nonzero vector in
a given lattice. Although there is no known polynomial time algorithm which finds a shortest nonzero
vector in ann-dimensional lattice, Lov́asz’s algorithm also known as LLL reduction published in a paper
of A. Lenstra, H. Lenstra, L. Lov́asz [12], finds a vector which is longer than the shortest vector by a
factor of at most 2n−1/2. In this algorithm we repeatedly have to find short bases in two-dimensional
lattices. The two-dimensional problem was already solved by Gauss [6], (see also Lagrange [11]). In
1987 C. P. Schnorr gave an algorithm which is a generalization of the LLL reduction (see [14]). In this
algorithm we have to find short bases in 2k-dimensional lattices. If we want a polynomial time algorithm
then we may use the maximalk where a short basis can be found in polynomial time. Schnorr has proved
that if k is fixed then the approximation factor in his algorithm is at most(2k)2n/k.

We will prove that Schnorr’s upper bound about his algorithm cannot be improved apart from a
constant factor in the exponent. The proof is based on the construction of a latticeL and a basisb1, . . . ,bn

in it, with the property that Schnorr’s algorithm, givenb1, . . . ,bn as an input, immediately terminates and
givesb1 as an approximation of the shortest nonzero vector ofL. For a more detailed formulation of this
result we need the following two (well-known) definitions.

Definition 1.1.

1. Let b1, . . . ,bn be a basis of the latticeL. Applying the Gram-Schmidt orthogonalization to this ba-
sis we get a sequence of vectorsb∗1, . . . ,b

∗
n with the property thatb∗i , i = 1,2, . . . ,n are pairwise or-

thogonal,b1 = b∗1 and for alli = 1, . . . ,n we haveb∗i = bi−∑i−1
j=1 µi, jb∗j whereµi, j = (bi ·b∗j )‖b∗j‖−2.

If Pi is the projection of then-dimensional space onto the subspace orthogonal tob1, . . . ,bi−1 then
b∗i = Pibi . We call the basisb1, . . . ,bn size-reduced if|µi, j | ≤ 1/2 for all 1≤ j < i ≤ n. It is
important for us that given an arbitrary basisb1, . . . ,bn it is easy to construct a size-reduced basis
d1, . . . ,dn so thatb∗i = d∗i for i = 1, . . . ,n.

2. Let b1, . . . ,bn be a basis of then-dimensional latticeL. For eachi = 1, . . . ,n let Pi be the orthogonal
projection of then-dimensional space onto the subspace orthogonal to the vectorsb1, . . . ,bi−1. Let
b∗i = Pibi . b1, . . . ,bn is a Korkine-Zolotareff basis (or a Korkine-Zolotareff reduced basis, see [10])
if it is size-reduced, andb∗i is a shortest nonzero vector in the latticePiL, for all i = 1, . . . ,n.
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We show that (apart from a constant factor in the exponent) the mentioned upper bound, about the
performance of Schnorr’s algorithm, cannot be improved. Namely there is anε ′ > 0 so that for every
k≤ ε ′n there exists a lattice and size reduced basis,b1, . . . ,bn in it so that, for everyi = 1, . . . ,n−k+1,
the vectorsPibi , . . . ,Pibi+k−1 form a Korkine-Zolotareff basis in the subspace generated by them. Conse-
quently, Schnorr’s algorithm is inactive onb1, . . . ,bn and so the short vector produced by the algorithm
is b1. However the construction will show that the ratio of‖b1‖/λ1(L), whereλ1(L) is the length of the
shortest nonzero vector inL, is at leastkcn/k. So starting from this basis the output of Schnorr’s algorithm
is not better than the proven upper bound (apart from the mentioned constant factor). R. Kannan [8] con-
structed a lattice with these properties for LLL reduction, that is, for thek = 2 case. His construction
is explicit while our present construction for an arbitraryk is probabilistic. Still we keep several im-
portant properties of Kannan’s example. Although we give a tight lower bound on the approximation
provided by Schnorr’s algorithm, still two questions remain open. (1) What is the largestk where a short
basis, in the sense of Schnorr’s algorithm, can be found in time polynomial inn? (2) It is possible that
if the same lattice is presented with another basis then Schnorr’s algorithm gives a better result. (The
largestk for which there is a known polynomial time deterministic algorithms isk = O(logn/ log logn)
given by R. Kannan in [9], and for probabilistic algorithms it isk = O(logn) given by M. Ajtai, R. Ku-
mar, and D. Sivakumar in [4]. Therefore the approximation factor in deterministic polynomial time
version of Schnorr’s algorithm is exp

(
O((log logn)2(logn)−1n)

)
while in the probabilistic version it is

exp
(
O((log logn)(logn)−1n)

)
.)

In a recent paper [15], Schnorr describes a practical algorithm for finding short vectors in lattices
which in practice outperforms the known algorithms (there is no proven upper bound guaranteeing the
good performance). There are concepts about lattice bases which play a role in both [15] and the present
paper. The two papers complement each other in the sense that one shows the positive the other the
negative effect of a basis with random behavior on the performance of algorithms.

1.2 The main results

Our proof about the worst-case performance of Schnorr’s algorithm is based on the following random
construction of ak-dimensional latticeL = Lk,c.

Definition 1.2. Assume the random variablesµi, j , 1≤ j ≤ i−2≤ k−2 are independent and uniformly
distributed over the interval(−1/2,1/2). We define a lower triangulark×k matrix

A(k,c) = (Ai, j)i=1,...,k, j=1,...,k .

The definition of the entries is the following.

Ai,i = k−ci/k, for i = 1, . . . ,k,

Ai,i−1 =
1
2

Ai−1,i−1 =
1
2

k−c(i−1)/k, for i = 2, . . . ,k, and

Ai, j = µi, jA j, j , if 1 ≤ j ≤ i−2≤ k−2.

This implies that theith row of the matrix(Ai, j) is of the following form:

µi,1k−c/k . . . µi,i−2k−c(i−2)/k 1
2k−c(i−1)/k k−ci/k 0 . . . 0
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Lk,c will denote the lattice inRk generated by the rows ofA(k,c).

The following theorem describes the properties of the latticeLk,c which will be crucial in our proof
about the worst-case behavior of Schnorr’s algorithm.

Theorem 1.3. For all sufficiently small c> 0 there is anα > 0 so that for all sufficiently large positive
integers k with a probability of at least1− e−αk we have the following. Let ai be the ith row of the
matrix A(k,c). Then a1, . . . ,ak is a Korkine-Zolotareff reduced basis of the lattice Lk,c. In particular the
first row of this matrix is a nonzero shortest vector of the lattice, with length A1,1 = k−c/k. Moreover
for all i = 2, . . . ,k, if Pi is the projection ofRk to the subspace orthogonal to a1, . . . ,ai−1 then in the
(k− i)-dimensional lattice PiLk,c, the vector Piai is a nonzero shortest vector with length Ai,i = k−ci/k.

The theorem implies that if we apply the Gram-Schmidt orthogonalization to the basisa1, . . . ,ak of
Lk,c then we get a basisa∗i (of Rk) with a∗i = k−ci/kei , whereei is theith unit vector.

We will use the latticeLk,c in the way described below. We will construct (at random) ann-
dimensional lattice given with a basisb1, . . . ,bn, so that for every segmentbs, . . . ,bs+k−1 of this ba-
sis, if we take the orthogonal projections of the vectorsbs, . . . ,bs+k−1 to the subspace generated by
b1, . . . ,bs+k−1, then the resulting sequenceb′s, . . . ,b

′
s+k−1 is like the basisa1, . . . ,ak from Theorem1.3

multiplied by a constant factor. This and the described properties of the basisa1, . . . ,ak will make it
possible to show that Schnorr’s algorithm is inactive on the basisb1, . . . ,bn. (The length of a shortest
nonzero vector in the lattice generated byb1, . . . ,bn will be estimated through Minkowski’s convex body
theorem.)

The basisb1, . . . ,bn has a very concise definition similar to the definition of the latticeLk,c (although
for the proofs we will reformulate it into a longer but more natural definition.) Our construction will
depend on a constantc > 0 and we show that ifc is sufficiently small then the constructed lattice and
basis meet our requirements. Assume now that a constantc > 0 is fixed. Theith unit vector inRn will
be denoted byei .

Definition 1.4. Let n,k, k≤ n be positive integers and letc> 0 be a real number and letfi = kc(n−i+1)/kei

for i = 1, . . . ,n. Suppose further thatµi, j , i = 1, . . . ,n, j = 1, . . . , i−2 are mutually independent random
variables, uniformly distributed over the interval(−1/2,1/2). Let b1 = f1 and for all i = 2, . . . ,n let
bi = fi +(1/2) fi−1 + ∑i−2

j=1 µi, j f j . It is easy to see that the vectorsb1, . . . ,bn are linearly independent.
Let Λ(n,k,c) be the lattice generated byb1, . . . ,bn. The basis(b1, . . . ,bn) will be denoted byB(n,k,c).
If the values ofn,k,c are fixed thenΛ(n,k,c) andB(n,k,c) are random variables.

Clearly this definition implies that then×n matrix whose rows aref1, . . . , fn is lower triangular, and
its ith row is

µi,1kcn/k . . . µi,i−2kc(n−(i−2)+1)/k) 1
2

kc(n−(i−1)+1)/k kc(n−i+1)/k 0. . .0

As a consequenceΛn,k,c = kc(n+1)/kLn,c and we get the basisb1, . . . ,bn of Λn,k,c by multiplying the rows
of the matrixA(n,c) by kc(n+1)/k.
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Theorem 1.5. For all sufficiently small c> 0, there existsε ′ > 0 so that if n is a sufficiently large
integer, and k is an integer with k≤ ε ′n then the following holds. Assume that L, (b1, . . . ,bn) are
the corresponding random values of the random variablesΛ(n,k,c), B(n,k,c). Then with a positive
probability the following conditions are satisfied.

(1). ‖b1‖= exp
(
cn

k logk
)
, λ1(L)≤ 2n1/2exp

(
cn+1

2k logk
)
, and so

‖b1‖/λ1(L)≥ 1
2

n−1/2kc(n−1)/(2k) ≥ kcn/(3k) ,

(2). for all i = 1, . . . ,n−2k+ 1, the vectorsPibi , . . . ,Pibi+2k−1 form a Korkine-Zolotareff basis of the
lattice generated by them.

Corollary 1.6. The quantity kcn/(3k) is a lower bound on the approximation ratio any version of Schnorr’s
algorithm can achieve on the shortest vector problem, hence Schnorr’s upper bound on the approxima-
tion ratio of his algorithm is optimal apart from the value of the constant in the exponent.

Proof. Take a basis satisfying the properties guaranteed inTheorem1.5. Then all versions of Schnorr’s
algorithm are idle on this basis (they do not change the basis). Therefore the algorithm’s guess at
the shortest vector isb1, which is a factor ofkcn/(3k) longer than the shortest vector in the lattice by
Theorem1.5.

Remark 1.7.

1. The theorem does not provide a lower bound on the “positive probability” so it does not give a
way to construct a lattice and a basis with the properties described in the theorem. We will see,
however, from the proof that for allc1 > 0 there is ac2 > 0 so that ifk ≥ c2 logn thenL and
(b1, . . . ,bn) meet the requirements of the theorem with a probabilityp≥ 1− n−c1. For smaller
values ofk, p can be exponentially small, so in this case the theorem does not give a construction.
We will see that even in this case there is a probabilistic construction forL and(b1, . . . ,bn) with
the required properties.

2. The theorem holds, e. g., with anyε ′ < c/10 (this is not the best upper bound onε ′), and the final
inequalityn−1/2kc(n−1)/(2k) ≥ (1/2)kcn/(4k) follows from this inequality. However ifε ′ is much
larger thanc, then the final inequality does not hold since the factorn−1/2 will dominate and so
we will have(1/2)n−1/2kc(n−1)/(2k) < 1.

In this paper we also solve an open problem asked by Schnorr about the geometry of lattices, which
is related to the analysis of his algorithm.

Definition 1.8. For all positive integersk, the Korkine-Zolotareff constant isαk = sup‖b1‖2/‖b∗k‖2,
where the supremum is taken over allk-dimensional latticesL and over all Korkine-Zolotareff bases
b1, . . . ,bk in L.

Schnorr proves thatαk ≤ k1+logk and asks whetherαk = kO(1). We show that actually his upper
bound is optimal up to a constant factor in the exponent. Namely we prove the following.
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Theorem 1.9. There is anε > 0 so that the value of the Korkine-Zolotareff constantαk is at least kε logk

for all k = 1,2, . . .

We will prove this result inSection4. It will be an immediate consequence ofTheorem4.2. We
note that the proof ofTheorem1.5 andTheorem1.9 are both based on random lattice constructions.
The two random constructions are similar but not identical. In fact, the construction used in the proof of
Theorem1.9requires sharper estimates and so that proof involves more work.

Another lattice constantβk is even more important for the determination of the approximation factor
provided by Schnorr’s algorithm.βk defined as

βk = sup

{(( k

∏
i=1

‖b∗i ‖2)( 2k

∏
i=k+1

‖b∗i ‖
)−2
)1/k

}

where the supremum is taken over all 2k-dimensional latticesL and over all Korkine-Zolotareff bases
b1, . . . ,b2k of L. Schnorr gives the upper boundβk ≤ 4k2 and uses it in the analysis of his algorithm. We
show that this upper bound is tight apart from a constant in the exponent, that is, there is anε > 0 so that
βk ≥ kε for all k = 1,2, . . ..

To prove the lower bound onβk we will use the random latticeL = Λ(2k,2k,c) with a sufficiently
smallc > 0 and show that with a high probability the basisB(2k,2k,c) is a Korkine-Zolotareff basis in
L. (SinceΛ(k,k,c) = kc(k+1)/kLk,c, Theorem1.3implies this statement with 2k in the place ofk.) For the
lower bound onαk we use a modified form of the random latticeΛ(k,k,c), namely we will have‖ fi‖=
exp
(
−c(log(k− i +1))2

)
for i = 1, . . . ,k− c1, and‖ fi‖ = exp

(
−c(logc1)2

)
for i = k− c1 + 1, . . . ,k,

wherec1 is an integer sufficiently large with respect toc (but it does not depend onk). Otherwise the
definition remains unchanged and we prove that with high probabilityB(k,k,c) is a Korkine-Zolotareff
basis for the modifiedB.

1.3 Motivation

The main motivation for this work is that Schnorr’s algorithm gives the best proven approximation of
the shortest nonzero vector in ann-dimensional lattice. So it is important to know how good is its
performance. Moreover, no algorithm is known outside the framework of LLL and Schnorr’s algorithm
which gives comparable results. Therefore a lower bound on the algorithm shows the hardness of the
approximate shortest vector problem at least according to our present knowledge. This limit on our
knowledge seems to be serious since the approximation factor of Schnorr’s algorithm has not been
improved since its publication in 1987, apart from the increase of the largestk that can be used in
poly-time (see [4]), but this did not affect the overall structure of then-dimensional algorithm. Another
possible use of the lattices constructed in this work is that we may try to find a better algorithm for
finding an approximation of the shortest nonzero vector in a lattice by attacking this problem in the case
of the counterexamples. Our probabilistically constructed lattices may be very good from this point of
view because there seems to be no easy way to find a shorter vector in them than the one produced by
Schnorr’s algorithm. Motivated by this we formulate an open problem. In this open problem we present
a specific random lattice (Λ(n,k,c) for some choice ofk andc) with the shortest known nonzero vector
in it (which is b1) and ask for a polynomial time algorithm which finds a nonzero vector shorter (or
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much shorter) thanb1. We may expect that a solution for this problem will contain some new idea about
lattice algorithms, while it seems easier to attack the approximate shortest vector problem in a specific
lattice than in its generality. On the other hand if no solution for this problem will be found for a long
time then the lattice (which may also be generated together with a known short vector) may be useful
for cryptographic purposes.

Open problem. Give a probabilistic algorithmA and a positive integerc1 so that for all positive
integerst,sand for all sufficiently large integersn if A getsc= 1/t, k = bslognc, n, and a random value
of B(n,k,c) = (b1, . . . ,bn) as an input then with a probability of at least 1/2 (for the randomizations of
bothB andA) and in timenc1 the algorithmA finds a vectorx∈ Λ(n,k,c) so thatx 6= 0 and

(i.) ‖x‖< ‖b1‖, or (a stronger requirement)

(ii.) ‖x‖< 1
2‖b1‖.

Remark 1.10. The choice ofk in the open problem is based on the fact that currently the largestk so
that a Korkine-Zolotareff basis can be found in probabilistic polynomial time isk = O(logn) (see [4]),
and so Schnorr’s algorithm can be used with block lengthk. Therefore our open problem can be solved
by improving this bound and still using Schnorr’s algorithm.

In the proof ofTheorem1.5we represent our lattice elements by sequences of integers in a similar
way as it was done by R. Kannan in [9]. In fact his estimate about the number of such sequences which
correspond to a short lattice vector remain valid in our case and is used in our proof. A similar bound
was also used by M. Furst and R. Kannan in [5].

1.4 The history of the problem with some technical details

The history of finding short vectors in lattices starts with the works of Lagrange and Gauss. Both of them
considered the problem of finding a shortest nonzero vector in two-dimensional lattices. In the nineteenth
century Hermite, Zolotareff and Minkowski considered the problem ofn-dimensional lattices as part of
the reduction theory of quadratic forms. Although a large number of theorems in the theory of lattices
were dealing with the existence of short vectors in lattices (e.g. Minkowski’s convex body theorem)
these were mainly existence theorems without giving any efficient method for finding short vectors.
In 1983 A. Lenstra, H. Lenstra and L. Lovász found the first polynomial time algorithm for factoring
polynomials with rational coefficients. Their solution was based on an algorithm which finds a vector
not longer than 2(n−1)/2 times the shortest nonzero vector. Since then this method, the LLL reduction,
has been used for the solution of a large number of both theoretical and practical problems. For example
it was used to disprove the Mertens conjecture [13] and to break several proposed cryptosystems (see
e.g. [7]).

The LLL reduction starts with an arbitrary basisb1, . . . ,bn of the latticeL and then it gradually “im-
proves” the basis. In each step we replace two consecutive elements of the basis by two new elements.
Roughly speaking the goal of these exchanges is to get a size reduced basisb1, . . . ,bn where for eachi in
the two-dimensional latticeK generated byPibi andPibi+1, the shortest vector isPibi and(Pibi ,Pibi+1)
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is a size reduced basis ofK. We try to reach this goal by picking ani where this is not true and re-
placingbi ,bi+1 by two other vectors so that they satisfy this condition. (In order to do this we have to
find the shortest nonzero vector inK, extend it into a size-reduced basis ofK; this way we have the
new Pibi ,Pi+1bi , then find the corresponding newbi andbi+1. All of these steps can be done easily.)
In picking i we give preference to those pairs where we are far away from our goal according to some
reasonable measure. In a polynomial number of steps, although we will not necessarily reach a situation
where each pair satisfies the condition, still we can ensure that each pair will be close to it. This will
guarantee that the ratios‖b∗i ‖/‖b∗i+1‖ remain below a constant bound, namely‖b∗i ‖/‖b∗i+1‖ ≤

√
2 for all

i = 1, . . . ,n. It is easy to see thatλ1(L), the length of the shortest nonzero vector, is bounded from below
by mini ‖b∗i ‖ and so‖b1‖ ≤ 2(n−1)/2λ1(L). (Indeed ifu is a shortest nonzero vector then we consider
the sequencePiu, i = 1, . . . ,n. We have‖u‖= ‖P1u‖ ≥ ‖P2u‖ ≥ . . .≥ ‖Pnu‖= 0. Let j be the smallest
integer so that‖Pju‖ = 0. By the definition ofb j∗ we have thatPj−1u = kb∗j , wherek 6= 0 is an integer
and so‖u‖ ≥ ‖b∗j‖.)

C. P. Schnorr has improved the approximation factor of the algorithm by working withk consecu-
tive basis elementsbi , . . . ,bi+k−1 instead of just 2. This generalization creates significant new problems.
What should be our goal for thek-blocks of basis elements and what will play the role of the inequal-
ity ‖b∗i ‖/‖b∗i+1‖ ≤

√
2? Perhaps most important is the difficulty that we have to prove everything for

k-dimensional lattices instead of two-dimensional lattices where the arising problems do not cause sig-
nificant difficulties.

Schnorr gave the following answers to these questions. (We just give a rough simplified sketch of
his algorithm.) The goal is that every blockbi , . . . ,bi+k−1 should have the property thatPibi , . . . ,Pibi+k−1

Korkine-Zolotareff basis in the lattice generated by them. Therefore in each step we select somehow
an i so that this does not hold and replace thek basis vectorsbi , . . . ,bi+k−1 by k new vectors so that we
have now a Korkine-Zolotareff basis. (For this step we have to find a Korkine-Zolotareff basis in the
k-dimensional lattice generated byPibi , . . . ,Pibi+k−1. For polynomial time algorithms as we mentioned
already this limits the size ofk to O(logn) or O(logn/ log logn).) Again we cannot hope in polynomial
time to reach a stage where every block of lengthk provides a Korkine-Zolotareff basis, but we may reach
a stage where every block is close to it according to some reasonable measure. We may get an upper
bound on‖b1‖/λ1(L) essentially by getting an upper bound on‖b∗i ‖/‖b∗i+k−1‖ for all i = 1, . . . ,n−k+1.
This leads to the task, of finding an upper bound on‖d1‖2/‖d∗k‖2 for everyk-dimensional latticeJ, where
d1, . . . ,dk is a Korkine-Zolotareff basis inJ. In other words we need the value of the Korkine-Zolotareff
constant defined earlier. Schnorr gave the upper boundαk ≤ k1+logk and from this he got an upper bound
on‖b1‖/λ1(L). However, with another method (that we describe shortly), he gave a better upper bound
on‖b1‖/λ1(L) which made likely that the truth isαk ≤ kO(1) (this would have provided the same upper
bound on‖b1‖/λ1(L)). In this paper we show that surprisingly Schnorr’s upper bound onαk is tight,
that is, there is anε > 0 with αk ≥ kε logk for all k.

The other method used by Schnorr which gives the better upper bound on‖b1‖/λ1(L) is the fol-
lowing. Instead of considering blocks of lengthk let us consider blocks of basis elements of length 2k,
bi , . . . ,bi+2k−1. (We may simplify the picture and speed up the algorithm if we consider only the case
whenn = mk andi = tk+ 1.) The algorithm will be the same but now instead of‖b∗i ‖2/‖b∗i+k−1‖2 we
are interested in the geometric mean of such ratios on an interval of lengthk. That is, we consider the
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quantity ((i+k−1

∏
j=i

‖b∗j‖2)(i+2k−1

∏
j=i+k

‖b∗j‖
)−2
)1/k

.

This quantity also can be used to give an upper bound on‖b1‖/λ1(L). Again we need an upper bound
on the ratio, that is, we need an upper bound for the corresponding ratio for every 2k-dimensional lattice
with every possible choice of a Korkine-Zolotareff basis. By our definition given earlier the smallest
such upper bound is the lattice constantβk. Schnorr proved thatβk ≤ 4k2 and this lead him to the upper
bound(2k)2n/k on the approximation factor. In this paper we show that this upper bound is tight apart
from a constant factor in the exponent, that is, there is anε > 0 so thatβk ≥ kε for all k.

The lower bound onβk only shows that the analysis given by Schnorr about his algorithm cannot
be improved by improving the upper bound onβk but does not prove in itself that the algorithm cannot
perform always better. We prove this latter statement by constructing a latticeL and a basisb1, . . . ,bn

so that applying Schnorr’s algorithm to this basis the resulting approximation factor, that is,‖b1‖/λ1(L)
is only kεn/k for some constantε, that is, apart from the factorε > 0 it is the same as Schnorr’s upper
bound. Our basisb1, . . . ,bn will have the property that it is size-reduced and for any consecutive block
of 2k basis vectorsbi , . . . ,bi+2k−1, the vectorsPibi , . . . ,Pibi+2k−1 form a Korkine-Zolotareff basis of the
lattice generated by them and(i+k−1

∏
j=i

‖Pib
∗
j‖2

)(
i+2k−1

∏
j=i+k

‖Pib
∗
j‖

)−2
1/k

≥ kε

whereε > 0 is a constant.

Remark 1.11.

1. In Schnorr’s paper [14] several different algorithms are presented. Our lower bounds are valid
even for the versions,k-reduction and block 2k-reduction, where there is no polynomial time limit
on the running time of the algorithm. The reason is that the basis that we provide for the lower
bound has the property that starting from it Schnorr’s algorithm immediately terminates.

2. A random lattice construction has been used to create problems with worst-case/average-case
equivalence [3]. Another random lattice construction lead to a conjectured 0−1 law for lattice
properties testable in polynomial time.

The present way of randomizing lattices is different from both of these although the choice of
randomization was motivated by the randomization method of [1].

2 Sketch of the proofs of Theorems1.3and 1.5

First we give an equivalent definition for the random latticeΛ(n,k,c), which is longer but more natural
and has a clear motivation.
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We will construct a size reduced basis(b1, . . . ,bn) so that

b∗i = fi = exp

(
c
n− i +1

k
logk

)
ei ,

i = 1, . . . ,n. Assume that we have such a lattice. Minkowski’s convex body theorem implies that
2n1/2(detL)1/n is an upper bound on the length of the shortest nonzero vector in any lattice. Now

(detL)1/n =
( n

∏
i=1

‖b∗i ‖
)1/n = exp

(
c
n+1
2k

logk

)
.

Since‖b1‖ = exp(c(n/k) logk), we get (using thatk≤ ε ′n and that we may chooseε ′ with, e. g.,ε ′ <
c/10) that‖b1‖/λ1(L)≥ kεn/k. (This is the only point where we use the assumptionk≤ ε ′n. For larger
values ofk we would need a better upper bound onλ1(L)). This holds also if(b1, . . . ,bn) = B(n,2k,c).
For the proof ofTheorem1.5we have to show that(Pibi , . . . ,Pibi+2k−1) is a Korkine-Zolotareff basis in
the lattice generated by them fori = 1, . . . ,n−2k+1.

The vectorsb∗1, . . . ,b
∗
n are already fixed and we have to defineb1, . . . ,bn. b∗1, . . . ,b

∗
n uniquely deter-

mine the projectionsPi . IndeedPi was defined as the orthogonal projection ofRn onto the subspaceSor-
thogonal tob1, . . . ,bi−1. The vectorsb1, . . . ,bi−1 generate the same subspace as the vectorsb∗1, . . . ,b

∗
i−1.

ThereforeS, and soPi , are uniquely determined byb∗1, . . . ,b
∗
i . We do not define the vectorsbi directly

but define first the vectorsPjbi for j = n, . . . ,1 recursively by recursion onj starting atn and going
downwards. (At the end we getbi sinceP1bi = bi .) This means that we build up the vectorsbi from their
projected images by going backwards through the sequence of projectionsPi . For j = n we do not have
any choices, by the definitions ofb∗i andPj we havePnbi = 0 if i < n andPnbn = b∗n.

The basic principle of this process is the following. Assume thatPjbi has been already defined for
a fixed j and for all i. These elements generate ann− j + 1-dimensional latticeL j in the n− j + 1-
dimensional subspace generated byb∗j , . . . ,b

∗
n. We will define a(n− ( j − 1) + 1)-dimensional lattice

L j−1 in the subspace generated byb∗j−1, . . . ,b
∗
n so thatPjL j−1 = L j . Therefore ifL j−1 is given somehow

thenPj−1bi must be an elementx of L j−1 with the property thatPjx = Pjbi . Since we want our basis to
be size reduced there are at most two possible choices forx sincePj−1bi andb∗j−1 has been already fixed.
If in the definition of a size reduced basis we replace the requirement|µi, j | ≤ 1/2 by−1/2 < µi, j ≤ 1/2
then the choice ofbi is uniquely determined by the latticeL j−1. Therefore our only task is the selection
of the latticeL j−1 if we know already the latticeL j . The conditions for this selection are the following:
latticeL j−1 must be chosen from a given space whose dimension is larger by 1 than the dimension of
L j , it must contain a given vectorb∗j−1 orthogonal toL j , and we have to choose it in a way that a given
orthogonal projection will mapL j−1 ontoL j . There are infinitely many different choices forL j−1 with
these properties. We will see that there is a very natural way to do it at random. However we will not
do it completely at random since we want, that with a high probability, the vectorPj−1b j−1 = b∗j−1 is no
longer than the vectorPj−1b j (this is a consequence of the requirement thatPj−1b j−1 is the first element
of a Korkine-Zolotareff basis.) To make this requirement easily satisfiable we try to makePj−1b j which
is an inverse image ofb∗j as large as possible, otherwise we choose everything at random. Below we
formulate this lattice selection problem in an abstract setting and define the randomization there.

We formulate a lemma below describing the random extension of an arbitrarym-dimensional lattice
L. We will apply this lemma withm := n− j + 1 andL := L j . Assume now, for the formulation of
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the following lemma, thatL is an arbitrary lattice inRm anda ∈ L so thata is contained in a basis
of L. Assume further thatκ > 0. Let P be the orthogonal projectionP of Rm+1 to Rm defined by
P(y1, . . . ,ym,ym+1) = (y1, . . . ,ym). We are interested in latticesK in Rm+1 so that(0, . . . ,0,κ) ∈ K,
PK = L, the shortest vectorw∈ K with Pw= a is as long as possible, otherwiseK is random in some
sense.

The assumption(0, . . . ,0,κ) ∈ K implies that for everyK we have‖w‖2 ≤ ‖a‖2 +(κ/2)2 if w∈ K
andPw= a. However this upper bound is reached for the vector(a,κ/2), therefore we will deal only
with latticesK so that(a,κ/2) ∈ K. The following lemma describes a natural randomization of a lattice
K with these properties. The definition of the randomization formally depends on an arbitrarily chosen
basis ofL containinga but the lemma states that the randomization is in fact independent from the choice
of this basis.

Lemma 2.1. Assume that m is a positive integer, L⊆Rm is a lattice, a∈ L, a 6= 0, κ > 0 is a real number
and x1, . . . ,xm−1∈ L so that{x1, . . . ,xm−1,a} is a basis of L. Depending on m,κ,L,a,x1, . . . ,xm−1 we de-
fine a random variable Y whose values will be lattices inRm+1. We pick m−1 real numbersξ1, . . . ,ξm−1

independently and with uniform distributions from the interval(0,1). A random value K of Y will be
the lattice inRm+1 generated by the vectors(xi ,ξiκ), i = 1, . . . ,m−1, the vector(a,κ/2) and the vector
(0, . . . ,0,κ). Then the distribution of Y does not depend on the choice of the vectors x1, . . . ,xm−1 and
it does not change if we replace the vector a by the vector−a. Moreover for each possible value K of Y
and for each x∈ L there is a unique real numberσx, −1/2≤ σx < 1/2 so that(x,σxκ) ∈ K and if x is
linearly independent of the vector a then the distribution ofσx is uniform over the interval[−1/2,1/2).

We return now to our basis construction. We will useLemma2.1 with the following substitutions:
m := n− j + 1; L := L j ; a := b∗j ; Rm is the subspace generated byb∗j , . . . ,b

∗
n; Rm+1 is the subspace

generated byb j−1,b∗j , . . . ,b
∗
n; (0, . . .0,κ) := b∗j−1.

Let K be the random lattice defined in the lemma. The property(a,κ/2) ∈ K implies that
(1/2)b∗j−1 + b∗j ∈ L j−1 and clearlyPj((1/2)b∗j−1 + b∗j ) = b∗j . The other elements ofL j depend on the
random choices defined by the random variableY of the lemma.

As we have told, ifL j−1 is given, the choice forPj−1bi is unique with the conditionµi, j−1 ∈
(−1/2,1/2]. This completes the definition ofPj−1bi for all i and so the definition of the basisb1, . . . ,bn.
It is an immediate consequence of the definition thatb1, . . . ,bn are linearly independent andb∗i is really
the vector that we have selected in advance for this role. The conditionµi, j−1 ∈ (−1/2,1/2] guarantees
that it is a size reduced basis.Lemma2.1 implies that this definition is equivalent to our original defi-
nitions ofΛ(n,k,c), B(n,k,c). Indeed, since we could pick the basis elements{xi} in an arbitrary way,
using the basisPjb j , . . . ,Pjbn gives the original definition.

We prove that with a positive probability for the randomization ofΛ(n,k,c) we have that for each
i = 1, . . . ,n−k+1 the elementsPibi , . . . ,Pibi+k−1 form a Korkine-Zolotareff basis of the lattice generated
by them, provided thatc > 0 is a sufficiently small constant. For this proof we do not need the wholen-
dimensional lattice. The lattice construction can be described by restricting our attention to the elements
of thisk-dimensional lattice. In fact if we multiply every element of this lattice by a suitable real number
(depending onn,k, andi) we get a lattice whose distribution is the same as the distribution ofΛ(k,k,c).
We will show thatb1, . . . ,bk is a Korkine-Zolotareff basis inΛ(k,k,c) with a probability of at least
1−e−αk whereα > 0 is a constant. This implies that there is a constantc′ > 0 so that ifk > c′ logn then
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M IKL ÓS AJTAI

the probability thatPibi , . . . ,Pibi+k−1 is a Korkine-Zolotareff basis for alli = 1, . . . ,n−k+1, is close to
1. (For smaller integersk, this probability is not close to 1 but still it is not 0. For the proof of this fact we
may either use Lov́asz’s Local Lemma, or a more direct argument which also provides a construction.)
This completes the sketch of the proof ofTheorem1.5.

3 The proofs of Theorems1.3and 1.5

First we proveTheorem1.5 together with the lower bound onβk, and then the lower bound onαk. The
proof about the lower bound onαk has the same structure than the lower bound proof forβk, but in
places it requires different and somewhat sharper and more difficult estimates. In principle it would be
possible to give the proof forβk only and then point out the differences. However in this case, it would
be very difficult to check the correctness of the second proof. Therefore we include the complete proof
for αk as well, although this includes some repetitions.

Definition 3.1. If n is a positive integer then the set{1, . . . ,n} will be denoted byNn. N0 will be the
empty set.

We will use the following observation in the proof ofLemma2.1.

Lemma 3.2. Suppose thatξ1, . . . ,ξk are independent random variables, uniformly distributed over the
interval(0,1). Assume further that A= {ai, j} is a k by k matrix with integer entries and with determinant
±1. For each i= 1, . . . ,k letρi = ∑k

j=1ai, jξ j and letνi = ρi−bρic, wherebxc is the largest integer which
is not greater than the real number x. Then eachνi is uniformly distributed over[0,1) and the random
variablesν1, . . . ,νk are independent.

Proof. It is sufficient to show that the vector(ν1, . . . ,νk) is uniformly distributed over then-dimensional
unit cubeQk. The vector(ρ1, . . . ,ρk) is in thek-dimensional parallelepipedP which has a vertex at 0 and
whose edges starting from 0 are the columns ofA. The linear transformationA takesQk into P. Since the
determinant ofA is±1 we have that the distribution of the vectorρ = (ρ1, . . . ,ρk) is uniform overP. We
get the vectorν = (ν1, . . . ,νk) by reducing it moduloQk. Since bothQk andP are basic parallelepipeds
of the same lattice (the lattice of points with integer coordinates) this reduction is a one-to-one map
which preserves thek-dimensional volume. Therefore the fact thatρ is uniformly distributed overP
implies thatν is uniformly distributed overQk.

Proof ofLemma2.1. Sincea,x1, . . . ,xm−1 are linearly independent andκ 6= 0 we have that the vectors
(xi ,ξiκ), i = 1, . . . ,m−1, (a,κ/2) and the vector(0, . . . ,0,κ) are also linearly independent and so they
form a basis ofK. We will use this fact in the proof.

Let z1, . . . ,zm−1 ∈ L so thatz1, . . . ,zm−1,a is a basis ofL. Assume that we take a random valueK of
Y using the basisx1, . . . ,xm−1,a. It is sufficient to show that with probability 1, for eachi = 1, . . . ,m−1
there is a unique real numberνi ∈ (0,1) so that(zi ,νiκ) ∈ K, moreover the random variablesνi , i =
1, . . . ,k defined this way are uniformly distributed over(0,1) and they are mutually independent.

First we consider the special case when there are integersti , i = 1, . . . ,m−1 so thatzi = xi + tia ,
i = 1, . . . ,m−1. By the definition ofξi we have(xi ,ξiκ) ∈ K. This can be written in the form of(zi −
tia,ξiκ) ∈ K. Using that(a,κ/2) ∈ K we get that(zi ,(ξi + ti/2)κ)) ∈ K and so(0, . . . ,0,κ) ∈ K implies
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the existence ofνi . If νi is not unique then(0, . . . ,0,ϑκ)∈K for someϑ ∈ (0,1), in contradiction to the
fact that(0, . . . ,0,κ) is a basis vector ofK. Sinceνi is the fractional part ofξi + ti/2 andξi is uniformly
distributed over(0,1), we have thatνi is also uniformly distributed over(0,1).

We consider now the general case assuming only that(z1, . . . ,zm−1,a) is a basis ofL. We have
zi = tiai + ∑m−1

j=1 αi, jx j for i = 1, . . . ,m− 1, where all of the coefficientsti and αi, j are integers. Let
wi = zi − tia, i = 1, . . . ,m−1. Clearly(w1, . . . ,wm−1,a) is a basis ofL. It is sufficient to prove that our
assertion holds withzi := wi , i = 1, . . . ,m−1, since if this is true then we may apply the already proven
special case withxi := wi . In other words, we have to prove now the assertion for the special case when
the basis vectorsz1, . . . ,zm−1 can be written in the formzi = ∑m−1

j=1 αi, jx j , i = 1, . . . ,m−1, whereαi, j is
an integer fori = 1, . . . ,m−1, j = 1, . . . ,m−1. Since both(z1, . . . ,zm−1,a) and(x1, . . . ,xm,a) are bases
of L, we have that the determinant|αi j | is±1.

By the definition ofK we have(x j ,ξ jκ) ∈ K. For each fixedi we take the linear combinations of
these vectors with coefficientsαi, j . We get that(zi ,(∑m−1

j=1 αi, jξ j)κ) ∈ K. Let νi be the fractional part of

∑m−1
j=1 αi, jξ j . Clearly with a probability 1 we haveν j ∈ (0,1). MoreoverLemma3.2implies that eachνi

is uniformly distributed over(0,1) and the random variablesν1, . . . ,νk are independent.
Let x∈ L. We havex = ta+ ∑m−1

i=1 bixi , wheret,b1, . . . ,bm−1 are integers. Since(xi ,ξiκ) ∈ K, i =
1, . . . ,m−1 and(a,κ/2) ∈ K we have that(x,σ ′κ) ∈ K, whereσ ′ = t/2+∑n−1

i=1 biξi . Let σx the unique
element of the interval[−1/2,1/2) so that for a suitable integers we haveσ ′ + s= σx. (0, . . . ,0,κ) ∈
K implies that(x,σxκ) ∈ K. Assume that contrary to our assertionσx is not unique. By taking the
difference of the two vectors(x,σxκ) for two different values ofσ we get that there is aϑ ∈ (0,1) with
(0, . . . ,0,ϑκ) ∈ K which contradicts to the fact that(0, . . . ,0,κ) is a basis vector ofK.

Definition 3.3.

1. Assume thatm is a positive integer,L ⊆ Rm is a lattice,κ > 0 is a real number anda∈ L, a 6= 0.
The random variableY defined inLemma2.1will be denoted byextm,κ,L,a.

We define a random variablerandn,h whose values will be lattices inRn. The definition depends
on two parameters: a positive integern and a functionh with the property domain(h)⊇ {1, ..,n},
(only the values ofh on {1, . . . ,n} will be used in the definition, but notationally it will be more
convenient to allow functions with larger domains). The values ofh will be positive real numbers.
Assume thatn andh are given. We define the random variablerandn,h by recursion onn. At
the same time we will prove by induction onn that for each possible valueL of randn,h there
is a minimal positive real numberν(L) so that(0, . . . ,0,ν(L)) ∈ L. rand1,h will be always the
one-dimensional lattice consisting of all of the real numbersih(1), wherei is an integer. Clearly
ν(L) is h(1). Assume that the random variablerandn−1,h has been defined with values inRn−1 for
somen > 1. Then first we take a random valueL of randn−1,h. Let a = (0, . . . ,0,ν(L)) ∈ L. Now
we randomizeextn−1,h(n),L,a. Its value is a latticeK ⊆ Rn, this will be the value of the random
variablerandn,h. By the definition ofextn,h(n),L,a the vector(0, . . . ,0,h(n)) is in K which proves
the existence ofν(K).

2. If n is a positive integer thenπ(i,n) will denote the orthogonal projection ofRn ontoRi defined by
π(i,n)(y1, . . . ,yi ,yi+1, . . . ,yn) = (y1, . . . ,yi). π(0,n) will be that map ofRn into the zero-dimensional
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spaceR0 (consisting only of the vector 0). If the value ofn is clear from the context we will write
π(i) for π(i,n).

3. We say that the latticeL ⊆ Rn is triangular if it has a basisai = (αi,1, . . . ,αi,n), i = 1, . . . ,n so that
for all i = 1, . . . ,n, αi,i 6= 0 and for all j = 1, . . . , i−1 we haveαi, j = 0. (The conditionαi,i 6= 0
can be omitted since for a basis it follows from the other conditions). We will say that the basis
a1, . . . ,an is a triangular basis ofL.

We can formulate the definition of triangularity in the following equivalent form:L is triangular
iff for each i = 1, . . . ,n there is a real numberα 6= 0 so that(0, . . . ,0,α) ∈ π(i)(L).

Remark 3.4. The triangularity of the latticeL depends on the way it is embedded inRn. In particular this
property isnot invariant under isometric isomorphisms of lattices. Namely there is a latticeL ⊆ Rn and
there is a unitary transformationU of Rn so thatL is triangular butUL is not, whereUL = {Ux | x∈ L}.

The following lemma is an immediate consequence of the definitions.

Lemma 3.5. Assume that n, i are positive integers, i≤ n, L⊆ Rn is a triangular lattice, thenπ(i)L is a
triangular lattice inRi .

Lemma 3.6. Assume that n is a positive integer, h is a function defined on the set of all positive inte-
gers whose values are positive real numbers. Then each value L of the random variablerandn,h is a
triangular lattice.

Proof. The recursive definition of the random variablerandn,h implies that for alli = 1, . . . ,n we have
that(0, . . . ,0,h(i)) ∈ π(i)(L), which proves the triangularity ofL.

Suppose thatL ⊆ Rn is a triangular lattice. Our next goal is to associate with eachx∈ L a sequence
of integersa1, . . . ,an, which will behave in a similar way as sequence of coefficients in an orthogonal
basis. In particular we will want to get a lower bound on‖x‖2 using the sequencea1, . . . ,an. We
will derive this sequence by applying an integer version of the Gram-Schmidt orthogonalization to the
triangular basis and following the projections of vectorx during this orthogonalization. We will be able
to achieve integrality since we will use lattice vectors during the whole process. These lattice vectors
will not be necessarily in the latticeL. Triangularity implies that for eachi = 1, . . . ,n, π(i)(L)⊆Ri is an
i-dimensional lattice. We will be able to use these lattices instead ofL at the corresponding stages of the
process. As a first step we define a sequence of vectors℘i,L ∈ π(i)(L), i = 1, . . . ,n so that℘i,L andei are
parallel (inR(i)). We may consider℘i,L as the result of the orthogonalization of the triangular basis.

Definition 3.7. Suppose thatL ⊆ Rn is a triangular lattice. For eachi = 1, . . . ,n there is av =
(v0, . . . ,vi) ∈ π(i)L so thatv1 = · · · = vi−1 = 0 andvi > 0. v is unique up to a constant factor, so there
is a unique vectorv with this property if we add the requirement thatvi is minimal. We will denote this
vector by℘i,L. Clearly every triangular basis ofπ(i)(L) contains℘i,L or−℘i,L.

Remark 3.8. We will defineai in the following way. We consider the set

Sx = {π
(i)(x)+ t℘i,L | t = 0,±1,±2, . . .} .
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From the elements ofSx we take any0 = π(i)(x)+ t0℘i,L whoseith component is minimal in absolute
value (preferring 1/2 over−1/2). ai will be defined by the equationπ(i)(x) = y0 +ai℘i,L.

The setSx can be also defined asSx = {y ∈ π(i)(L) | π(i−1)(y) = π(i−1)(x)}. Then we gety0 as a
function of π(i−1)(x). Since we will need this function later, we will use it in the final definition ofai

given inLemma3.10below.

Definition 3.9. If L ⊆ Rn is a triangular lattice, then for eachi ∈ [0,n− 1] we define a functionUi,L

whose domain will beπ(i)(L) and whose range will be inπ(i+1)(L). We claim that for eachx∈ π(i)(L),
there is a unique real numberξ in the interval(−1/2,1/2] so that(x,0)+ξ℘i+1,L ∈ π(i+1)(L). Indeed,
sincex = π(i)y for somey∈ L we have thatx′ = π(i+1)y∈ π(i+1)L and we get the vectorx′ by extending
x with a new component. Since℘i+1,L is contained in a triangular basis ofπ(i+1)(L) we can writex′ in
the form of(x,0)+ξ℘i+1,L. The uniqueness ofξ follows also from the fact that℘i1,L is contained in a
triangular basis. We define a functionUi,L mappingπ(i)L into π(i+1) by Ui,L(x) = (x,0)+ξ℘i+1,L where
ξ is the unique real number in(−1/2,1/2] so that(x,0)+ξ℘i+1,L ∈ π(i+1)(L).

Lemma 3.10. Assume that n is a positive integer, L⊆Rn is a triangular lattice. Then for all x∈ L there
is a uniquely determined sequence of integers a1, . . . ,an so that for all j= 1, . . . ,n we have

π
( j)x = U j−1,L(π( j−1)x)+a j℘j,L .

For this sequence a1, . . . ,an we have

‖x‖2 ≥
n

∑
j=1

(
min
{
|a j |,

∣∣|a j |−
1
2

∣∣})2
‖℘j,L‖2 ≥ 1

4

n

∑
j=1

a2
j‖℘j,L‖2 .

Proof. The vectorsπ jx andU j−1,L(π( j−1)x) differ only in their jth coordinates. Since both are inπ( j)L
their differenced = π jx−U j−1,L(π( j−1)x) is a vector inπ( j)L whose only nonzero coordinate is thejth
one. ℘i,L is a basis vector ofπ( j)(L) therefored = a j℘j,L for some integera j . Since℘j,L 6= 0, a j is
unique. Letx = (x1, . . . ,xn). By the definition ofU j−1,L(π( j−1)x), the jth coordinate ofU j−1,L(π( j−1)x)
can be written in the form ofξ℘j,L whereξ ∈ (−1/2,1/2]. Thereforex j = (ξ +a j)℘j,L. If ξ j anda j

has identical signs ora j = 0 then|ξ + a j | ≥ |a j |. Otherwise|ξ + a j | ≥
∣∣|a j |−1/2

∣∣. This and the fact
that the numbersai are integers imply the final sequence of inequalities.

Definition 3.11.

1. If n is a positive integer,L⊆Rn is a triangular lattice, 1≤ i < l ≤ n are integers andx∈ L then the
unique sequencea = (a1, . . . ,an) whose existence is guaranteed byLemma3.10will be denoted

ϑ (x,L) = (ϑ (x,L)
1 , . . . ,ϑ

(x,L)
n ).

2. If a = (a1, . . . ,an) is a sequence of integers thenstart(a) will be the largest positive integeri so
thata1 = · · ·= ai = 0. If there is no such positive integer thenstart(a) = 0. 4. Assume thatL
is a triangular lattice. For eachx∈ L and i = 1, . . . ,n let y(i) be the unique element ofL so that
π(i)x = π(i)y(i) andU j,L(π( j)y(i)) = π( j+1)y(i) for each j = i, . . . ,n−1. The uniqueness ofy(i)
follows from the equalityy(i) = Un−1,L(. . .Ui,L(x) . . .). We will denote the vectory(i) by ϕ(x, i).
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3. If L is a triangular lattice then we define a basisbi,L, i = 1, . . . ,n in the following way.b1,L =℘n,L

and for alli = 2, . . . ,n−1, bi,L = ϕ(℘n−i+1,n− i +1).

4. In the following we will assume thatR0 ⊆ R1 ⊆ . . . ⊆ Rn. Namely if i < j we will identify the
vector(x1, . . . ,xi) ∈ Ri with the vector(x1, . . . ,xi ,0, . . . ,0) ∈ R j . (A cleaner way to do this would
have been to defineRn as the set of all of the infinite sequencesx1, . . . ,xn,xn+1, . . . of real numbers
so that 0= xn+1 = xn+2 = · · · .)

Lemma 3.12. Assume that L is a triangular lattice. Then the basisbi,L, i = 1, . . . ,n is size reduced.

Proof. By the definition ofbi,L we haveπ(n−i+1)bi,l = ℘n−i+1,L. Since relative to the basisbi,L we
havePi = π(n−i+1), wherePi is from the definition of the Gram-Schmidt orthogonalization, we have
thatb∗i,L =℘n−i+1,L. We havebi,L = Un−1,L(. . .Un−i+1,L(℘n−i+1,L) . . .). When we applyUn− j,L we get
the n− j + 1th coordinate of the vectorbi,L which is µi, j . Therefore the definition ofU implies that
µi, j ∈ (−1/2,1/2] and so|µi, j | ≤ 1/2.

Definition 3.13.

1. Let αk = sup|b1|2/|b∗k|2, where the supremum is taken over allk-dimensional latticesL and over
all Korkine-Zolotareff basesb1, . . . ,bk in L. The quantityαk is the Korkine-Zolotareff constant.

2. We define another lattice constantβk which depends on lattices of dimension 2k.

βk = sup

{(( k

∏
i=1

‖b∗i ‖2)( 2k

∏
i=k+1

‖b∗i ‖
)−2
)1/k

}

where the supremum is taken over all 2k-dimensional latticesL and over all Korkine-Zolotareff
basesb1, . . . ,b2k of L.

In [14] Schnorr proves thatαk ≤ k1+logk and asks whetherαk = kO(1). In Theorem4.2 we will
show that actually Schnorr’s upper bound is tight namely there is anε > 0 so thatαk > kε logk for all
k = 1,2, . . .. In Theorem3.14 we show that Schnorr’s upper bound onβk, βk ≤ 4k2 is also the best
possible apart from a constant factor in the exponent. Schnorr’s estimate of the approximation factor of
his algorithm depends on the an upper bound onβk. Theorem3.14implies that this analysis cannot be
improved by giving a better upper bound onβk. This in itself does not imply a lower bound on the worst-
case performance of the algorithm. However based on the probabilistic lattice construction in the proof
of Theorem3.14we will be able to construct a lattice with a basis which shows that the approximation
factor in the worst-case is the same as in the upper bound apart from a constant factor in the exponent
(Theorem3.22andTheorem3.23).

Theorem 3.14.There is anα > 0so that if c> 0 is a sufficiently small real number, n is a positive integer,
and L is a random value of the random variablerandn,h, where h(x) = exp((cx/n) logn) = ncx/n, then the
following holds: With a probability of at least1−e−αn the sequence bi = bi,L, i = 1, . . . ,n is a Korkine-
Zolotareff reduced basis of the n-dimensional lattice L. Moreover the Gram-Schmidt orthogonalization
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procedure applied to the basis b1, . . . ,bn yields the orthogonal vectors b∗i = ℘n−i+1,L, i = 1, . . . ,n. If
n = 2m where m is an integer then we have(( m

∏
i=1

‖b∗i ‖2)( 2m

∏
i=m+1

‖b∗i ‖
)−2
)1/m

= n2c .

This theorem clearly impliesTheorem1.3.

Proof of Theorem3.14 In the proof we will use the following properties of the latticeL, whereL is a
random value ofrandn,h.

Lemma 3.15.Suppose that n is a positive integer, h is an arbitrary function on the set of positive integers
with positive real values and L is a possible value of the random variablerandn,h. Then the following
requirements are met.

(3). L is a triangular lattice and for alli = 1, . . . ,n, π(i)℘i,L = (0, . . . ,0,h(i))

(4). Ui(℘i,L) = (0, . . . ,0,h(i), 1
2h(i +1)) for all i = 1, . . . ,n−1

(5). for all i = 1, . . . ,n−1 and for all integerst we haveUi(t℘i,L) = (0, . . . ,0, th(i), 1
2h(i +1))

Remark 3.16. In this lemma the functionh is not necessarily the same as the function defined inTheo-
rem3.14.

Proof. (3) The triangularity ofL is an immediate consequence of the definitions ofrand andext. ℘i,L

takes the role of the vector(0, . . . ,0,κ) in the definition ofexti−1,κ,L̄,a where in our casēL = π(i−1)(L)
andκ = h(i).

(4) By the definition ofrandn,h we have thatπ(i+1)(L) = extn,κ,L′,a, whereκ = h(i+1), L′ = π(i)(L),
anda =℘i,L = (0, . . . ,0,h(i)). This definition also implies that(a,κ/2) ∈ L′, that is,(

0, . . . ,0,h(i),
1
2

h(i +1)
)
∈ π

(i+1)(L) .

Therefore the definition ofUi and℘i+1,L = (0, . . . ,0,h(i + 1)) implies (4). (5) is an immediate conse-
quence of(4).

We return to the proof ofTheorem3.14. First we estimate the probability of the following event
A: “℘n,L is not a shortest nonzero vector inL.” Let a = (a1, . . . ,an) be a sequence of integers. We
estimate the probability of the eventAa: “there is anx∈ L, x 6= 0 so that‖x‖< ‖℘n‖ andϑ (x,L) = a.” Let
start(a) = i. This implies thati < n otherwise because ofa1 = · · ·= an = 0 we would havex = 0. The
conditionstart(a) = 0 also impliesπ(i)x = 0, π(i+1)x 6= 0. The latter inequality holds since otherwise
we would haveπ(i+1)x= Ui(0)+ai+1℘i+1,L = 0 and thereforeai+1℘i+1,L = 0 which is impossible since
ai+1 6= 0 and℘i+1,L 6= 0. We distinguish four cases depending oni.

In the proof we will use repeatedly the following simple fact

(6). If h(x) = exp
(

cx
n logn

)
thenh(n−n(logn)−1) = h(n)e−c.
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Case I.i > n− n(logn)−1 or n < (5/4)1/(2c). We show that in this caseP(Aa) = 0 since there is
no x ∈ L with ‖x‖ < ‖℘n‖ andϑ x,L = a. Indeed, assume that there is anx ∈ L with these properties.
start(a) = i impliesa1 = · · ·= ai = 0 and so according to the definition ofϑ (x,L) = a we haveπ( j)(x) =
0 for j = 1, . . . , i. ai+1 6= 0 thereforeπ(i)(x) = 0 implies

π
(i+1)(x) = ai+1π

(i+1)
℘i+1,L = (0, . . . ,0,ai+1h(i +1)) .

If i = n−1 this implies‖x‖ ≥℘n,L in contradiction to our assumption. Thereforei < n−1. (5) implies
that

π
(i+2)(x) = Ui+1(ai+1π

(i+1)
℘i,L) =

(
0, . . . ,0,ai+1h(i +1),

1
2

h(i +2)
)

.

Consequently

‖x‖2 ≥ ‖π
(i+2)x‖2 ≥ (h(i +1))2 +

1
2
(h(i +2))2 = n2c i+1

n +
1
2

n2c i+2
n ≥ 5

4
n2ci/n .

So the conditioni > n−n(logn)−1 implies that

‖x‖2 ≥ 5
4

n2c(n−n(logn)−1)n−1
=

5
4

exp
(
2c(1− (logn)−1) logn

)
=

5
4

e2clogne−2c > e2clogn = ‖℘n,L‖2

in contradiction to our assumption. We consider now the conditionn < (5/4)1/(2c). We have

log‖x‖2 ≥ log
(5

4
n2ci/n

)
= log

5
4

+2cin−1 logn = 2clogn
( i

n
+(2clogn)−1 log

5
4

)
.

To give a lower bound on this we use thatn < (5
4)1/(2c) implies(2clogn)−1 log 5

4 > 1. Therefore

log‖x‖2 > 2clogn
( i

n
+1
)
≥ 2clogn≥ log‖℘n,L‖2 .

Case II.n− n(logn)−1 ≥ i, n > (5/4)1/(2c) and |Sa| > (n− i′)/10 wherei′ = max{i,dn/2e} and
Sa = { j ∈ [i′,n] | a j 6= 0}. We show that in this caseP(Aa) = 0 since there is nox∈ L with ϑ x,L = a and
‖x‖< ‖℘n‖. Indeed assume that there is anx∈ L with these properties. ByLemma3.10we have

‖x‖2 ≥ 1
4 ∑{‖℘j‖2 | a j 6= 0, j ∈ [i′,n]} ≥ 1

4
|Sx|‖℘i′‖2 ≥ 1

4
|Sx|(h(i′))2 >

1
4

1
10

(n− i′)exp

(
2c

i′

n
logn

)
=

1
40

(n− i′)exp(2clogn)exp

(
−2c

n− i′

n
logn

)
≥

1
40

(n− i′)exp(2clogn)exp

(
−2c

n/2
n

logn

)
≥ 1

40
(n−n(logn)−1)e−clogn‖℘2

n,L‖ .

Sincen > (5/4)1/(2c) andc is sufficiently small we have1
40(n− n(logn)−1)e−clogn ≥ 1 and therefore

‖x‖ ≥ ‖℘n,L‖ in contradiction to our indirect assumption.
Case III.n−n(logn)−1≥ i, n> (5/4)1/(2c), |Sa| ≤ (1/10)(n− i′) andi > bn/2c. (The last inequality

implies i′ = i.) For each fixedi > bn/2c, we estimate the probability of the eventAa∧ start(a) = i.
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Suppose thatL anda are fixed so that there is anx∈ L with ϑ (x,L) = a, i = start(a). By the definition

of ϑ (x,L), x is unique with this property. LetQ = [i +2,n−1]\Sa. If j ∈ Q thenϑ
(x,L)
j = a j = 0 and so

π( j)(x) = U j−1,L(π( j−1)x) and therefore by the definition ofU j−1,L we have thatπ( j)(x) = π( j−1)(x)+
ρ j℘j for a uniquely definedρ j ∈ (−1/2,1/2]. Let M = h(n)(h(i))−1 and letA′a be the event that “the
number of integersj ∈Q with |ρ j |< (n− i)−1/5M is at least(n− i)/2.” We show thatAa impliesA′a and
thereforeP(Aa) ≤ P(A′a), then we will prove an upper bound onP(A′). Assume that¬A′a. Then there
are at least 3(n− i)/10 integersj ∈Q so that|ρ j | ≥ (n− i)−1/5M. Therefore

‖x‖2 ≥ ∑
j∈Q

ρ
2
j ‖℘j‖2 ≥ 3

10
(n− i)(n− i)−2/5M2(h(i))2 ≥

3
10

(n− i)3/5(h(n)(h(i))−1)2(h(i))2 =
3
10

(n− i)3/5(h(n))2 > ‖℘n,L‖2 ,

that is,¬Aa holds, which completes the proof of the implicationA′a ⇒ Aa.
Now we estimateP(A′a). Supposej ∈Q. ρ j was defined by the conditions

π
( j)(x) = π

( j−1)(x)+ρ j℘j ,

ρ j ∈ (−1/2,1/2]. Therefore the definitions ofrand, ext andLemma2.1 implies that ifπ( j−1)(x) is
linearly independent of℘j−1 thenρ j is uniformly distributed over[−1/2,1/2]. However ifπ( j−1)(x) 6= 0
and℘j−1 are linearly dependent then by(3) start(a) = j−1. Sincei = start(a), i ≤ j, Q⊆ [i +2,n]
this contradicts toj ∈Q. Therefore the distribution ofρ j is uniform over[−1/2,1/2]. The definition of
rand implies that random variablesρ j , j ∈ Q are mutually independent. Therefore the probability that
“the number of integersj ∈Q with |ρ j |< (n− i)−1/5M is at least(n− i)/2” is no more than 2n−i(2(n−
i)−1/5M)1/2(n−i). We get that

(7). P(Aa)≤ P(A′a)≤ 2n−i(2(n− i)−1/5M)1/2(n−i).

Definition 3.17. Assume thatn is a positive integerh is an arbitrary function defined on the set of
positive integers with positive real values,L is a possible value of the random variablerandn,h and
a= (a1, . . . ,an) is a sequence of integers. We say that the sequencea is acceptable if there is at least one
possible valueL of the random variablerandn,h and anx∈ L with a = ϑ x,L and‖x‖< ‖℘n‖.

The following lemma is an estimate on the number of acceptable sequences. It was formulated and
proved, in a somewhat different context and with different terminology, by R. Kannan in [9]. These
differences however do not affect the validity of the upper bound and its proof.

Lemma 3.18 (Kannan).Assume that c> 0 and n, i, i ≤ n are positive integers, h is an arbitrary function
defined on the set of positive integers with positive real values, L is a possible value of the random
variablerandn,h and a= (a1, . . . ,an) is an acceptable sequence withstart(a) = i. Then for all j=
i, . . . ,n we have|a j |< h(n)(h( j))−1. Moreover the number of acceptable sequences withstart(a)≥ i
is at most

n

∏
j=i

(1+2h(n)(h( j))−1)≤ 3n−i
n

∏
j=i

(h(n)(h( j))−1) .
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Remark 3.19. In this lemma the functionh is not necessarily the same as inTheorem3.14.

Proof ofLemma3.18. Assume thata is an acceptable sequence and letL be a value ofrandn,h where
there is anx∈ L with ‖x‖ ≤℘n,L andϑ (x,L) = a. According to the definition ofa j we haveπ( j)(x) =
(U j−1,L(π( j−1)x))+a j℘j,L. Therefore

h(n) = ‖℘n,L‖> ‖x‖ ≥ ‖π
( j)x‖ ≥ |a j |‖℘j‖= |a j |h( j)

which implies the inequality|a j |< h(n)(h( j))−1.
If a is an acceptable sequence withstart(a) ≥ i thena j = 0 for all j = 1, . . . , i. By the inequality

proven above, for eachj > i the number of choices fora j is at most 1+2h(n)(h( j))−1.

We continue now the proof of Case III. For a fixedi > n/2 let pi be the probability of the following
event: there is an acceptable sequencea so thatAa. Clearly

pi ≤∑{P(Aa) | a is acceptable andi = start(a)} .

Using our upper bound(7) on P(Aa) and the upper bound inLemma3.18for the number of acceptable
sequences we get

pi ≤ 2n−i(2(n− i)−1/5M)(n−i)/23n−i
n

∏
j=i

(
h(n)(h( j))−1) .

Using that for allj ∈ [i,n] we haveh(n)(h( j))−1 ≤ h(n)(h(i))−1 = M we get that

pi ≤ 3n−i2(n−i)/2M3(n−i)/2(n− i)−(n−i)/10.

We give an upper bound onM.

M = h(n)/h(i) = exp

(
c
n− i

n
logn

)
= exp

(
c
n− i

n
(log

n
n− i

+ log(n− i))
)

.

Since the function(1/x) logx takes its maximum atx= e in the interval[1,∞), we have that(1/x) logx≤
1/e< 1 if x≥ 1. This yields

M ≤ ecexp

(
c
n− i

n
log(n− i)

)
≤ ececlog(n−i) ≤ ec(n− i)c .

Substituting this into the upper bound onpi and using thatc is sufficiently small we getpi ≤ (n−
i)−(n−i)/20. Therefore the probability that there is ani so thatAa holds for a suitably chosena is at most

n−n(logn)−1

∑
i=n/2

(n− i)−(n−i)/20.

It is easy to see that in this sum the largest term (withi = n−n(logn)−1) is greater than the sum of the
others. So we get

pi ≤ 2
( n

logn

)−1/20 n
logn ≤ 2exp

(
− 1

20
n−nlog logn(logn)−1

)
≤ e−n/21.
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Case IV.n > (5/4)1/(2c), |Sa| ≤ (n− i′)/10 andi ≤ bn/2c. (The last inequality impliesi′ = bn/2c.)
For each acceptable sequencea with start(a)≤ n/2 we will give an upper bound on the probability

of the eventAa. Then we will estimate the number of acceptable sequences with this property.
Suppose thatL anda are fixed so that there is anx∈ L with ϑ (x,L) = a. We have

π
( j)(x) = (U j−1,L(π( j−1))x)+a j℘j

for all j = 0, . . . ,n−1. LetQ = [n/2,n−1]\Sa. If j ∈Q then

ϑ
(x,L)
j = a j = 0 and so π

( j)(x) = U j−1,L(π( j−1)x)

and therefore by the definition ofU j−1,L we have thatπ( j)(x) = π( j−1)(x)+ρ j℘j for a uniquely defined
ρ j ∈ (−1/2,1/2]. Let A′a be the event that “the number of integersj ∈Q with |ρ j |< n−τ is at leastn/4,”
whereτ < 1/4 is chosen so thatc is sufficiently small with respect toτ. (This definition is somewhat
different from the corresponding definition in Case III.) We show thatAa implies A′a and therefore
P(Aa)≤ P(A′a); then we will prove the claimed upper bound onP(A′).

Assume that¬A′a. Then there are at leastn/5 integersj ∈Q so that|ρ j | ≥ n−τ . Therefore

‖x‖2 ≥ ∑
j∈Q

ρ
2
j ‖℘j‖2 ≥ 1

5
nn−2τ

(hn
2

)2
=

1
5

n1−2τ

(hn
2

)2

=
1
5

n1−2τ exp

(
−2c

n− (n/2)
n

logn

)
=

1
5

n1−2τn−c .

Sinceτ < 1/4 andc > 0 is sufficiently small with respect toτ this implies that‖x‖2 > n2c = (h(n))2 =
℘2

n, that is,¬Aa holds, which completes the proof of the implicationA′a ⇒ Aa.
In Case III we have seen that the random variablesρ j are independent and uniformly distributed

over[−1/2,1/2]. Therefore the probability that “the number of integersj ∈Q with |ρ j |< n−τ is at least
n/4” is no more than 2n/2(2n−τ)n/4. We get that

(8). P(Aa)≤ P(A′a)≤ 2n/2(2n−τ)n/4.

Now we estimate the number of acceptable sequences withstart(a) ≤ n/2. This is no more than
the total number of acceptable sequences without any restrictions. ByLemma3.18 this number is at
most ∏n

j=13nh(n)(h( j))−1. Therefore ifp is the probability of the event that there is an acceptable
sequencea so thatstart(a)≤ n/2 andAa holds then using our upper bounds we get

p≤ 2n/2(2n−τ)n/43n
n

∏
j=1

(h(n)(h( j))−1) .

Using thath( j) = exp((c j/n) logn) we can calculate the value of the product exactly:

n

∏
j=1

(h(n)(h( j))−1) = (eclogn)nexp

(
−c

n(n+1)
2n

logn

)
= exp

(
c
n−1

2
logn

)
.
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Substituting this inequality in the upper bound onp we get:

logp≤ n
2

log2− τ(logn+ log2)
n
4

+nlog3+c
n−1

2
logn.

Sincec> 0 is sufficiently small with respect toτ the term−(τn/4) logn will dominate in absolute value
thereforep≤ n−τn/8. This is our upper bound on the probability that there is anx∈ L\{0,±℘n,L} with
‖x‖ ≤ ‖℘n,L‖.

Summarizing the results of the four different cases we get the following:

Lemma 3.20. If L is the random lattice defined inTheorem3.14, then the probability that℘n,L is not a
shortest nonzero vector of L is at most3e−n/21.

Suppose thatL is a random value ofrandn,h. We show now that with high probability for alli =
1, . . . ,n,℘i,n is a shortest nonzero vector inπ(i)(L). Indeed if we multiply every element ofπ(i)L by the
numberh(n)(h(i))−1 we get ani-dimensional triangular latticeK. We have℘j,K = h(n)(h(i))−1℘j,L for
all j = 1, . . . , i. Therefore

‖℘j,K‖= h(n)(h(i))−1‖℘j,L‖= exp
(

c
n
n

logn
)

exp

(
−c

i
n

logn

)
exp

(
c

j
n

logn

)
= exp

(
c
n− (i− j)

n
logn

)
= h(n− (i− j)) .

Therefore‖℘i,K‖= h(n), ‖℘i−1,K‖= h(n−1), . . . ,‖℘1,K‖= h(n− i+1). This and the definition ofrand
implies that the latticeK can be embedded into another triangular latticeJ so that℘i,K =℘n,J,℘i−1,K =
℘n−1,J, . . . ,℘1,K = ℘1+(n−i),J and J is a random value ofrandn,h. Lemma3.20 implies that with a
probability of at least 1− 3e−n/21 we have that℘n,J = ℘i,K = h(n)(h(i))−1℘i,L is a shortest nonzero
vector inJ. Suppose that for some outcome of the randomization it is a shortest nonzero vector inJ.
SinceK ⊆ J, it is also a shortest nonzero vector inK and finally sinceπ i(L) = h(n)−1(h(i))K, the vector
℘i,L = h(n)−1(h(i))℘i,K is a shortest nonzero vector inπ i(L) with a probability of at least 1−3e−n/21.
The probability that this happens for alli = 1, . . . ,n simultaneously is at least 1−3ne−n/21≥ 1−e−n/22

if n is sufficiently large. The definition of the basisbi = bi,L implies thatπ(i)bn−i+1 =℘i,L, therefore if
we apply the Gram-Schmidt orthogonalization procedure to the basisbi then we getb∗i =℘i and so the
probability thatbi is a Korkine-Zolotareff basis is at least 1−e−n/22. Now

‖℘j,L‖= h( j) = exp

(
c

j
n

logn

)
implies the last equation of the Theorem.

This concludes the proof ofTheorem3.14(andTheorem1.3).

Definition 3.21. Assume thatB = (b1, . . . ,bn) is a basis of the latticeL and 1≤ i ≤ n. ThenP(B)
i will

denote the orthogonal projection ofL onto the subspace orthogonal tob1, . . . ,bi−1.
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Theorem 3.22. There exists anα > 0, so that if c> 0 is sufficiently small, k,n are positive integers
2≤ k≤ n, and L is a random value ofrandn,g where g( j) = exp((c j/k) logk), bi = bi,L for i = 1, . . . ,n,
and B= (b1, . . . ,bn), then the following holds. Assume that pn,k is the probability of the following event:

“For all i = 1, . . . ,n−k the orthogonal projections of P(B)
i bi , . . . ,P

(B)
i bi+k−1 is a Korkine-Zolotareff basis

of the k-dimensional lattice generated by these vectors.” Then pn,k 6= 0 and pn,k ≥ 1− (n−k)e−αk.

Proof. The second inequality is an immediate consequence ofTheorem3.14. Indeed for a fixedi let K

be the lattice generated byP(B)
i bi , . . . ,P

(B)
i bi+k−1. ClearlyP(B)

i bi = π(i)bi . Therefore

exp

(
c
k− i

k
logk

)
K

is a value of the random variablerandk,h whereh( j) = exp((c j/k) logk). Therefore, byTheorem3.14,

the probability thatP(B)
i bi , . . . ,P

(B)
i bi+k−1 is not a Korkine-Zolotareff basis is at most e−αk. The fact that

there are at mostn−k choices fori implies the second inequality in the conclusion of the theorem.
If n is sufficiently large with respect tok then the proven second inequality does not implypn,k 6= 0.

Still it can be shown by the Lov́asz Local Lemma that it holds. Actually the present situation is a very
simple special case of Lovász’s lemma so a direct proof and a corresponding probabilistic construction
can be easily given based on the following observation.

Let 0 < ε < 1/10. Suppose thatQ(x,y) is a binary relation on the finite setA so that ifx,y are
chosen at random, independently and with uniform distribution fromA thenP(Q(x,y)) > 1− ε. For
eachτ > 0 let Aτ be the set of allx∈ A with the property that if we take a randomy∈ A with uniform
distribution thenP(Q(x,y))≥ 1− τ. Then|A|−1|Aτ | ≥ 1− ε/τ. Indeed if we count the number of pairs
(x,y) with ¬Q(x,y) for all x ∈ A\Aτ together then we get that this number is at least(|A| − |Aτ |)τ|A|.
On the other hand from our assumption we know that this number is at mostε|A|2 which implies that
claimed inequality.

If we pick nowτ =
√

ε then we have|A|−1|Aτ | ≥ 1−
√

ε. Therefore for eachx∈ Aτ the number of
elementsy∈ Aτ with Q(x,y) is at least|A|−2

√
ε|A|. This implies that ifx0 ∈ Aτ then we may pick a

sequence of elementsx0,x1,x2, . . . ,xm recursively (for an arbitrarym) so that for alli = 1, . . . ,m, xi ∈ Aτ

andQ(xi−1,xi). This recursive construction can be turned into an algorithm if the validity of the relation
Q(x,y) can be algorithmically decided. This implies that although we may not be able to decide with
high probability whether an element is inAτ but we can tell about all of the elements ofAτ/2 with high
probability that they are inAτ . Therefore picking random elements and testing them whether they are in
Aτ (with high probability) we can build the sequencex0,x1, . . . ,xm.

This recursive procedure makes it possible to prove the existence of a basis with high probability
and with the required properties even in the case whenk is small compared ton. To get a construction
we need that for dimension at mostk we are able to verify whether a given vector is a nonzero shortest
vector of the lattice. However if we are able to perform Schnorr’s algorithm with parameterk, then we
have already this ability. (By polynomial time computation we can find the shortest vector in dimension
O(logn). This seems to match the lower bound for thek where with high probability we get Korkine-
Zolotareff bases in all of the blocks of lengthk. However it is not clear whether the constant factors of
logn in the bounds really overlap.)
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Theorem 3.23. There existε > 0,ε ′ > 0 so that for all positive integers k,n, k≤ ε ′n, there is an n-
dimensional lattice L and a basis b1, . . . ,bn in L so that if b∗1, . . . ,b

∗
n are the orthogonal vectors that

we get through Gram-Schmidt orthogonalization from the basis b1, . . . ,bn then the following holds. For
each s= 1, . . . ,n−2k−1 we have

(( k

∏
i=s+1

‖b∗i ‖2)( 2k

∏
i=s+k+1

‖b∗i ‖
)−2
)1/k

≤ kε logk ,

‖b1‖/λ1(L)≥ kε
n
k , whereλ1(L) is the length of the shortest nonzero vector in L.

Proof. L will be a lattice whose existence is guaranteed byTheorem3.22with 2k in the place ofk. We
have

‖b∗i ‖= g(n− i +1) = exp

(
c
n− i +1

2k
log2k

)
.

This implies the first inequality. According to Minkowski’s convex body theorem we have

λ1(L)≤ n1/2(det(L))1/n = n1/2
( n

∏
i=1

‖b∗i ‖
)1/n

.

Using that andk≤ ε ′n we get‖b1‖/λ1(L)≥ kεn/k.

4 The lower bound on the Korkine-Zolotareff constantαk

Definition 4.1. For each positive integerk and real numberc we define a functionFk,c whose domain
is the set of all positive integers. For alli = 1, . . . ,k let Fk,c(i) = ec(logk)2

and for alli = k,k+1, . . . let
Fk,c(i) = ec(logi)2

.

Theorem 4.2. Assume that c> 0 is a sufficiently small real number and c1 > 0 is a sufficiently large
positive integer. For all n= 1,2, . . . if L is a random value of the random variablerandn,Fc1,c then the
following holds. With a probability of at least1/2 the sequence bi = bi,L, i = 1, . . . ,n is a Korkine-
Zolotareff reduced basis of the n-dimensional lattice L. Moreover the Gram-Schmidt orthogonalization
procedure applied to the basis b1, . . . ,bn yields the orthogonal vectors b∗i =℘n−i+1,L, i = 1, . . . ,n. If n is

sufficiently large with respect to c1 and c then we have‖b1‖‖b∗n‖−1 ≥ nclognc−clogc1
1 .

Theorem1.9formulated inSection1.2 is an immediate consequence ofTheorem4.2.

Proof of Theorem 4.2. In the following lemma we summarize some of the elementary properties of
the functionFk,c.

Lemma 4.3. There existα1 > 0,α2 > 0 so that if0 < c < 1 and k is a positive integer then there is an
α3 > 0 so that for all positive integers n, i, n≥ i the following inequalities hold.
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(9). if i ≥ n
2 then

Fk,c(n)(Fk,c(i))−1 ≤ α1n2clog(n/i) ;

if i ≥ n
2 > k then

Fk,c(n)(Fk,c(i))−1 ≥ α2n2clog(n/i) ;

(10). for all δ > 0 if c > 0 is sufficiently small and max{i,k} ≥ n−2logn then

(1−δ )Fk,c(n)≤ Fk,c(i) ;

(11). if 0 < ξ < 1, c is sufficiently small with respect toξ , n is sufficiently large with respect toc and
ξ , n/2 < i < n− logn thenFk,c(n)(Fk,c(i))−1 ≤ (n− i)ξ .

Proof. (9). α1 andα2 are chosen whenc andk are already fixed so we may assume thati andn are
sufficiently large with respect toc andk. ThereforeFk,c(n) = ec(logn)2

andFk,c(i) = ec(logi)2
.

c(logn)2 = c
(

logi + log
n
i

)2
= c(logi)2 +2clogi log

n
i
+c
(

log
n
i

)2

= c(logi)2 +2clognlog
n
i
+2c(logi− logn) log

n
i
+c
(

log
n
i

)2
.

The assumptionn ≥ i ≥ n/2 implies that the absolute values of the last two terms remain below an
absolute constant. Therefore the ratio ofFk,c(n)n−2clog(n/i) andFk,c(i) remains between two positive
constants.

(10). We have

Fk,c(n−2logn) = exp
(
c(log(n−2logn))2)

= exp

(
c
(

log
(

n
(

1− 2logn
n

)))2
)

= exp

(
c
(

logn+ log
(

1− 2logn
n

))2
)

= ec(logn)2
exp

(
2clognlog

(
1− 2logn

n

)
+
(

log
(

1− 2logn
n

))2
)

.

The assumption thatc > 0 is sufficiently small implies that we may assume thatn is sufficiently
large. Since| log(1− (2logn)/n)| < 2(2/n) logn the exponent in the second factor remains belowε

in absolute value for anyε > 0 if n is sufficiently large and the first factor isFk,c(n). SinceFk,c(i) is
monotone in the interval[n−2logn,n] this implies(10).

(11). Inequality(9) implies that there is an absolute constantc2 > 0 so that

Fk,c(n)(Fk,c(i))−1 ≤ c2n2clog(n/i) .

Therefore we have to prove that(n− i)ξ c−1
2 n−2clog(n/i) ≥ 1 provided thatn/2 ≤ i < n− logn, c > 0

is sufficiently small with respect toξ andn is sufficiently large with respect toc andξ . Taking the
logarithm of both sides of the inequality we get

ξ log(n− i)− logc2−2clogn(logn− logi)≥ 0.
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We consider the left hand side as a function ofi. Let f (x) = ξ log(n−x)− logc2−2clogn(logn− logx).
The derivative off is

f ′(x) =− ξ

n−x
+

2clogn
x

.

The functionf ′(x) is continuous on the interval[n/2,n−1] and it has a single root

x0 =
n

1+ξ/(2clogn)

in it (for this latter fact we use thatn is sufficiently large with respect toc). Thereforef ′(n/2) > 0
and f ′(n− 1) < 0 implies that the functionf is increasing fromn/2 till x0 and then it is decreasing
from x0 till n− 1. So we can prove our inequalityξ log(n− i)− logc2− 2clogn(logn− logi) ≥ 0
for all i ∈ [n/2,n− logn] by checking it at the endpoints. Ifi = n/2 then logn− logi ≤ log2 and
log(n− i) ≥ (1/2) logn, therefore the assumption thatc is sufficiently small with respect toξ implies
the inequality. Ifi = n− logn then logn− logi < 2n−1 logn so the term containing(logn− logi) is
negligible compared toξ log(n− i)≥ ξ log logn.

In this proof we will writeF for Fc1,c. First we estimate the probability of the following eventA:
“℘n,L is not a shortest nonzero vector inL.” Let let a = (a1, . . . ,an) be a sequence of integers. We
estimate the probability of the eventAa: “there is anx∈ L, x 6= 0 so that‖x‖< ‖℘n‖ andϑ (x,L) = a.” Let
start(a) = i. ThenAa implies thati < n (otherwise we would havex = 0). We also haveπ(i)(x) = 0,
π(i+1)(x) 6= 0. We distinguish four cases depending oni; in each case, we shall estimateP(Aa).

Case I. max{i,c1} > n− (logn)2. We show that in this caseP(Aa) = 0 since there is nox∈ L with
‖x‖ < ‖℘n‖ andϑ x,L = a. Indeed assume that there is anx ∈ L with these properties.start(a) = i
implies a1 = · · · = ai = 0 and so according to the definition ofϑ (x,L) = a we haveπ( j)(x) = 0 for
j = 1, . . . , i. ai+1 6= 0 andπ(i+1)(x) = ai+1π(i+1)℘i+1,L = (0, . . . ,0,ai+1F(i +1)). If i = n−1 this implies
‖x‖ ≥℘n,L in contradiction to our assumption. Thereforei < n−1. (5) implies that

π
(i+2)(x) = Ui+1(ai+1π

(i+1)
℘i,L) = (0, . . . ,0,ai+1F(i +1),

1
2
F(i +2)) .

Consequently

‖x‖2 ≥ ‖π
(i+2)x‖2 ≥ (F(i +1))2 +

1
4
(F(i +2))2 .

So the assumption max{i,c1}> n− (logn)2 and(10) implies that‖x‖2 ≥ (F(n))2 = ‖℘n,L‖2 in contra-
diction to our indirect assumption.

Case II.n− (logn)2 ≥max{i,c1} and|Sa|> (1/10)|n− i′| wherei′ = max{i,dn/2e} andSa = { j ∈
[i′,n] | a j 6= 0}. In this case we will use the following inequality:

(12). for all γ > 0, for all c with 0 < c < 1/20, for all sufficiently largen and for allx with n/2≤ x <
n− (logn)2 we have(n−x)n−4clog(n/x) > γ.

Taking the logarithm of the left hand side of the inequality we get` = log(n−x)−4clogn(logn−
logx). Sincex≥ n/2 we have logn− logx =

∫ n
x 1/ydy≤

∫ n
x 1/(n/2)dy= 2n−1(n− x). This implies

that`≥ log(n−x)−8cn−1(n−x) logn. If n−x≤
√

n then the assumptionx < n− (logn)2 implies that
`≥ log((logn)2)−8cn−1n1/2 logn≥ logγ if n is sufficiently large.
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If n−x≥
√

n then`≥ (1/2) logn−8cn−1nlogn≥ (1/2) logn−8clogn. Sincec< 1/20 this implies
that`≥ logγ which completes the proof of(12).

We return now to the discussion of Case II. We show that in this case againP(Aa) = 0 since there is
no x∈ L with ϑ x,L = a and‖x‖< ‖℘n‖. Indeed assume that there is anx∈ L with these properties. By
Lemma3.10andLemma4.3we have

‖x‖2 ≥ 1
4 ∑{‖℘j‖2 | a j 6= 0, j ∈ [i′,n]} ≥ 1

4
|Sx| · ‖℘i′‖2 ≥ |Sx|(F(i′))2

>
1
4

α
2
1

1
10

(n− i′)n−4clog(n/i′)(F(n))2 = α
2
1

1
40

(n− i′)n−4clog(n/i′)‖℘n‖2 .

Since i′ ≥ n/2 andc is sufficiently small, inequality(12) is applicable with the substitutionsx := i′,
γ := 40α

−2
1 and we get‖x‖2 ≥ ‖℘n‖2 in contradiction to our indirect assumption. (Our assumption

n−(logn)2≥max{i,c1} implies thatn> c1. c1 is sufficiently large with respect toc by the assumptions
of Theorem4.2, and son is also sufficiently large with respect toc as required in(12).)

Case III.n− (logn)2 ≥ max{i,c1}, |Sa| ≤ (n− i′)/10 andi > bn/2c. (The last inequality implies
i′ = i.) We estimateP(a) in terms ofi.

Suppose thatL anda are fixed so that there is anx∈ L with ϑ (x,L) = a. By the definition ofϑ (x,L),
x is unique with this property. Moreover if we follow the recursive definition of the randomization of
L = randn,F then in each step together withπ( j)(L) we also getπ j(x) since by the definition ofϑ x,L we
haveπ( j)(x) = (U j−1,L(π( j−1))x)+a j℘j .

Let Q = [i + 2,n− 1]\Sa. If j ∈ Q then ϑ
(x,L)
j = a j = 0 and soπ( j)(x) = U j−1,L(π( j−1)x) and

therefore by the definition ofU j−1,L we have thatπ( j)(x) = π( j−1)(x) + ρ j℘j for a uniquely defined
ρ j ∈ (−1/2,1/2]. Let M = F(n)(F(i))−1 and letA′a be the event that “the number of integersj ∈Q with
|ρ j |< (n− i)−1/5M is at least(n− i)/2.” We show thatAa impliesA′a and thereforeP(Aa)≤P(A′a), then
we will prove an upper bound onP(A′). Assume that¬A′a. Then there are at least 4(n− i)/10 integers
j ∈Q so that|ρ j | ≥ (n− i)−1/5M. Therefore

‖x‖2 ≥ ∑
j∈Q

ρ
2
j ‖℘j‖2 ≥ 4

10
(n− i)(n− i)−2/5M2(F(i))2

≥ 4
10

(n− i)3/5(F(n)(F(i))−1)2(F(i))2 ≥ 4
10

(n− i)3/5(F(n))2 ≥℘
2
n

so we reached a contradiction. Therefore¬Aa holds, which completes the proof of the implication
A′a ⇒ Aa.

Now we estimateP(A′a). Supposej ∈ Q. ρ j was defined by the conditionsπ( j)(x) = π( j−1)(x)+
ρ j℘j , ρ j ∈ (−1/2,1/2]. Therefore the definitions ofrand, ext andLemma2.1imply that if π( j−1)(x) is
linearly independent of℘j−1 thenρ j is uniformly distributed over[−1/2,1/2]. However ifπ( j−1)(x) 6= 0
and℘j−1 are dependent then by(3) start(a) = j−1. Sincei = start(a), Q⊆ [i +2,n] this contradicts
to j ∈Q. Therefore the distribution ofρ j is uniform over[−1/2,1/2]. The definition ofrand implies that
the random variablesρ j , j ∈Q are mutually independent. Therefore the probability that “the number of
integersj ∈Q with |ρ j |< (n− i)−1/5M is at least(n− i)/2” is no more than 2n−i(2(n− i)−1/5M)(n−i)/2.
We get that

(13). P(Aa)≤ P(A′a)≤ 2n−i(2(n− i)−1/5M)(n−i)/2.
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We use here the notion that a sequencea= (a1, . . . ,an) is acceptableas defined before the statement
of Lemma3.18. In this case we use the definition withh := F.

For a fixed i > n/2, let pi denote the probability that there is an acceptable sequencea with
start(a) = i so thatAa holds. By the union bound,pi ≤ ∑{P(Aa) | a is acceptable andstart(a) = i}.

pi, ≤ 2n−i(2(n− i)−1/5M)(n−i)/23n−i
n

∏
j=i

(F(n)(F( j))−1) .

Using that for allj ∈ [i,n] we have

F(n)(F( j))−1 ≤ F(n)(F(i))−1 = M

we get thatpi ≤ 3n−i23(n−i)/2M3(n−i)/2(n− i)−(n−i)/10. By (11) M ≤ (n− i)ξ for a small constantξ > 0
so we getpi ≤ (n− i)−(n−i)/20. Therefore the probability that there is ani so thatAa holds for a suitably
chosena is at most

n−(logn)2

∑
i=n/2

(n− i)−(n−i)/20≤
∞

∑
k=(logn)2

k−k/20.

We have thatk−k/20/(k+1)−(k+1)/20≥ (k+1)1/20 therefore the first term in the sum (withk = (logn)2)
is greater than the sum of the others so we get that the probability is smaller than

2((logn)2)−(logn)2/20≤ exp

(
−(logn) log logn

11

)
if n is sufficiently large; this, however, follows fromn− (logn)2 > c1.

Case IV.n− (logn)2 ≥ max{i,c1}, |Sa| ≤ (n− i′)/10 andi ≤ bn/2c. (The last inequality implies
i′ = bn/2c.)

For each acceptable sequencea with start(a)≤ n/2 we will give an upper bound on the probability
of the eventAa. Then we will estimate the number of acceptable sequencesa with Aa.

Suppose thatL and a are fixed so that there is anx ∈ L with ϑ (x,L) = a. We haveπ( j)(x) =
(U j−1,L(π( j−1))x)+a j℘j for all j = 0, . . . ,n−1.

Let Q = [n/2,n− 1]\Sa. If j ∈ Q then ϑ
(x,L)
j = a j = 0 and soπ( j)(x) = U j−1,L(π( j−1)x) and

therefore by the definition ofU j−1,L we have thatπ( j)(x) = π( j−1)(x) + ρ j℘j for a uniquely defined
ρ j ∈ (−1/2,1/2]. Let A′a be the event that “the number of integersj ∈ Q with |ρ j | < n−τ is at least
n/4,” whereτ < 1/4 is chosen so thatc is sufficiently small with respect toτ. (This definition is some-
what different from the corresponding definition in Case III.) We show thatAa impliesA′a and therefore
P(Aa)≤ P(A′a), then we will prove an upper bound onP(A′a). Assume that¬A′a. Then there are at least
n/5 integersj ∈Q so that|ρ j | ≥ n−τ . Therefore

‖x‖2 ≥ ∑
j∈Q

ρ
2
j ‖℘j‖2 ≥ 1

5
nn−2τ(F(n/2))2 =

1
5

n1−2τ(F(n/2))2 .

Thus (11) implies that‖x‖2 ≥ (F(n))2 = ℘2
n, that is,¬Aa holds, which completes the proof of the

implicationA′a ⇒ Aa.
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In Case III we have seen that the random variablesρ j are independent and uniformly distributed
over[−1/2,1/2]. Therefore the probability that “the number of integersj ∈Q with |ρ j |< n−τ is at least
n/4” is no more than 2n/2(2n−τ)n/4. We get that

(14). P(Aa)≤ P(A′a)≤ 2n/2(2n−τ)n/4.

Let p denote the probability that there is an acceptable sequencea with start(a)≤ n/2 so thatAa

holds. Again by the union bound,p≤ ∑{P(Aa) | a is acceptable andstart(a)≤ n/2}. We use(14) as
an upper bound onP(Aa). The number of acceptable sequences with the given property is not greater
than the total number of acceptable sequences and for this we use the upper bound 3n ∏n

j=1F(n)(F( j))−1

provided byLemma3.18.
To get an upper bound on this product we need a lower bound on∏n

j=1(F( j))−1≥ c2 ∏n
j=1e−c(log j)2

,
wherec2 > 0 depends only onc andc1. Using that∫

(logx)2dx= x(logx)2−2xlogx+2x+C

we give an upper bound on∑n
j=1c(log j)2. Since the function(logx)2 is monotone we have

n

∑
j=1

c(log j)2 ≤ c
∫ n

1
(logx)2dx+(logn)2

= c
(
n(logn)2−2nlogn+2n−2+(logn)2) .

Substituting this inequality in the upper bound onp we get:

p≤ 2n/2(2n−τ)n/43necn(logn)2
exp
(
−c
(
n(logn)2−2nlogn+2n−2+(logn)2))

≤ 2n/2(2n−τ)n/43nexp
(
2cnlogn−2cn−c(logn)2 +2c)

)
.

Therefore, ifc > 0 is sufficiently small with respect toτ then p≤ n−τn/8. In other words in Case IV
the probability that there is ana so thatAa holds for some suitably chosena is at mostn−τn/8 assuming
τ < 1/4 andc is sufficiently small with respect toτ.

Summarizing the results of the four different cases we get the following:

Lemma 4.4. If L is the random lattice defined inTheorem4.2, then the probability that℘n,L is not a
shortest nonzero vector of L is at mostexp(−(1/12) lognlog logn). If n ≤ c1 then℘n,L is always a
shortest nonzero vector.

Suppose thatL is a random value ofrandn,F. The definition of the random variablerand implies
thatπ(i)L for any i ≤ n is a random value ofrandi,F. ThereforeLemma4.4 implies that the probability
qn of the event that there is ani ≤ n such that℘i,L is not a shortest nonzero vector inπ(i)(L) is at most

n

∑
t=c1

exp

(
−(logt) log logt

21

)
.

As n→∞, this series converges (because it is dominated by∑∞
t=1 t−2); therefore, ifc1 is sufficiently large

thenqn≤1/2. If i ≤ c1 thenπ(i)L has an orthogonal basis consisting of vectors of the same length so each
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of them is a shortest nonzero vector. This also implies thatqn = 0 for n≤ c1. Thereforeqn ≤ 1/2 for all
positive integersn. The definition of the basisbi,L, i = 1, . . . ,n implies thatπ(n−i+1)bi,L =℘n−i+1,L and
so applying the Gram-Schmidt orthogonalization process to it indeed yields the vectorsb∗i =℘n−i+1,L,
i = 1, . . . ,n. The fact that℘i,L is a shortest vector inπ(i)(L) for all i = 1, . . . ,n then implies thatbi,L is a
Korkine-Zolotareff basis. The final inequality of the theorem holds since‖b1‖= ‖℘n,L‖= F(n)≥ nclogn

and‖b∗n‖= ‖℘1,L‖= cc1 logc1
1 . This concludes the proof ofTheorem4.2.
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coefficients.Mathematische Annalen, 261:515–534, 1982. [Springer:lh1m24436431g068]. 1.1

[13] * A. M. ODLYZKO AND H. TE RIELE: Disproof of the Mertens conjecture.Journal f̈ur die reine
und angewandte Mathematik, 357:138–160, 1985.1.4

[14] * C.-P. SCHNORR: A hierarchy of polynomial time lattice basis reduction algorithms.Theoretical
Computer Science, 53:201–224, 1987. [TCS:10.1016/0304-3975(87)90064-8]. 1.1, 1, 3

[15] * C.-P. SCHNORR: Lattice reduction by random sampling and birthday methods. InProc. 20th
Ann. Symp. on Theoretical Aspects of Computer Science (STACS’03), volume 2607 ofLecture
Notes in Computer Science, pp. 145–156. Springer, 2003. [STACS:qjpadpmwabty52g4]. 1.1

AUTHOR
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