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1 Introduction

Consider a family of independent random variables (Xi)
n
i=1. It is easy to prove that if the distribution of

their sum is supported on a set of cardinality 2, then all the Xi’s but one are constant almost surely. In our
paper we investigate stability of this phenomenon. Namely, we prove that if the distribution of the sum is
concentrated around a two-point set, then there exists k ∈ {1,2, . . . ,n} such that ∑i:i 6=k Xi is concentrated
around some point. We provide various strict quantitative variants of this heuristic statement. One of
them is the following theorem:

Theorem 1.1. Let τ ≥ 1. Let (Xi)
n
i=1 be a sequence of independent square-integrable random variables.

Assume that Var(Xi)≤ τ · (E|Xi−EXi|)2 for 1≤ i≤ n. Then for some k ∈ {1,2, . . . ,n} we have

Var
(

∑
i≤n:i 6=k

Xi

)
≤ K(τ) · inf

x∈R
Var
(∣∣∣x+∑

i≤n
Xi

∣∣∣) ,
where K(τ) is a constant which depends only on τ .
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Note that always Var(Xi)− (E|Xi−EXi|)2 = Var(|Xi−EXi|)≥ 0, with equality only when Xi is either
constant almost surely, or uniformly distributed on a two-point set. For such Xi’s, the comparison of
moments assumption is thus satisfied with τ = 1. In a sense, the closer τ is to one, the more ∑i Xi must
resemble a (shifted) weighted Rademacher sum.

This result for weighted Rademacher sums (i. e., in the case when for each i the random variable Xi

is symmetric and takes values ±ai, where a1, a2, . . . , an are some real numbers) was proved in [4] by
E. Friedgut, G. Kalai, and A. Naor, and was a part of the proof of their theorem on Boolean functions on
the discrete cube with Fourier coefficients concentrated at the first two levels.

FKN Theorem ([4], Theorem 1.1). There exists an absolute constant K such that for any

f : {−1,1}n→{−1,1} and ρ =

√
∑
|A|≥2
| f̂ (A)|2

one of the following holds:

‖ f (x1,x2, . . . ,xn)−1‖2 ≤ Kρ, or

‖ f (x1,x2, . . . ,xn)+1‖2 ≤ Kρ, or

‖ f (x1,x2, . . . ,xn)− xi‖2 ≤ Kρ for some i ∈ {1,2, . . . ,n}, or

‖ f (x1,x2, . . . ,xn)+ xi‖2 ≤ Kρ for some i ∈ {1,2, . . . ,n}.

(1.1)

Remark 1.2. Note that (1.1) can be equivalently formulated as follows. P( f 6= 1) ≤ K2ρ2/4 or
P( f 6=−1)≤ K2ρ2/4, or P( f (x) 6= xi)≤ K2ρ2/4 for some i, or P( f (x) 6=−xi)≤ K2ρ2/4 for some i.

They gave two proofs of the result concerning Rademacher sums. One was a direct application
of a theorem of König et al. [7]. The other used a more elementary approach (Chernoff’s inequality),
but contained an omission—it worked only under the additional assumption that we already know that
Var(Xk) ≥C Var(∑i Xi) for some C close to 1. This minor gap is well known by now as well as some
ways to fix it, for example by the use of the Berry–Esseen theorem—in fact, it has been fixed already by
Kindler and Safra [6], whose proof also yielded better asymptotic estimates than [4]. (Although [6] was
not formally published, as far as we know, it was widely circulated; the proof appeared also in Kindler’s
Ph. D. thesis [5].) The FKN theorem is a direct application of the above variance bound for Rademacher
sums. It was originally devised for applications in discrete combinatorics and social science, but turned
out to be useful also in theoretical computer science. In particular, the theorem is used in analyzing the
Long Code Test in the celebrated expander proof of the PCP theorem by Irit Dinur ([3]). With that in
mind, we hope that our easy, self-contained proof will simplify understanding of the PCP theorem’s
background. Hence we set out to give an elementary proof of Theorem 1.1 for weighted Rademacher
sums which does not refer to intricate results such as the Berry–Esseen inequality, [7], [2] or [1] (a proof
based on the Bonami–Beckner hypercontractive bounds was also known).

We think it is also interesting (although not very surprising) that the inequality still holds if we replace
the Rademacher variables by variables satisfying a moment comparison condition. Note that, in contrast
to the weighted Rademacher setting described above, in our results the sums do not need to be linear
combinations of an i. i. d. sequence (however, in the discrete cube setting we actually prove a stronger,
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and essentially optimal, FKN type estimate in Theorem 5.3 by the use of yet another method; Ryan
O’Donnell obtained the same bound independently by a slightly different approach—see [11, Theorem
5.33]).

We also provide the following analogous result for symmetric random variables with no additional
assumption about moment comparison.

Theorem 1.3. Let (Xi)
n
i=1 be a sequence of independent symmetric square-integrable random variables.

Then for some k ∈ {1, 2, . . . , n} we have

Var
(

∑
i≤n:i 6=k

Xi

)
≤C · inf

x∈R
Var
(∣∣∣x+∑

i≤n
Xi

∣∣∣) ,
where C is a universal constant. The result holds true with C = (7+

√
17)/2.

For the sake of clarity, we start by showing in Section 2 that if a sum of independent random vectors is
concentrated around a two-point set, then by removing just one term we may make the sum of remaining
vectors concentrate around a single point. Then, in Section 3, we demonstrate how to use this observation
in the real-valued case. However, our results and methods can be quite easily adapted to a Banach space
setting, with concentration around a finite set of points, which leads to some nice geometric considerations.
We present them in Section 6. Only very basic knowledge of Banach space theory is needed, which can
be found, e. g., in [15].

Since we tried to make our proofs as transparent and “low-tech” as possible, in many cases our
estimates can be easily improved upon some natural optimization.

Readers interested only in the Rademacher case may find it useful to restrict their attention to Section 4,
in which Theorem 1.3 is proved, and first two subsections of Section 5, in which the strengthening of the
FKN Theorem is described.

2 Splitting of the sum

We begin by analyzing the concentration in terms of probability rather than variance. In what follows, we
denote by µZ the distribution of a random variable Z. Readers not comfortable with the Banach space
formulation may simply replace V by R, and ‖ · ‖ by | · |.

Lemma 2.1. Let X, Y be independent random variables with values in a real separable Banach space V .
Assume that for δ ≥ 0 and a,b ∈V we have

P(‖X +Y −a‖ ≤ ε or ‖X +Y −b‖ ≤ ε)≥ 1−δ , (2.1)

where 0≤ ε < ‖b−a‖/6. Then there exists some vector c ∈V such that

P(‖X− c‖> ε)≤
√

δ +δ or P(‖Y − c‖> ε)≤
√

δ +δ .

Proof. Let v = b−a and

Ay = {x ∈V : ‖x+ y−a‖ ≤ ε}∪{x ∈V : ‖x+ y−b‖ ≤ ε}
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for y ∈V . Then from (2.1) and independence of variables by the Fubini theorem we get

1−δ ≤
∫

V×V
1Ay(x)dµ(X ,Y )(x,y) =

∫
V

µX (Ay)dµY (y) ,

so in particular µX (Ay)≥ 1−δ for some y ∈V , which means

∃c1,c2 ∈V,c2− c1 = v : P(‖X− c1‖ ≤ ε or ‖X− c2‖ ≤ ε)≥ 1−δ .

Similarly we prove that

∃d1,d2 ∈V,d2−d1 = v : P(‖Y −d1‖ ≤ ε or ‖Y −d2‖ ≤ ε)≥ 1−δ .

Let α = P(‖X− c1‖ ≤ ε), β = P(‖X− c2‖ ≤ ε), γ = P(‖Y −d1‖ ≤ ε), η = P(‖Y −d2‖ ≤ ε). Thus

P(‖(X +Y )− (c1 +d1)‖ ≤ 2ε)≥ αγ ,

P(‖(X +Y )− (c2 +d2)‖ ≤ 2ε)≥ βη .

Let B̄(x,r) denote the closed ball with center x and radius r. If α,γ,β ,η >
√

δ , then αγ,βη > δ , and
(2.1) would imply that

B̄(c1 +d1,2ε)∩ (B̄(a,ε)∪ B̄(b,ε)) 6= /0 and B̄(c2 +d2,2ε)∩ (B̄(a,ε)∪ B̄(b,ε)) 6= /0 .

Since (c2 +d2)− (c1 +d1) = (c2− c1)+(d2−d1) = 2v, the diameter of B̄(a,ε)∪ B̄(b,ε) would satisfy
the inequalities

2‖v‖−4ε ≤ diam(B̄(a,ε)∪ B̄(b,ε))≤ ‖v‖+2ε ,

contradicting the assumption ε < ‖v‖/6.
Without loss of generality we may therefore assume that α ≤

√
δ . Since α +β ≥ 1−δ , this implies

β ≥ 1−
√

δ −δ , i. e., P(‖X− c2‖> ε)≤
√

δ +δ .

Lemma 2.2. Let X1,X2, . . . ,Xn be independent random variables with values in a separable Banach
space V . Let S = X1+ · · ·+Xn, Si = S−Xi for 1≤ i≤ n. Assume that for δ ≥ 0 and some vectors a,b∈V
we have

P(‖S−a‖ ≤ ε or ‖S−b‖ ≤ ε)≥ 1−δ , (2.2)

where ε < ‖b−a‖/6. Then there exist k ∈ {1, . . . ,n} and c ∈V such that

P(‖Sk− c‖> 2ε)≤ 2(
√

δ +δ ) = O(
√

δ ) as δ → 0+ .

Additionally, if δ < 1/9, then

P(‖Xk− (a− c)‖> 3ε and ‖Xk− (b− c)‖> 3ε)≤ δ/(1−2
√

δ −2δ ) = O(δ ) as δ → 0+.
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Proof. Let I be a minimal (in the sense of inclusion) subset of {1, . . . ,n} such that

∀c ∈V : P

(∥∥∥∥∥∑i∈I
Xi− c

∥∥∥∥∥> ε

)
>
√

δ +δ

(if there is no such I, there is nothing to prove). Of course I 6= /0. Let k ∈ I. We have S = ∑i∈I Xi +∑i/∈I Xi,
and the two sums are obviously independent, so by our assumption about I, (2.2) and Lemma 2.1, for
some c1 ∈V we get

P

(∥∥∥∥∥∑i/∈I
Xi− c1

∥∥∥∥∥> ε

)
≤
√

δ +δ . (2.3)

But I was minimal, so for some c2 ∈V

P

(∥∥∥∥∥ ∑
i∈I\{k}

Xi− c2

∥∥∥∥∥> ε

)
≤
√

δ +δ . (2.4)

Sk = ∑i/∈I Xi +∑i∈I\{k}Xi, so that (2.3), (2.4) and the triangle inequality yield

P(‖Sk− (c1 + c2)‖> 2ε)≤ 2(
√

δ +δ ) .

The second assertion of the lemma follows easily upon recalling that Sk and Xk are independent and
S = Sk +Xk:

(1−2
√

δ −2δ ) · P
(
‖Xk− (a− c)‖> 3ε and ‖Xk− (b− c)‖> 3ε

)
≤ P

(
‖Sk− c‖ ≤ 2ε and ‖Xk− (a− c)‖> 3ε and ‖Xk− (b− c)‖> 3ε

)
≤ P

(
‖S−a‖> ε and ‖S−b‖> ε

)
≤ δ .

For δ ≥ 1/9 we have 1−2
√

δ −2δ ≤ δ , which makes the arising probability bound trivial.

Remark 2.3. Both bounds are of optimal order for δ → 0+ even for V =R, as indicated by the following
example. Fix a = 0, b = 1, ε = 1/7 and some n≥ 2. Let Xi ∼ Pois(

√
δ/n), so that S∼ Pois(

√
δ ) and

P(S ∈ {0,1}) = e−
√

δ (1+
√

δ )≥ 1−δ .

Hence the assumptions of Lemma 2.2 are satisfied. Since for every k ≤ n there is

Sk ∼ Pois
(

n−1
n

√
δ

)
,

we have P(Sk = 0)/
√

δ → ∞ and P(Sk = 1)/
√

δ → (n−1)/n as δ → 0+ which shows that the O(
√

δ )
bound cannot be improved. Also, for every k ≤ n we have

P(Xk = 0)/δ → ∞ , P(Xk = 1)/δ → ∞ , and P(Xk = 2)/δ → 1
2n2

as δ → 0+. Hence, for δ small enough, for every set A which is a union of two intervals of length 6/7
each, there is

P(Xk /∈ A)≥ δ

3n2

which proves the optimality of the O(δ ) bound.
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3 Proof of Theorem 1.1 (comparison of moments assumption)

We will now show how to use the facts from the previous paragraph to give a proof of Theorem 1.1.
Concentration bounds in terms of probability will be translated into statements about variances by the use
of a Paley–Zygmund type inequality. We need a few simple and standard lemmas.

Lemma 3.1 (Khinchine inequality). Let r1,r2, . . . be independent symmetric±1 random variables. There
exists a universal constant κ such that for every a1, a2, . . . , am ∈ R there is

κ ·E

∣∣∣∣∣ m

∑
i=1

airi

∣∣∣∣∣≥
(

m

∑
i=1

a2
i

)1/2

.

Proof. The estimate with the optimal constant κ =
√

2 was proved by Szarek, [16] (see [8] for a simpler
proof). For the reader’s convenience we provide a well-known simple argument which yields κ =

√
3.

Let S = ∑
m
i=1 airi, so that ES2 = ∑

m
i=1 a2

i . Since

ES4 =
m

∑
i=1

a4
i +6 ∑

i, j:1≤i< j≤m
a2

i a2
j ≤ 3

( m

∑
i=1

a2
i

)( m

∑
j=1

a2
j

)
= 3

(
ES2)2

,

by Hölder’s inequality we get

ES2 = E
(
|S|4/3 · |S|2/3

)
≤
(
ES4)1/3

(E|S|)2/3 ≤ 31/3 (ES2)2/3
(E|S|)2/3 .

Hence
√

3E|S| ≥
(
ES2

)1/2
=
(
∑

m
i=1 a2

i
)1/2.

Lemma 3.2. Let Y1,Y2, . . . ,Ym be independent symmetric integrable random variables. Then

κ ·E

∣∣∣∣∣ m

∑
i=1

Yi

∣∣∣∣∣≥ E

(
m

∑
i=1

Y 2
i

)1/2

,

where κ is the universal constant from Lemma 3.1.

Proof. Let (ri)
m
i=1 be a sequence of independent symmetric ±1 random variables, independent of (Yi)

m
i=1,

so that (Yi · ri)
m
i=1 has the same distribution as (Yi)

m
i=1. Hence

E
∣∣∣ m

∑
i=1

Yi

∣∣∣= E
∣∣∣ m

∑
i=1

Yiri

∣∣∣= EE

(∣∣∣ m

∑
i=1

Yiri

∣∣∣∣∣∣∣∣Y1,Y2, . . . ,Ym

)
≥ κ

−1 ·E
( m

∑
i=1

Y 2
i

)1/2
,

where we have used Lemma 3.1.

The following result may be traced back to the work of Marcinkiewicz and Zygmund [9] (see
Théorème 2 therein).

Corollary 3.3. Let ρ ≥ 1. Let Y1,Y2, . . . ,Ym be independent symmetric square-integrable random vari-
ables such that EY 2

i ≤ ρ · (E|Yi|)2 for i≤ m. Set Z = ∑
m
i=1Yi. Then EZ2 ≤ κ2ρ · (E|Z|)2, where κ is the

universal constant from Lemma 3.1.

THEORY OF COMPUTING, Volume 11 (18), 2015, pp. 445–469 450

http://dx.doi.org/10.4086/toc


ON SOME EXTENSIONS OF THE FKN THEOREM

Proof. Indeed, by Lemma 3.2 we have

κ ·E|Z|= κ ·E
∣∣∣ m

∑
i=1

Yi

∣∣∣≥ E
( m

∑
i=1

Y 2
i

)1/2
= E

∥∥∥(|Y1|, |Y2|, . . . , |Ym|)
∥∥∥

lm
2

≥
∥∥∥(E|Y1|,E|Y2|, . . . ,E|Ym|)

∥∥∥
lm
2

=
( m

∑
i=1

(E|Yi|)2
)1/2

≥ ρ
−1/2 ·

( m

∑
i=1

EY 2
i

)1/2
= ρ

−1/2 · (EZ2)1/2,

where we have used Jensen’s inequality for the convex function y 7→ ‖y‖lm
2

.

Proof of Theorem 1.1. Obviously, by considering x+X1 instead of X1 we may reduce our task to proving
that

min
k≤n

Var
(

∑
i≤n:i6=k

Xi

)
≤ K(τ) ·Var

(∣∣∣∑
i≤n

Xi

∣∣∣) .
Let (X ′i )

n
i=1 be an independent copy of (Xi)

n
i=1. Let S = ∑

n
i=1 Xi and S′ = ∑

n
i=1 X ′i , so that S′ is an

independent copy of S. Note that random variables Yi = Xi−X ′i (i≤ n) are independent and symmetric.
By Jensen’s inequality,

E|Yi|= EE(|Xi−X ′i | |Xi)≥ E|E(Xi−X ′i |Xi)|= E|Xi−EX ′i |= E|Xi−EXi| .

Since EY 2
i = 2Var(Xi), we have EY 2

i ≤ 2τ ·(E|Yi|)2 for i = 1,2, . . . ,n. Let ε = 18κ2τ(Var(|S|))1/2, where
κ is the universal constant from Lemma 3.1. Let δ = κ−4τ−2/324, a = E|S|, and b =−a =−E|S|. We
consider two cases:

Case 1. Assume ε < |a−b|/6. By Chebyshev’s inequality,

P
(
|S−a| ≤ ε or |S−b| ≤ ε

)
≥ 1−Var(|S|)ε−2 = 1−δ ,

so by Lemma 2.2 there exist c ∈ R and k ≤ n such that

P(|Sk− c| ≤ 2ε)≥ 1−2
√

δ −2δ ,

where Sk = ∑i≤n:i6=k Xi. Let Z = ∑i≤n:i 6=k Yi. Let S′k = ∑i≤n:i6=k X ′i , so that S′k is an independent copy of Sk.
Obviously,

EZ2 = E(Sk−S′k)
2 = 2Var(Sk) .

Note that

P(|Z| ≤ 4ε) = P(|Sk−S′k| ≤ 4ε)≥ P(|Sk− c| ≤ 2ε and |S′k− c| ≤ 2ε)

= P(|Sk− c| ≤ 2ε) ·P(|S′k− c| ≤ 2ε)≥ (1−2
√

δ −2δ )2 ≥ 1−4
√

δ ,
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so that P(|Z|> 4ε)≤ 4
√

δ . Now we may apply a Paley–Zygmund type estimate:

κ
−1

τ
−1/2 · (Var(Sk))

1/2 = κ
−1(2τ)−1/2(EZ2)1/2 ≤ E|Z|= E|Z|1|Z|≤4ε +E|Z|1|Z|>4ε

≤ 4ε +(EZ2)1/2 · (P(|Z|> 4ε))1/2 ≤ 4ε +
(

2Var(Sk) ·4
√

δ

)1/2

= 72κ
2
τ · (Var(|S|))1/2 +

2
3

κ
−1

τ
−1/2 · (Var(Sk))

1/2

—we have used Corollary 3.3 (with m = n− 1 and ρ = 2τ) in the first inequality, and the second one
follows from the Cauchy–Schwarz inequality. Obvious cancellations yield Var(Sk)≤ (6κ)6τ3 ·Var(|S|).

Case 2. If ε ≥ |a−b|/6, then E|S| ≤ 3ε and

Var(S1)≤ Var(S)≤ ES2 = Var(|S|)+(E|S|)2

≤ Var(|S|)+9ε
2 = (1+2976κ

4
τ

2) ·Var(|S|)≤ (6κ)6
τ

3 ·Var(|S|)

because κ,τ ≥ 1. We have proved the theorem with K(τ) = (6κ)6τ3.

Corollary 3.4. Let ξ be a square-integrable random variable which is not constant a. s., and let ξ1,
ξ2, . . . be its i. i. d. copies. Then there exists a constant Kξ , depending only on distribution of ξ , such that
for any real numbers a1, a2, . . . , an there is some k ≤ n for which

∑
i≤n:i 6=k

a2
i ≤ Kξ · inf

x∈R
Var
(∣∣∣x+∑

i≤n
aiξi

∣∣∣).
Proof. It suffices to apply Theorem 1.1 with τ = Var(ξ )/(E|ξ −Eξ |)2. Setting Kξ = K(τ)/Var(ξ ) ends
the proof.

4 Proof of Theorem 1.3 (symmetric variant)

Now we will prove an analogue of Theorem 1.1 for real symmetric random variables (but with no
constrains on moments). It is possible to do it in a similar way as in the proof of Theorem 1.1, i. e., by
using Lemma 2.2, but to get better estimates we will adopt another, more direct approach. We will need a
lemma.

Lemma 4.1. Let X and Y be independent square-integrable random variables, at least one of them
symmetric. Then

min
(

Var(X),Var(Y )
)
≤ 7+

√
17

4
·Var(|X +Y |) .

Proof. Obviously, E|X +Y |2 =EX2+EY 2 because EXY =EX ·EY = 0. Since |X +Y | and |X−Y | have
the same distribution, there is

E|X +Y |= (E|X +Y |+E|X−Y |)/2 = E(|X +Y |+ |X−Y |)/2 = Emax(|X |, |Y |) .
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Hence

Var(|X +Y |) = E(X2 +Y 2)− (E|X +Y |)2

= E
(
(max(|X |, |Y |))2 +(min(|X |, |Y |))2

)
− (Emax(|X |, |Y |))2

= Var(max(|X |, |Y |))+Var(min(|X |, |Y |))+(Emin(|X |, |Y |))2

≥ 1
2

Var
(

max(|X |, |Y |)+min(|X |, |Y |)
)
+(Emin(|X |, |Y |))2

=
1
2

Var(|X |+ |Y |)+(Emin(|X |, |Y |))2

=
1
2

(
Var(|X |)+Var(|Y |)

)
+(Emin(|X |, |Y |))2 .

We have used the fact that for any square-integrable random variables V and W there is

2Var(V )+2Var(W ) = Var(V +W )+Var(V −W )≥ Var(V +W ) .

Thus, for σ = (Var(|X +Y |))1/2 and s = Var(|X |)+Var(|Y |), we have s≤ 2σ2 and

Emin(|X |, |Y |)≤
(

σ
2− 1

2
s
)1/2

.

The identity a+b−2min(a,b) = |a−b| yields a pointwise bound:

|X |+ |Y |−2min(|X |, |Y |) =
∣∣∣|X |− |Y |∣∣∣≤ ∣∣∣E|X |−E|Y |

∣∣∣+ ∣∣∣(|X |−E|X |)− (|Y |−E|Y |)
∣∣∣

= E|X |+E|Y |−2min(E|X |,E|Y |)+
∣∣∣(|X |− |Y |)−E(|X |− |Y |)

∣∣∣ .
By taking expectations of both sides we arrive at

min(E|X |,E|Y |)≤ Emin(|X |, |Y |)+ 1
2
E
∣∣∣(|X |− |Y |)−E(|X |− |Y |)

∣∣∣
≤ Emin(|X |, |Y |)+ 1

2

(
Var(|X |− |Y |)

)1/2
≤
(

σ
2− 1

2
s
)1/2

+
1
2
√

s ,

where we have bounded the L1 norm by the L2 norm and used the independence of |X | and |Y |. Therefore

min(Var(X),Var(Y ))≤min(EX2,EY 2) = min
(

Var(|X |)+(E|X |)2,Var(|Y |)+(E|Y |)2
)

≤ s+(min(E|X |,E|Y |))2 ≤ σ
2 +

3
4

s+
(

σ
2s− 1

2
s2
)1/2

≤ σ
2 + sup

t∈[0,2σ2]

(3
4

t +(σ2t− t2/2)1/2
)
=

7+
√

17
4

·σ2 .

Remark 4.2. An example of X with distribution

1
8

δ−2 +
3
4

δ0 +
1
8

δ2

and ±1 symmetric Y indicates that the constant (7+
√

17)/4≈ 2.78 in Lemma 4.1 cannot be replaced
by any number less than 16/7≈ 2.29.
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Proof. Proof of Theorem 1.3 We prove the theorem with C = (7+
√

17)/2 ≈ 5.56. For x ∈ R let
ξ1 = x+X1, and ξi = Xi for i ≥ 2. Set S = ∑

n
i=1 ξi. For J ⊆ {1,2, . . . ,n} let SJ = ∑i∈J ξi. Let I be a

minimal (in the sense of inclusion) subset of [n] = {1,2, . . . ,n} such that

Var(SI)>
7+
√

17
4

·Var(|S|)

(if no subset satisfies this condition, then the assertion follows trivially). Obviously, I 6= /0. Choose any
k ∈ I. Certainly,

Var(SI\{k})≤
7+
√

17
4

·Var(|S|) .

Since SI and S[n]\I are independent and at least one of them is symmetric, Lemma 4.1 yields that

min
(

Var(SI),Var(S[n]\I)
)
≤ 7+

√
17

4
·Var(|S|) ,

so that

Var(S[n]\I)≤
7+
√

17
4

·Var(|S|) .

Therefore

Var
(

∑
i≤n:i6=k

Xi

)
= Var(SI\{k})+Var(S[n]\I)≤

7+
√

17
2

·Var(|S|) .

Thus we have proved that

min
k≤n

Var
(

∑
i≤n:i6=k

Xi

)
≤ 7+

√
17

2
· inf

x∈R
Var
(∣∣∣x+∑

i≤n
Xi

∣∣∣) .
Remark 4.3. A simple example of n = 3 and X1,X2,X3 i. i. d. symmetric ±1 random variables indicates
that the constant C in Theorem 1.3 cannot be less than 8/3≈ 2.67 (it suffices to check it for x = 0).

5 Harmonic analysis on product spaces

Below, we introduce assumptions and notation which will be used throughout Section 5. This is a natural
and convenient setting for harmonic analysis on product spaces, e. g., on the discrete cube with the
uniform measure, in which case (πi)

n
i=1 is the standard Rademacher system. This language will allow us

to state FKN type results on product spaces other than the discrete cube.

5.1 Assumptions and notation (A & N)

Let ξ1, ξ2, . . . , ξn be independent random variables satisfying Eξi = 0 and Eξ 2
i = 1 for all i ≤ n. We

consider a Hilbert space L2 = L2(Rn,µ), where µ = µξ1⊗µξ2⊗·· ·⊗µξn is the joint distribution of the
random vector ξ = (ξ1,ξ2, . . . ,ξn). It will be convenient to set ξ0 ≡ 1, so that (ξi)

n
i=0 is an orthonormal

system in L2. Let A be the linear (finite-dimensional and thus closed) subspace of L2 consisting of all
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affine real-valued functions on Rn. We define coordinate projection functions πi : Rn −→ R by πi(x) = xi

for 1≤ i≤ n, and π0 ≡ 1. Let Aπ = {π0,−π0,π1,−π1, . . . ,πn,−πn}. For a Boolean Borel (i. e., {−1,1}-
valued and such that the preimage of {1} is a Borel set) function f on Rn, by fA : Rn −→ R we will
denote its orthogonal projection in L2 onto the subspace A:

fA(x) = a0 +a1x1 + · · ·+anxn, i. e., fA =
n

∑
i=0

aiπi ,

where ai = 〈 f ,πi〉L2 . We may and will use the same notation for a Borel Boolean function f defined only
on the support of µ , since obviously it may be extended to a Borel Boolean function F on the whole
Rn, and FA does not depend on the choice of the extension. Let us define the sign function in a slightly
non-standard way as 1[0,∞)−1(−∞,0), to make the function Boolean (setting sign(0) =−1 would work
as well). Let ρ = distL2( f ,A) = infg∈A ‖ f −g‖L2 and d = distL2( f ,Aπ) = infg∈Aπ

‖ f −g‖L2 . Note that
d ≤
√

2 because
‖ f −π1‖2

L2 +‖ f +π1‖2
L2 = 2‖ f‖2

L2 +2‖π1‖2
L2 = 2+2 = 4 ,

so that
min

(
‖ f −π1‖L2 ,‖ f +π1‖L2

)
≤
√

2 .

Obviously, ρ ≤ ‖ f‖L2 = 1. Finally, let us define random variables S = fA(ξ ) and R = ( f − fA)(ξ ).

5.2 Symmetric case

We will start with a theorem which recovers and extends the main result of [4] with a quite good, explicit
constant.

Theorem 5.1. Under A & N, if ξ1,ξ2, . . . ,ξn are additionally symmetric, then there exists some k ∈
{0,1, . . . ,n} such that

a2
k ≥ 1− 9+

√
17

2
·ρ2.

Also,

ρ ≤ d ≤ (9+
√

17)1/2 ·ρ , and d ≤
(9+

√
17

2

)1/2
·ρ +o(ρ)

as ρ → 0+ (uniformly over Boolean functions).

Proof. Since | f | ≡ 1, the triangle inequality yields a pointwise bound

1−| f − fA| ≤ | fA| ≤ 1+ | f − fA|, i. e.,
∣∣∣|S|−1

∣∣∣≤ |R| ,
so Var(|S|) = E(|S|−1)2− (E|S|−1)2 ≤ ER2 = ‖ f − fA‖2

L2 = ρ2. Let us consider independent random
variables (Xi)

n
i=0 given by Xi = aiξi for 1 ≤ i ≤ n, and with X0 being symmetric ±a0 random variable.

The sum |∑n
i=0 Xi| has the same distribution (and thus the same variance) as |S|, so by using Theorem 1.3
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(strictly speaking, its reformulation for n+1 instead of n summands) with x = 0 we infer that for some
k ∈ {0,1, . . . ,n} there is

∑
i∈{0,1,...,n}\{k}

a2
i = Var

(
∑

i∈{0,1,...,n}\{k}
Xi

)
≤ 7+

√
17

2
·ρ2.

Since by orthogonality we have
n

∑
i=0

a2
i = ‖ fA‖2

L2 = ‖ f‖2
L2−‖ f − fA‖2

L2 = 1−ρ
2,

this ends the proof of the first assertion.
The inequality ρ ≤ d follows immediately from Aπ ⊆A. Observe that

d2 ≤ ‖ f − sign(ak)πk‖2
L2 = ‖ f‖2

L2 +‖πk‖2
L2−2sign(ak)〈 f ,πk〉L2

= 1+1−2sign(ak)ak = 2(1−|ak|) = 2(1−a2
k)/(1+ |ak|)≤ (9+

√
17)ρ2/(1+ |ak|) .

Thus

d ≤
(

9+
√

17
)1/2
·ρ .

The remaining assertion also follows easily because the first assertion implies |ak| ≥ 1−O(ρ2), so that

d2 ≤ 9+
√

17
2

·ρ2 +o(ρ2) .

Corollary 5.2. Under assumptions of Theorem 5.1 (A & N, and ξ1, ξ2, . . . , ξn are symmetric) there is
some k ∈ {0,1, . . . ,n} such that

min
(
‖ f − (sign◦πk)‖L2 ,‖ f +(sign◦πk)‖L2

)
≤ 2d ≤ 2

(
9+
√

17
)1/2
·ρ.

Proof. Let k be such that ‖ f −πk‖L2 = d (or, alternatively, such that ‖ f +πk‖L2 = d). Note that for any
s ∈ {−1,1} and u ∈ R there is |s− u| ≥ |sign(u)− u| (and |s+ u| ≥ |sign(u)− u|). Hence | f −πk| ≥
|(sign ◦ πk)− πk| (and | f + πk| ≥ |(sign ◦ πk)− πk|) pointwise, so that ‖(sign ◦ πk)− πk‖L2 ≤ d. The
assertion follows by the triangle inequality.

Now let us see how to strengthen the result of Friedgut, Kalai and Naor. For a function f defined
on the discrete cube {−1,1}n we consider its standard Walsh-Fourier expansion ∑A f̂ (A)wA, where
wA(x) = ∏i∈A xi.

Theorem 5.3. There exists a universal constant L > 0 with the following property. For f : {−1,1}n→
{−1,1}, let

ρ =
(

∑
A⊆[n]:|A|≥2

| f̂ (A)|2
)1/2

.

Then there exists some B⊆ [n] with |B| ≤ 1 such that

∑
A⊆[n]:|A|≤1,A6=B

| f̂ (A)|2 ≤ L ·ρ4 ln(2/ρ)

and | f̂ (B)|2 ≥ 1−ρ2−L ·ρ4 ln(2/ρ).
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Proof. Let ξ1, ξ2, . . . , ξn be independent symmetric ±1 random variables, so that the definition of ρ is
consistent with the one from A & N. We also have ai = 〈 f ,πi〉L2 = f̂ ({i}) for i ∈ [n], and a0 = f̂ ( /0). Let
us put

θ =
(

4log2(2/d)−1
)−1

.

Because d ≤
√

2, always θ ∈ (0,1].
Let k ∈ {0,1, . . . ,n} be such that d = ‖ f −πk‖L2 (if the point of Aπ closest to f is of the form −πk,

then a similar reasoning works). Hence d2 = ‖ f‖2
L2 +‖πk‖2

L2−2〈 f ,πk〉L2 = 2(1−ak). Since h = f −πk
is a {−2,0,2}-valued function, we get

Pµ(h 6= 0) = µ({x ∈ {−1,1}n : h(x) 6= 0}) = 1
4
‖h‖2

L2 = (d/2)2.

Therefore

d4/2 = 4(d/2)
4

1+θ = 4
(
Pµ(h 6= 0)

) 2
1+θ

= ‖h‖2
L1+θ

B−B
≥ ∑

A⊆[n]
θ
|A| · |ĥ(A)|2

≥ θ · ∑
A⊆[n]:|A|≤1

|ĥ(A)|2 = θ ·
(
(1−ak)

2 + ∑
i∈{0,1,...,n}\{k}

a2
i

)
= θ ·

(d4

4
+ ∑

i∈{0,1,...,n}\{k}
a2

i

)
,

so that
∑

i∈{0,1,...,n}\{k}
a2

i ≤ (2θ
−1−1)d4/4≤ 2d4 log2(2/d) . (5.1)

The inequality
B−B
≥ is the classical L2−L1+θ hypercontractive Bonami–Beckner estimate ([2], [1]). Now

we have
n

∑
i=0

a2
i =

(
1− d2

2

)2
+ ∑

i∈{0,1,...,n}\{k}
a2

i ≤
(

1− d2

2

)2
+

1
4
(2θ

−1−1)d4

= 1−d2 +
1
2

θ
−1d4 ≤ 1−d2 +2d4 log2(2/d)

and thus (recall that | f | ≡ 1, so ∑A⊆[n] | f̂ (A)|2 = ‖ f‖2
L2 = 1) we get

ρ
2 = ∑

A⊆[n]:|A|≥2
| f̂ (A)|2 = 1−

n

∑
i=0

a2
i ≥ d2−2d4 log2(2/d) . (5.2)

We finish the proof by observing that (5.1) and (5.2) yield

∑
i∈{0,1,...,n}\{k}

a2
i ≤ 2d4 log2(2/d)≤ 2

(
ρ

2 +2d4 log2(2/d)
)2

log2(2/d)

≤ 2
(

ρ
2 +2d4 log2(2/ρ)

)2
log2(2/ρ) = 2ρ

4 log2(2/ρ)+o(ρ5) ,

uniformly, as ρ → 0+. We have used the d = O(ρ) bound of Theorem 5.1.
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For ρ ≤ 1/3, by Theorem 5.1 we have

d ≤ 1
3

(
9+
√

17
)1/2
≤ 2e−1/2

and we may choose

θ =
(

4ln(2/d)−1
)−1

instead of
(

4log2(2/d)−1
)−1

which yields, essentially with the same proof, a slightly better (asymptotically) bound of eρ4 ln(2/ρ)+
o(ρ5) as ρ → 0+.

Remark 5.4. The bound O
(
ρ4 ln(2/ρ)

)
in Theorem 5.3 is better than O(ρ2) obtained in [4] and ρ2 +

o(ρ2) of [6] (see also Corollary 15.2 of [5]). Also, it is of the optimal order. Indeed, for 2 ≤ m ≤ n
consider the negated OR function

f (x) = 1− 1
2m−1

m

∏
i=1

(1+ xi) .

Then ρ ≤ 2 ·2−m/2, so that ρ4 log2(2/ρ)≤ 8m ·4−m, whereas | f̂ (A)|2 ≥ 4 ·4−m for every one-element
set A contained in {1,2, . . . ,m}.

5.3 Absolute first moment assumption

Without the symmetry assumption we cannot hope to get the same assertion as in Theorem 5.1—if
n = 1, P(ξ1 = −2) = 1/5, P(ξ1 = 1/2) = 4/5 and f (x) = (3+4x)/5, then f ∈ A\Aπ even though f
is Boolean. However, under an additional moment assumption, we still may prove that any Boolean
function which is close in L2 to A must be also at a comparable L2-distance from an affine function of a
single coordinate.

Theorem 5.5. There exists a function C : (0,∞) −→ (0,∞) with the following property. Under A
& N, let η = mini∈[n]E|ξi|. Then there is some k ∈ [n] such that ‖ f − (a0 + akπk)‖L2 ≤ C(η)ρ and
‖ f − sign(a0 +akπk)‖L2 ≤ 2C(η)ρ .

Proof. As in the proof of Theorem 5.1 we observe first that Var(|S|)≤ ρ2, where S = a0 +∑
n
i=1 aiξi. By

Theorem 1.1 there is some k ∈ [n] such that ∑i∈[n]\{k} a2
i ≤ K(η−2)ρ2. Thus

‖ f − (a0 +akπk)‖2
L2 = ‖ f − fA‖2

L2 +

∥∥∥∥∥ ∑
i∈[n]\{k}

aiπi

∥∥∥∥∥
2

L2

≤
(
1+K(η−2)

)
ρ

2

which proves the first assertion with C(η) =
√

1+K(η−2). The second assertion follows from the first
one in the same way in which Corollary 5.2 follows from Theorem 5.1.
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5.4 General case

We will need two auxiliary lemmas.

Lemma 5.6. Let X and Y be independent square-integrable random variables. Assume E(|X +Y |−1)2≤
ρ2 for some ρ ∈ [0,1]. Then Var(X)≤ 25ρ or Var(Y )≤ 25ρ .

Proof. Let (X ′,Y ′) be an independent copy of the pair (X ,Y ). For a square-integrable random variable
Z let ‖Z‖2 =

(
EZ2

)1/2. Also, let us define φ : R −→ {−2,0,2} by φ(u) = 2 for u > 1, φ(u) = −2 for
u <−1, and φ(u) = 0 otherwise. Note that |u−φ(u)|= dist(u,{−2,0,2}) for any u ∈ R. Finally, let

α = P(X−X ′ > 1) = P(X−X ′ <−1) and β = P(Y −Y ′ > 1) = P(Y −Y ′ <−1) .

By the assumptions of the lemma we have ‖dist(X +Y,{−1,1})‖2 ≤ ρ . Since X +Y and X ′+Y have
the same distribution, we obtain ‖dist(X ′+Y,{−1,1})‖2 ≤ ρ . Thus the pointwise bound

dist(X−X ′,{−2,0,2})≤ dist(X +Y,{−1,1})+dist(X ′+Y,{−1,1})

implies
‖(X−X ′)−φ(X−X ′)‖2 = ‖dist(X−X ′,{−2,0,2})‖2 ≤ 2ρ . (5.3)

In a similar way we prove that

‖(Y −Y ′)−φ(Y −Y ′)‖2 = ‖dist(Y −Y ′,{−2,0,2})‖2 ≤ 2ρ . (5.4)

The pointwise bound

dist(X +Y −X ′−Y ′,{−2,0,2})≤ dist(X +Y,{−1,1})+dist(X ′+Y ′,{−1,1})

implies ‖dist((X−X ′)+(Y −Y ′),{−2,0,2})‖2 ≤ 2ρ . Hence by (5.3), (5.4), and the triangle inequality
we obtain ∥∥dist

(
φ(X−X ′)+φ(Y −Y ′),{−2,0,2}

)∥∥
2 ≤ 2ρ +2ρ +2ρ = 6ρ ,

so that

αβ ≤ 1
4
Edist2(φ(X−X ′)+φ(Y −Y ′),{−2,0,2})1X−X ′,Y−Y ′>1 ≤ 9ρ

2 . (5.5)

Assume Var(X),Var(Y )> 25ρ , so that ‖X−X ′‖2,‖Y −Y ′‖2 > 7
√

ρ . Then by (5.3) we have

2
√

2α = ‖φ(X−X ′)‖2 > 7
√

ρ−2ρ > 5
√

ρ,

so that α > 3ρ . In a similar way from (5.4) we get β > 3ρ , and therefore αβ > 9ρ2, which contradicts
(5.5).

Lemma 5.7. Let X1,X2, . . . ,Xn be independent square-integrable random variables and let S = ∑
n
i=1 Xi.

Assume E(|S|−1)2 ≤ ρ2 for some ρ ∈ [0,1]. Then there exists some k ∈ [n] such that Var(S−Xk)≤ 50ρ .
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Proof. Lemma 5.7 follows from Lemma 5.6 in a way similar to that in which we have deduced Theo-
rem 1.3 from Lemma 4.1: we look for a minimal I ⊆ [n] = {1,2, . . . ,n} such that Var(∑i∈I Xi) > 25ρ ,
then we choose any k ∈ I and from Lemma 5.6 we infer that Var

(
∑i∈[n]\I Xi

)
≤ 25ρ . By the minimality

of I there is also Var
(
∑i∈I\{k}Xi

)
≤ 25ρ , which ends the proof.

Now we may finally state a result which does not use any additional properties of the marginal
distributions.

Theorem 5.8. Under A & N, there exists some k ∈ [n] such that

‖ f − (a0 +akπk)‖L2 ≤ 8
√

ρ and ‖ f − sign(a0 +akπk)‖L2 ≤ 16
√

ρ .

Proof. Let Xi = aiξi for i ∈ [n], so that S = a0 +∑
n
i=1 Xi. Then

E(|S|−1)2 = ‖| fA|−1‖2
L2 ≤ ‖ f − fA‖2

L2 = ρ
2

because of the pointwise inequality || fA|−1| ≤ | f − fA|. Lemma 5.7 easily implies that there is some
k ∈ [n] such that ∑i∈[n]\{k} a2

i ≤ 50ρ . Thus

‖ f − (a0 +akπk)‖2
L2 = ‖ f − fA‖2

L2 +
∥∥∥ ∑

i∈[n]\{k}
aiπi

∥∥∥2

L2
≤ ρ

2 +50ρ ≤ 64ρ

(recall that ρ is always in [0,1] under A & N), which proves the first assertion. The second assertion of the
theorem follows from the first one in the same way in which Corollary 5.2 follows from Theorem 5.1.

Under A & N, let n = 2 and P(ξi =
√

β/α) = α , P(ξi = −
√

α/β ) = β for i ∈ {1,2}, where
α ∈ (0,1) and β = 1−α . Then β −

√
αβξi’s are {0,1}-valued random variables, so that f (x) given by

2(β −
√

αβx1)(β −
√

αβx2)−1 = (2β
2−1)−2β

3/2
α

1/2(x1 + x2)+2αβx1x2

is a Boolean function on {−
√

α/β ,
√

β/α}2 equipped with the measure µξ1⊗µξ2 . A simple analysis
shows that ρ = distL2( f ,A) = 2αβ while the L2-distance from f to any function of a single coordinate
is not less that 2β 3/2α1/2 = Θ(ρ1/2) as α → 0+ (and, consequently, β → 1− and ρ → 0+). Thus the
O(
√

ρ) general bound of Theorem 5.8 cannot be improved even on two-dimensional biased discrete cube.
On the other hand, some FKN-type bounds were obtained in [6] and [5] for the biased discrete cube of
arbitrary dimension, in terms of the bias parameter. The approach used in the proof of Theorem 5.3 can
be effectively adapted to the case of the biased discrete cube if the Bonami–Beckner estimate is replaced
by the hypercontractive bounds of [12], see [10].

5.5 Boolean versus bounded

It is natural to look for an analogue of the FKN theorem for [−1,1]-valued functions; however, there is
no hope for estimates as good as in the Boolean case. Recall that the FKN theorem states that a Boolean
function on the discrete cube (equipped with the uniform measure) which is close in L2 to A must be be
also at a comparable L2-distance from a function which is both Boolean and affine (i. e., some function
from Aπ ).
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Let A[−1,1] denote the set of [−1,1]-valued affine functions on the cube:

A[−1,1] =

{
n

∑
i=0

biπi;
n

∑
i=0
|bi| ≤ 1

}
.

Let ψ(t) = 1 for t > 1, ψ(t) =−1 for t <−1, and ψ(t) = t for t ∈ [−1,1], and let us define functions
f ,g : {−1,1}n −→R by g(x) = s−1n−1/2

∑
n
i=1 xi and f (x) = ψ(g(x)) for some positive parameter s. Note

that

distL2

(
g,A[−1,1]

)2 ≥ inf
∑ |bi|≤1

n

∑
i=1

(s−1n−1/2−bi)
2

≥ inf
∑ |bi|≤1

n

∑
i=1

(s−2n−1−2s−1n−1/2bi)≥ s−2−2s−1n−1/2

and distL2(g,A[−1,1]) ≤ ‖g− 0‖L2 = s−1, so that limn→∞ distL2(g,A[−1,1]) = s−1. Thus for the [−1,1]-
valued function f there is

lim
n→∞

distL2( f ,A)≤ lim
n→∞
‖ f −g‖L2 =

√
E(|s−1G|−1)21|G|≥s = O(e−s2/4)

as s→ ∞, where G denotes the standard N(0,1) Gaussian variable, while we have only

distL2( f ,A[−1,1])≥ distL2(g,A[−1,1])−‖ f −g‖L2 ,

so that limn→∞ distL2( f ,A[−1,1]) = Θ(s−1) as s→ ∞.
The above example, demonstrating the gap between O(e−s2/4) and Θ(s−1), is as bad as it gets—in [10]

Nayar proved that for s > 0 and every function f : {−1,1}n → [−1,1] with distL2( f ,A) = e−s2/4 we
have distL2( f ,A[−1,1])≤ 36s−1.

6 Banach space setting

The main result of this section, Theorem 6.10, is an advanced extension of Lemma 2.2. To prove it, we
will need to develop some new tools.

In what follows, (V,‖·‖) denotes a separable real Banach space, its continuous dual space (of bounded
linear functionals on V ) is denoted by V ′, and + stands for Minkowski addition. By dist we will mean
the distance in the norm ‖ · ‖. Readers unfamiliar with Banach spaces may find it convenient to assume
additionally that V is a finite-dimensional normed vector space and think about Euclidean spaces instead
of Hilbert spaces.

For a finite A⊂V , positive ∆,ε,δ and a V -valued random vector X we will say that:

• A is ∆-separated if either |A| ≥ 2 and for any two distinct x,y∈A there is ‖x−y‖≥∆, or |A|= 1; we
define the separation constant of A by ∆(A) = min{‖x−y‖;x,y ∈ A and x 6= y}. Clearly, ∆(A) = ∞

if |A|= 1;
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• X is (ε,δ )-close to A if P(dist(X ,A)> ε)≤ δ ;

• X is (ε,δ )-present around A if there is P(‖X−a‖ ≤ ε)> δ for every a ∈ A.

Note that if X is (ε,δ )-close to A, then it is (ε,δ )-close to any finite set B containing A. Similarly, if X is
(ε,δ )-present around A, then it is (ε,δ )-present around any finite set B contained in A.

We need some simple lemmas. The first of them is obvious.

Lemma 6.1. Let X be a V -valued random vector which is (ε,δ )-close to some nonempty finite A⊂V
with some ε > 0 and δ ∈ [0,1]. Then there is some a ∈ A such that P(‖X−a‖ ≤ ε)≥ (1−δ )/|A|.

Lemma 6.2. Let A,B ⊂ V be finite and ∆-separated for some ∆ > 0 and assume that X is a V -valued
random vector which is both (ε1,δ )-close to A and (ε2,δ )-present around B for some δ > 0 and ε1,ε2 > 0
such that ε1 + ε2 < ∆/2. Then |B| ≤ |A|.

Proof. Let b ∈ B. Since P(‖X − b‖ ≤ ε2) > δ and P(dist(X ,A) > ε1) ≤ δ there is P(‖X − b‖ ≤
ε2 and dist(X ,A) ≤ ε1) > 0, so that dist(b,A) ≤ ε1 + ε2. Note that there is only one ab ∈ A such that
‖b−ab‖ ≤ ε1 + ε2 because we assume that A is ∆-separated and ε1 + ε2 < ∆/2. For a similar reason (B
is also ∆-separated), the mapping b 7→ ab is injective. This ends the proof.

Lemma 6.3. Let X1,X2, . . . ,Xm be independent V -valued random vectors and let S = ∑
m
i=1 Xi. Assume

that S is (ε,δ )-close to a nonempty finite A⊂V for some ε,δ > 0. Then there exist vectors v1, v2, . . . ,
vm ∈V such that Xi is (ε,δ )-close to vi +A for every i ∈ [m].

Proof. This follows from the Fubini theorem (see the beginning of the proof of Lemma 2.1).

Lemma 6.4. Let ∆ > 0 and let A and B be finite ∆-separated subsets of V with |A|, |B| ≥ 2. Then there
exists some C ⊆ A+B = {a+b;a ∈ A,b ∈ B} with |C|> max(|A|, |B|) which is also ∆-separated.

Proof. Without loss of generality we may assume that |A| ≥ |B|. Let b and b′ be arbitrary distinct elements
of B. Let ϕ ∈V ′ be such that ‖ϕ‖V ′ = 1 and ϕ(b′−b) = ‖b′−b‖ (the existence of such a functional is
guaranteed by the Hahn-Banach theorem). Finally, let â = argmaxa∈Aϕ(a) (any maximizer will do if
there is more than one). Then C = (A+b)∪{â+b′} has more elements than A and is ∆-separated. These
two facts follow since, for a ∈ A,

‖(â+b′)− (a+b)‖ ≥ ϕ(â+b′−a−b) = ϕ(â)−ϕ(a)+ϕ(b′−b)≥ ‖b′−b‖ ≥ ∆ .

By an obvious induction we obtain the following corollary.

Corollary 6.5. Let ∆ > 0 and let A1, . . . ,Am be ∆-separated finite subsets of V with |Ai| ≥ 2 for i ∈ [m].
Then there exists some C ⊆ A1 +A2 + · · ·+Am with |C|> m which is also ∆-separated.

The next corollary easily follows (we leave it as an exercise).

Corollary 6.6. Let ∆,ε1, . . . ,εm,δ1, . . . ,δm > 0 and let A1, . . . ,Am be ∆-separated finite subsets of V
with |Ai| ≥ 2 for i ∈ [m]. Assume that X1, . . . ,Xk are independent V -valued random vectors and Xi is
(εi,δi)-present around Ai for all i ∈ [m]. Then there exists some ∆-separated set C ⊆ A1 + · · ·+Am with
|C|> m such that ∑

m
i=1 Xi is (∑m

i=1 εi,∏
m
i=1 δi)-present around C.
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Lemma 6.7. Let ∆ > 0 and let A and B be finite ∆-separated subsets of a Hilbert space H. Then there
exists some C ⊆ A+B with |C| ≥ |A|+ |B|−1 which is also ∆-separated.

Proof. Without loss of generality we may assume that 0∈ A. Let A= {0,u1, . . . ,um} and B= {v1, . . . ,vn}.
For u ∈H let b(u) = argmaxv∈B〈u,v〉 (any choice will do if there is more than one maximizer). Then we
can just take C = {v1, . . . ,vn,u1 +b(u1), . . . ,um +b(um)}. Obviously, C ⊆ A+B. By definition of b(u j)
for any i ∈ [n] and j ∈ [m] we have 〈u j,b(u j)〉 ≥ 〈u j,vi〉, so that

‖u j‖‖u j +b(u j)− vi‖ ≥ 〈u j,u j +b(u j)− vi〉 ≥ 〈u j,u j〉= ‖u j‖2

and therefore ‖(u j +b(u j))− vi‖ ≥ ‖u j‖ ≥ ∆.
Similarly, for any distinct j, j′ ∈ [m] we have 〈u j,b(u j)〉 ≥ 〈u j,b(u j′)〉 and 〈u j′ ,b(u j′)〉 ≥ 〈u j′ ,b(u j)〉,

so that 〈u j−u j′ ,b(u j)−b(u j′)〉 ≥ 0. Hence

‖u j−u j′‖‖(u j +b(u j))− (u j′+b(u j′))‖ ≥ 〈u j−u j′ ,u j−u j′+b(u j)−b(u j′)〉
≥ 〈u j−u j′ ,u j−u j′〉= ‖u j−u j′‖2

and thus ‖(u j +b(u j))− (u j′+b(u j′))‖ ≥ ‖u j−u j′‖ ≥ ∆.

Again, an obvious induction yields the following corollary.

Corollary 6.8. Let ∆ > 0 and A1, . . . ,Am be nonempty, ∆-separated and finite subsets of a Hilbert space.
Then there exists some ∆-separated C ⊆ A1 + · · ·+Am with |C|> ∑

m
i=1(|Ai|−1).

The next corollary easily follows (we also leave it as an exercise).

Corollary 6.9. Let ∆,ε1, . . . ,εm,δ1, . . . ,δm > 0 and let A1, . . . ,Am be finite ∆-separated subsets of a
Hilbert space H. Assume that X1, . . . ,Xm are independent H-valued random vectors and Xi is (εi,δi)-
present around Ai for all i ∈ [m]. Then there exists some ∆-separated set C ⊆ A1 + · · ·+ Am with
|C|> ∑

m
i=1(|Ai|−1) such that ∑

m
i=1 Xi is (∑m

i=1 εi,∏
m
i=1 δi)-present around C.

Now we are in position to prove a structural theorem.

Theorem 6.10. Let A be a finite subset of V with |A| ≥ 2. Let ε and δ be positive numbers satisfying

ε <
∆(A)

2(|A|+1)
and δ ≤ |A|−|A| .

Assume that ξ1, . . . ,ξn are independent V -valued random vectors such that S = ∑
n
i=1 ξi is (ε,δ )-close to

A. For I ⊆ [n] let SI = ∑i∈I ξi. Then there exists a nonnegative integer k < |A| and {i1, . . . , ik} ⊆ [n] such
that

P
(∥∥S[n]\{i1,...,ik}− v

∥∥≤ |A|ε)≥ (1−δ − (|A|−1)δ 1/|A|
)|A|

for some v ∈V . Consequently,

P
(∥∥S[n]\{i1,...,ik}− v

∥∥> |A|ε)≤ |A|(|A|−1)δ 1/|A|+ |A|δ ≤ |A|2δ
1/|A| .

Moreover, if V is a Hilbert space and k > 0, then there are vectors v1, . . . ,vk ∈ V and nonempty sets
B1, . . . ,Bk ⊆ A with ∑

k
l=1(|Bl|−1)< |A| such that ξil is (ε, |A|δ 1/k)-close, and thus also (ε, |A|δ 1/(|A|−1))-

close, to vl +Bl for every l ∈ [k].
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Proof. We will call I ⊆ [n] relevant if there exist some two points x,y ∈ V such that ‖x− y‖ ≥ ∆(A),
P(‖SI−x‖ ≤ ε)> δ 1/|A| and P(‖SI−y‖ ≤ ε)> δ 1/|A|. Since ε < ∆(A)/2, all relevant sets are nonempty.
We will inductively construct a sequence of relevant sets I1, I2, . . .. Let I1 be a minimal (in the sense of
inclusion) relevant subset of [n]—any minimizer will do if there is more than one. Then, having defined
I1, . . . , Is, we choose for Is+1 a minimal relevant subset of [n]\

⋃s
l=1 Il . We end up with a collection of

pairwise disjoint relevant sets I1, . . . , Ik, and we know that J = [n]\
⋃k

l=1 Il does not contain any relevant
set and thus is not relevant.

Let us assume for a while that k ≥ |A|. By expressing S as(
|A|

∑
l=1

SIl

)
+S

[n]\
⋃|A|

l=1 Il

and using Lemma 6.3 (with m = 2) we deduce that ∑
|A|
l=1 SIl is (ε,δ )-close to some shift of A, i. e., to a

∆(A)-separated set of cardinality |A|. On the other hand, Il’s are relevant so that SIl ’s are (ε,δ 1/|A|)-present
around some ∆-separated sets of cardinality greater than 1. Thus, by Corollary 6.6 the sum ∑

|A|
l=1 SIl is

(|A|ε,δ )-present around some ∆(A)-separated set of cardinality greater than |A| and hence Lemma 6.2
(used for ε2 = |A|ε) implies that |A|< |A|. This contradiction proves that k < |A|.

Select arbitrary i1 ∈ I1, . . . , ik ∈ Ik. The way in which we chose Il’s guarantees that sets I1\{i1}, . . . , Ik \
{ik} are not relevant. By expressing S as SJ + SI1\{i1}+ · · ·+ SIk\{ik}+ ξi1 + · · ·+ ξik and using again
Lemma 6.3 (now with m = 2k+ 1) we prove that there exist vectors w,w1, . . . ,wk,v1, . . . ,vk such that
SJ is (ε,δ )-close to w+A and SIl\{il} is (ε,δ )-close to wl +A, and ξil is (ε,δ )-close to vl +A for every
l ∈ [k]. On the other hand, Il \{il}’s are not relevant and the shifts of A are ∆(A)-separated, so that for
each l ∈ [k] there exists at most one al ∈ A such that P

(∥∥SIl\{il}−wl−al
∥∥≤ ε

)
> δ 1/|A|. Thus

P
(∥∥SIl\{il}− (wl +al)

∥∥> ε
)
≤ (|A|−1)δ 1/|A|+δ

for all l ∈ [k] and similarly we prove that there exists some a ∈ A such that

P(‖SJ− (w+a)‖> ε)≤ (|A|−1)δ 1/|A|+δ .

Hence for S[n]\{i1,...,ik} = SJ +∑
k
l=1 SIl\{il} and v = (w+a)+∑

k
l=1(wl +al) we have

P
(∥∥S[n]\{i1,...,ik}− v

∥∥≤ (k+1)ε
)
≥
(

1− (|A|−1)δ 1/|A|−δ

)k+1

and the first assertion of the theorem easily follows from k < |A|. Note that δ ≤ |A|−|A| implies (|A|−
1)δ 1/|A|+δ < 1.

Now let us additionally assume that k > 0 and V is a Hilbert space. For l ∈ [k] let

Bl =
{

a ∈ A : P(‖ξil − (a+ vl)‖ ≤ ε)> δ
1/k
}
.

Note that δ ≤ |A|−|A| implies (1−δ )/|A| ≥ δ 1/(|A|−1) ≥ δ 1/k, so that by Lemma 6.1 we have Bl 6= /0. We
also easily see that ξil is (ε,δ +(|A|−1)δ 1/k)-close and thus also (ε, |A|δ 1/k)-close to vl +Bl . Since ξil is
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(ε,δ 1/(|A|−1))-present around vl +Bl for every l ∈ [k], by Corollary 6.9 the sum ∑
k
l=1 ξil is (kε,δ k/(|A|−1))-

present, and thus also ((|A|−1)ε,δ )-present around some ∆(A)-separate C ⊆ B1 + · · ·+Bk +∑
k
l=1 vl

with |C| > ∑
k
l=1(|Bl|−1). From Lemma 6.2 used for ε2 = (|A|−1)ε we get |A| ≥ |C| which ends the

proof.

Remark 6.11. Interestingly, only a slightly worse quantitative description of the structure of random
variables ξil ’s is possible also without assuming that V is a Hilbert space—we will briefly sketch the
argument. First replace ξil by

Yl = ∑
a∈A

1‖ξil−(vl+a)‖≤ε · (vl +a) .

Note that Yl’s are independent again and P(‖ξil −Yl‖> ε)≤ δ . Now observe that all Yl’s take values in a
finite-dimensional space W which is a linear span of the set A and vectors vl’s. Thus dim(W )≤ |A|+ k <
2|A|. Now it suffices to recall the classical theorem of F. John which states that the Banach-Mazur distance
to lN

2 of any N-dimensional Banach space is not greater than
√

N, deal with Yl’s in an appropriate Hilbert
space as before, and then transfer the obtained bounds back to the Banach space setting.

We finish by posing a problem which we were not able to solve.

Question 6.12. Is Lemma 6.7 valid in an arbitrary Banach (not only Hilbert) space?

7 Addendum

Most of the results and proofs contained in the present paper were presented at several conferences
and seminars, including the second-named author’s lecture at the Analysis of Boolean Functions: New
Directions and Applications Simons Symposium, February 5–11, 2012. During the second-named
author’s Fall 2013 visit to UC Berkeley’s Simons Institute for the Theory of Computing, he learned of
new results obtained independently by Aviad Rubinstein and Shmuel (Muli) Safra: Rubinstein’s MSc
thesis [13], written under the supervision of Safra, and their joint research paper [14]. Let us briefly
explain how their results relate to ours. We will need the following estimates.

Lemma 7.1. Let X and Y be independent square-integrable real random variables such that Var(X+Y )>
0. Assume that, for some ρ ∈ [0,1], E(|X +Y | − 1)2 ≤ ρ2. Then Var(X) ≤ 800ρ2/Var(X +Y ) or
Var(Y )≤ 800ρ2/Var(X +Y ).

Proof. Let us adapt the proof of Lemma 5.6. Using the same notation as there, let us also set σ =√
Var(X +Y ). Since Var(X)+Var(Y ) = σ2, without loss of generality we may and will assume that

Var(X)≥ σ2/2. Now it suffices to show that Var(Y )≤ 800ρ2σ−2.
Indeed, if σ < 6

√
ρ , then

Var(Y ) = σ
2−Var(X)≤ σ

2/2≤ 64
ρ

2
σ
−2/2≤ 800ρ

2
σ
−2 .

If, on the other hand, σ ≥ 6
√

ρ ≥ 6ρ , then by (5.3) we have

2
√

2α = ‖φ(X−X ′)‖2 ≥ ‖X−X ′‖2−2ρ =
√

2Var(X)−2ρ ≥ σ −2ρ ≥ 2
3

σ ,
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so that α ≥ σ2/18. Thus, by (5.5), β ≤ 9ρ2/α ≤ 162ρ2σ−2. Since, by (5.4),√
2Var(Y ) = ‖Y −Y ′‖2 ≤ 2ρ +‖φ(Y −Y ′)‖2 = 2ρ +2

√
2β ,

we arrive at √
2Var(Y )≤ 2ρ +36ρσ

−1 ≤ 40ρσ
−1 ,

the last inequality following from the fact that

σ ≤ ‖X +Y‖2 ≤ 1+
∥∥∥|X +Y |−1

∥∥∥
2
≤ 1+ρ ≤ 2 .

Therefore, Var(Y )≤ 800ρ2σ−2, and the proof is finished.

Lemma 7.2. Let X1, X2, . . ., Xn be independent square-integrable random variables and let S = ∑
n
i=1 Xi.

Assume that E(|S|−1)2 ≤ ρ2 for some ρ ∈ [0,1], and that Var(S) > 0. Then there exists some k ∈ [n]
such that Var(S−Xk)≤ 1600ρ2/Var(S).

Proof. Lemma 7.2 can be deduced from Lemma 7.1 in the same way in which Lemma 5.7 follows from
Lemma 5.6.

Now we are in position to state the following refinement of Theorem 5.8—note that in the case
Var( f )≤ ρ the bound of Theorem 5.8 is trivial since always∥∥ f −a0−akπk

∥∥
L2 ≤

∥∥ f −a0
∥∥

L2 =
√

Var( f ) ,

while for Var( f )≥ ρ we have ρ/
√

Var( f )≤√ρ .

Corollary 7.3. Under A & N (see Subsection 5.1), there is some k ∈ [n] such that

‖ f − (a0 +akπk)‖L2 ≤ 41ρ/
√

Var( f ) , and ‖ f − sign(a0 +akπk)‖L2 ≤ 82ρ/
√

Var( f ) .

Proof. Just as in the proof of Theorem 5.8, we arrive at

‖ f − (a0 +akπk)‖2
L2 = ‖ f − fA‖2

L2 +
∥∥∥ ∑

i∈[n]\{k}
aiπi

∥∥∥2

L2

≤ ρ
2 +1600ρ

2/Var(S)≤ 1601ρ
2/Var(S) ,

where we have used Lemma 7.2 and the fact that Var(S) = ∑
n
i=1 a2

i ≤ 1. The second assertion of the
corollary follows from the first one in the same way in which Corollary 5.2 follows from Theorem 5.1.

The above corollary should be compared to the main result of Rubinstein’s MSc thesis, [13, Corol-
lary 10]. Note that the setting introduced in Subsection 5.1 is slightly incompatible with Rubinstein’s
“pair-wise disjoint subsets of the inputs”—one would need to consider the product measure µ on a more
abstract probability space than just Rn to recover [13, Corollary 10] as a special case of Corollary 7.3.
Still, [13, Corollary 10] may be easily deduced from Lemma 7.2 by an obvious modification of the proof
of Corollary 7.3, in which aiπi’s should be replaced by Rubinstein’s restrictions fi’s and a0 turned into
f̂ ( /0).
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