THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22
www.theoryofcomputing.org

On the (Non) NP-Hardness of
Computing Circuit Complexity

Cody D. Murray* R. Ryan Williams'

Received October 30, 2015; Revised February 15, 2017; Published June 30, 2017

Abstract: The Minimum Circuit Size Problem (MCSP) is: given the truth table of a
Boolean function f and a size parameter k, is the circuit complexity of f at most k? This is
the definitive problem of circuit synthesis, and it has been studied since the 1950s. Unlike
many problems of its kind, MCSP is not known to be NP-hard, yet an efficient algorithm for
this problem also seems very unlikely: for example, MCSP € P would imply there are no
pseudorandom functions.

Although most NP-complete problems are complete under strong “local” reduction
notions such as polylogarithmic-time projections, we show that MCSP is provably not
NP-hard under O(nl/ 2=¢)_time projections, for every € > 0, and is not NP-hard under
randomized O(nl/ 5=¢€)_time projections, for every £ > 0. We prove that the NP-hardness of
MCSP under (logtime-uniform) ACO reductions would imply extremely strong lower bounds:
NP ¢ P/poly and E ¢ i.0.-SIZE(25") for some 8 > 0 (hence P = BPP also follows). We

A preliminary version of this paper appeared in the Proceedings of the 30th IEEE Conference on Computational Complexity,
2015 [21].
*Supported by NSF CCF-1212372.
TSupported in part by a David Morgenthaler II Faculty Fellowship, a Sloan Fellowship, and NSF CCF-1212372. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

ACM Classification: F.2.3, F.1.3
AMS Classification: 68Q15, 68Q17

Key words and phrases: circuit lower bounds, reductions, NP-completeness, projections, minimum
circuit size problem

© 2017 Cody D. Murray and R. Ryan Williams
@@ Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2017.v013a004

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2017.v013a004

CoDpY D. MURRAY AND R. RYAN WILLIAMS

show that even the NP-hardness of MCSP under general polynomial-time reductions would
separate complexity classes: EXP % NP NP /poly, which implies EXP # ZPP. These results
help explain why it has been so difficult to prove that MCSP is NP-hard.

We also consider the nondeterministic generalization of MCSP: the Nondeterministic
Minimum Circuit Size Problem (NMCSP), where one wishes to compute the nondeterminis-
tic circuit complexity of a given function. We prove that the X, P-hardness of NMCSP, even
under arbitrary polynomial-time reductions, would imply EXP ¢ P /poly.

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the canonical logic synthesis problem: we are given (7', k)
where T is a string of n = 2¢ bits (for some ¢), k is a positive integer (encoded in binary or unary), and the
goal is to determine if 7 is the truth table of a Boolean function with circuit complexity at most k. (For
concreteness, let us say our circuits are defined over AND, OR, NOT gates of fan-in at most 2.) MCSP is
in NP, because any circuit of size at most k could be guessed nondeterministically in O(klogk) < O(n)
time, then verified on all bits of the truth table 7" in poly(2¢,k) < poly(n) time.

MCSP is natural and basic, but unlike thousands of other computational problems studied over the
last 40 years, the complexity of MCSP has yet to be determined. The problem could be NP-complete, it
could be NP-intermediate, or it could even be in P. (It is reported that Levin delayed publishing his initial
results on NP-completeness out of wanting to include a proof that MCSP is NP-complete [4]. More notes
on the history of this problem can be found in [20].)

Lower bounds for MCSP? There is substantial evidence that MCSP ¢ P. If MCSP € P, then (essen-
tially by definition) there are no pseudorandom functions. Kabanets and Cai [20] made this critical
observation, noting that the hardness of factoring Blum integers implies that MCSP is hard. Allender et
al. [5] strengthened these results considerably, showing that Discrete Log and many approximate lattice
problems from cryptography are solvable in BPPM®? and Integer Factoring is in ZPPMSP_ (Intuitively,
this follows from known constructions of pseudorandom functions based on the hardness of problems
such as Discrete Log [13].) Allender and Das [6] recently showed that Graph Isomorphism is in RPMCSP.
and in fact every problem with statistical zero-knowledge interactive proofs [14] is in promise-BPP with
a MCSP oracle.

NP-hardness for MCSP? These reductions indicate strongly that MCSP is not solvable in randomized
polynomial time; perhaps it is NP-complete? Evidence for the NP-completeness of MCSP has been less
conclusive. The variant of the problem where we are looking for a minimum size DNF (instead of an
arbitrary circuit) is known to be NP-complete [11, 7, 12]. Kabanets and Cai [20] show that, if MCSP is
NP-complete under so-called “natural” polynomial-time reductions (where the circuit size parameter k
output by the reduction is a function of only the input length to the reduction) then EXP ¢ P /poly, and
E ¢ SIZE(2%") for some € > 0 unless NP C SUBEXP. Therefore NP-completeness under a restricted
reduction type would imply (expected) circuit lower bounds. This does not necessarily show that such
reductions do not exist, but rather that they will be difficult to construct.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 2

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

Allender et al. [5] show that if PH C SIZE(2""") then (a variant of) MCSP is not hard for TCO under
ACO reductions. The generalization MCSP* for circuits with A-oracle gates has also been studied; it
is known for example that MCSPBF g complete for PSPACE under ZPP reductions [5], and recently
Allender, Holden, and Kabanets [8] proved that MCSP®BF is not PSPACE-complete under logspace
reductions. They also showed, among similar results, that if there is a set A € PH that such that MCSP4
is hard for P under ACO reductions, then P # NP.

NP-completeness has been defined for many different reducibility notions: polynomial time, loga-
rithmic space, AC0, even logarithmic time reductions. In this paper, we study the possibility of MCSP
being NP-complete for these reducibilities. We prove several new results in this direction, summarized as
follows.

1. Under “local” polynomial-time reductions where any given output bit can be computed in n°(!

time, MCSP is provably not NP-complete, contrary to many other natural NP-complete problems.
(In fact, even PARITY cannot reduce to MCSP under such reductions: see Theorem 1.3.)
2. Under slightly stronger reductions such as uniform ACO, the NP-completeness of MCSP would
imply! NP ¢ P/poly and E ¢ i.0.-SIZE(2%") for some & > 0, therefore P = BPP as well by [19].
3. Under the strongest reducibility notions such as polynomial time, the NP-completeness of MCSP
would still imply major separations of complexity classes. For example, EXP # ZPP would follow,
a major (embarrassingly) open problem.

Together, the above results tell a convincing story about why MCSP has been difficult to prove
NP-complete (if that is even true). Part 1 shows that, unlike many textbook reductions for NP-hardness,
no simple “gadget-based” reduction can work for proving the NP-hardness of MCSP. Part 2 shows
that going only a little beyond the sophistication of textbook reductions would separate P from NP and
fully derandomize BPP, which looks supremely difficult (if possible at all). Finally, part 3 shows that
even establishing the most relaxed version of the statement “MCSP is NP-complete” requires separating
exponential time from randomized polynomial time, a separation that appears inaccessible with current
proof techniques.

MCSP is not hard under “local” reductions. Many NP-complete problems are still complete under
polynomial-time reductions with severe-looking restrictions, such as reductions which only need O(logn)
time to compute an arbitrary bit of the output. Let 7 : N — N; think of #(n) as n' ¢ for some & > 0.

Definition 1.1. An algorithm R : £* X £* — {0,1,*} is a TIME(¢(n)) reduction from L to L' if there is a
constant ¢ > 1 such that for all x € X*,

e R(x,i) has random access to x and runs in O(z(|x|)) time for all i € {0, 1}2¢log2Ix/1,

e there is an ¢, < |x|°+ ¢ such that R(x,i) € {0, 1} for all i < ¢,, and R(x,i) = * for all i > ¢, and

e xeL < R(x,1)-R(x,2)---R(x,¢;) € L.

(Note that x denotes an “out of bounds” character to mark the end of the output.) That is, the overall
reduction outputs strings of polynomial length, but any desired bit of the output can be printed in O(z(n))
time. TIME(n°(")) reductions are powerful enough for almost all NP-completeness results, which have

! After learning of our preliminary results, Allender, Holden, and Kabanets [8] found an alternative proof of the consequence
NP ¢ P/poly.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 3

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

“local” structure transforming small pieces of the input to small pieces of the output.> More precisely,
an O(nk)-time reduction R from L to L is a projection if there is a polynomial-time algorithm A that,
given i = 1,...,n* in binary, A outputs either a fixed bit (0 or 1) which is the i-th bit of R(x) for all x
of length n, ora j = 1,...,n with b € {0,1} such that the i-th bit of R(x) (for all x of length n) equals
b-xj+(1—b)-(1—x;). Skyum and Valiant [23] observed that almost all NP-complete problems are also
complete under projections. So for example, we have:

Proposition 1.2 ([23, 22]). SAT, Vertex Cover, Independent Set, Hamiltonian Path, and 3-Coloring are
NP-complete under TIME(poly(logn)) reductions.

In contrast to the above, we prove that MCSP is not complete under TIME(n'/3) reductions. Indeed
there is no local reduction from even the simple language PARITY to MCSP.

Theorem 1.3. Forevery § < 1/2, there is no TIM E(n‘s) reduction from PARITY to MCSP. As a corollary,
MCSP is not ACO[2]-hard under TIME(n®) reductions.’

This establishes that MCSP cannot be “locally” NP-hard in the way that many canonical NP-complete
problems are known to be.

This theorem for local reductions can be applied to randomized local reductions as well, though with
a slightly weaker result.

Definition 1.4. An algorithm R : £* x £* x X* — {0, 1,%} is a TIME(¢(n)) randomized reduction from L
to L' if there are constants ¢ > 1, p < 1/2 such that for all x € X*,

R(x,r,i) has random access to x and runs in O(z(|x|)) time for all i € {0, 1} 2l [x|T,

the number of random bits |r| used is at most O(z(|x|)),

there is an ¢, < |x|° + ¢ such that R(x,r,i) € {0,1} for all i < ¢, and R(x,r,i) = * for all i > £,
x€L = Pr,JR(x,r,1)-R(x,r,2)---R(x,r,¢y) € L'| > 1— p, and

x¢L = Pr,[R(x,r,1)-R(x,r,2)---R(x,r,{y) € L'] < p.

Under this definition, a randomized local reduction treats the random bits r as auxiliary input, and
will map each x, r pair to its own instance such that the probability over all possible random strings r that
R maps x, r correctly (that is, x, r is mapped to an instance of L if and only if x € L) is at least 1 — p. The
case of a bitwise reduction, in which the reduction maps each x to a single MCSP instance but each bit i
is printed correctly with probability 1 — p, can be reduced to the above definition by running the reduction
O(log?) times and taking the majority bit. Since ¢ is polynomial in |x| this only adds a logarithmic factor
to the run time of the algorithm. Furthermore, for any value of r the probability that there is an i such that
R(x,r,i) maps to the wrong bit is constant by a union bound, which means that most random strings will
print the correct bit for all values of i.

Under this definition of randomized local reductions, the theorem generalizes for slightly smaller
polynomial time.

Theorem 1.5. For every § < 1/5, there is no TIME(n®) randomized reduction from PARITY to MCSP.

2We say “almost all NP-completeness results” because one potential counterexample is the typical reduction from Subset
Sum to Partition: two numbers in the output of this reduction require taking the sum of all numbers in the input Subset Sum
instance. Hence the straightforward reduction does not seem to be computable even in 27" size ACO.

3Dhiraj Holden and Chris Umans (personal communication) proved independently that there is no TIME(poly(logn))
reduction from SAT to MCSP unless NEXP C X, P.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 4

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

Hardness under stronger reducibilities. For stronger reducibility notions than subpolynomial time,
we do not yet have unconditional non-hardness results for MCSP. (Of course, a proof that MCSP is not
NP-complete under polynomial-time reductions would immediately imply P % NP.) Nevertheless, we
can still prove interesting complexity consequences assuming the NP-hardness of MCSP under these
sorts of reductions.

Theorem 1.6. If MCSP is NP-hard under polynomial-time reductions, then EXP # NP NP /poly. Con-
sequently, EXP # ZPP.

Theorem 1.7. [f MCSP is NP-hard under logspace reductions, then PSPACE # ZPP.

Theorem 1.8. If MCSP is NP-hard under logtime-uniform ACO reductions, then NP ¢ P /poly and
E ¢ 1.0.-SIZE(2%") for some § > 0. As a consequence, P = BPP also follows.

That is, the difficulty of computing circuit complexity would imply lower bounds, even in the most
general setting (there are no restrictions on the polynomial-time reductions here, in contrast with Kabanets
and Cai [20]). We conjecture that the consequence of Theorem 1.6 can be strengthened to EXP ¢ P /poly,
and that MCSP is (unconditionally) not NP-hard under uniform ACO reductions.

Y, P-hardness for nondeterministic MCSP implies circuit lower bounds. Intuitively, the difficulty of
solving MCSP via uniform algorithms should be related to circuit lower bounds against functions defined
by uniform algorithms. That is, our intuition is that “MCSP is NP-complete” (under polynomial-time
reductions) implies circuit lower bounds. We have not yet shown a result like this (but come close with
EXP # ZPP in Theorem 1.6). However, we can show that X, P-completeness for the nondeterministic
version of MCSP would imply EXP ¢ P /poly.

In the Nondeterministic Minimum Circuit Size Problem (NMCSP), we are given (T, k) as in MCSP,
but now we want to know if 7" denotes a Boolean function with nondeterministic circuit complexity at
most k. It is easy to see that NMCSP is in ¥, P: existentially guess a circuit C with a “main” input and
“auxiliary” input, existentially evaluate C on all 2¢ inputs x for which 7'(x) = 1, then universally verify on
all 2¢ inputs y satisfying T (y) = 0 that no auxiliary input makes C output 1 on y.

We can show that if NMCSP is hard even for Merlin-Arthur games, then circuit lower bounds follow.

Theorem 1.9. [f NMCSP is MA-hard under polynomial-time reductions, then EXP ¢ P /poly.

Vinodchandran [24] studied NMCSP for strong nondeterministic circuits, showing that a “natural”
reduction from SAT or Graph Isomorphism to this problem would have several interesting implications.

1.1 Intuition

The MCSP problem is a special kind of “meta-algorithmic” problem, where the input describes a function
(and a complexity upper bound) and the goal is to essentially compute the circuit complexity of the
function. That is, like many of the central problems in theory, MCSP is a problem about computation
itself.

In this paper, we apply many tools from the literature to prove our results, but the key idea is to exploit
the meta-algorithmic nature of MCSP directly in the assumed reductions to MCSP. We take advantage

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 5

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

of the fact that instances of MCSP are written in a rather non-succinct way: the entire truth table of the
function is provided. (This observation was also used by Kabanets and Cai [20], but not to the same
effect.)

For the simplest example of the approach, let L be a unary (tally) language, and suppose there is a
TIME(poly(logn)) reduction R from L to MCSP. The outputs of R are pairs (7, k), where 7 is a truth
table and k is the size parameter. Because every bit of R is computable in polylog time, it follows that
each truth table T output by R can in fact be described by a polylogarithmic-size circuit specifying the
length of the input instance of L, and the mechanics of the polylog-time reduction used to compute a
given bit of R. Therefore the circuit complexities of all outputs of R are at most polylogarithmic in n
(the input length). Furthermore, the size parameters k in the outputs of R on n-bit inputs are at most
poly(logn), otherwise the MCSP instance is trivially a yes instance. That is, the efficient reduction R
itself yields a strong upper bound on the witness sizes of the outputs of R.

This ability to bound k from above by a small value based on the existence of an efficient reduction to
MCSP is quite powerful. It can also be carried out for more complex languages. For example, consider
a polylog-time reduction from PARITY to MCSP, where we are mapping n-bit strings to instances of
MCSP. Given any polylog-time reduction from PARITY to MCSP, we can construct another polylog-time
reduction which on every n-bit string always outputs the same circuit size parameter k,. That is, we can
turn any polylog-time reduction into a natural reduction in the sense of Kabanets and Cai [20], and apply
their work to general reductions. (The basic idea is to answer “no” to every bit query of the polylog-time
reduction when computing k, and to then “pad” a given PARITY instance with a few strategically placed
zeroes, so that it always satisfies those “no” answers. Since k is small and the reduction can make very
few queries the amount of padding needed is relatively small.)

Several of our theorems have the form that, if computing circuit complexity is NP-hard (or nondeter-
ministic circuit complexity is X, P-hard), then circuit lower bounds follow. This is intriguing to us, as one
also expects that efficient algorithms for computing circuit complexity also lead to lower bounds! (For
example, [20, 18, 26] show that polynomial-time algorithms for MCSP in various forms would imply
circuit lower bounds against EXP and/or NEXP.) If a circuit lower bound can be proved to follow from
assuming MCSP is NP-intermediate (or NMCSP is ¥, P-intermediate), perhaps we can prove circuit
lower bounds unconditionally without necessarily resolving the complexity of MCSP.

2 Preliminaries

For simplicity, all languages are over {0, 1}. We assume knowledge of the basics of complexity theory [9].
Here are a few (perhaps) non-standard notions we use. For a function s : N — N, poly(s(n)) is shorthand
for O(s(n)°) for some constant ¢, and O(s(n)) is shorthand for s(n) - poly(logn). Define SIZE(s(n)) to
be the class of languages computable by a circuit family of size O(s(n)). In some of our results, we apply
the well-known PARITY lower bound of Hastad:

Theorem 2.1 (Hastad [15]). For every k > 2, PARITY cannot be computed by circuits with AND, OR,

and NOT gates of depth k and size po(n/*V),

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 6

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

Machine model. The machine model used in our results may be any model with random access to the
input via addressing, such as a random-access Turing machine. The main component we want is that the
“address” of the bit/symbol/word being read at any step is stored as a readable and writable binary integer.

A remark on subpolynomial reductions. In Definition 1.1 we defined subpolynomial-time reductions
to output out-of-bounds characters which denote the end of an output string. We could also have defined
our reductions to output a string of length 2lclognl op an input of length n, for some fixed constant ¢ > 1.
This makes it easy for the reduction to know the “end” of the output. We can still compute the length
¢ of the output in O(log¢) time via Definition 1.1, by performing a doubling search on the indices i to
find one * (trying the indices 1,2,4, 8, etc.), then performing a binary search for the first x. The results in
this paper hold for either reduction model (but the encoding of MCSP may have to vary in trivial ways,
depending on the reduction notion used).

Encoding MCSP. Let y;,...,yy € {0,1}¢ be the list of k-bit strings in lexicographic order. Given
f:{0,1}* — {0, 1}, the truth table of f is defined to be t£(f) := f(y1)f(y2) -~ f (y20).

The truth table of a circuit is the truth table of the function it computes. Let 7 € {0, 1}*. The function
encoded by T, denoted as fr, is the function satisfying #7(fr) = TOzk_‘T‘, where k is the minimum integer
satisfying 2K > T. The circuit complexity of T, denoted as CC(T), is simply the minimum number of
gates of any circuit computing fr.

There are several possible encodings of MCSP we could use. The main point we wish to stress is that
it is possible to encode the circuit size parameter k in essentially unary or in binary, and our results remain
the same. (This is important, because some of our proofs superficially seem to rely on a short encoding
of k.) We illustrate our point with two encodings, both of which are suitable for the reduction model
of Definition 1.1. First, we may define MCSP to be the set of strings Tx where |T| is the largest power
of two satisfying |T'| < |Tx| and CC(fr) < |x|; we call this a unary encoding because k is effectively
encoded in unary. (Note we cannot detect if a string has the form 1% in logtime, so we shall let any k-bit
string x denote the parameter k. Further note that, if the size parameter k > |T'| /2, then the instance would
be trivially a yes-instance. Hence this encoding captures the “interesting” instances of the problem.)
Second, we may define MCSP to be the set of binary strings Tk such that |T'| is the largest power of two
such that |T'| < |Tk|, k is written in binary (with most significant bit 1) and CC(fr) < k. Call this the
binary encoding.

Proposition 2.2. There are TIME(poly(logn)) reductions between the unary encoding of MCSP and the
binary encoding of MCSP.

The proof is a simple exercise, in Appendix A. More points on encoding MCSP for these reductions
can be found there as well.

Another variant of MCSP has the size parameter fixed to a large value; this version has been studied
extensively in the context of KT-complexity [3, 5]. Define MCSP’ to be the version with circuit size
parameter set to |T|'/2, that is, MCSP' := {T | CC(T) < |T|'/?}. To the best of our knowledge, all
theorems in this paper hold for MCSP’ as well; indeed most of the proofs only become simpler for this
case.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 7

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

A simple lemma on the circuit complexity of substrings. We also use the fact that for any string 7',
the circuit complexity of an arbitrary substring of 7' can be bounded via the circuit complexity of 7.

Lemma 2.3 ([26]). There is a universal ¢ > 1 such that for any binary string T and any substring S of T,
CC(fs) < CC(fr)+clog|T|.

Proof. Let ¢’ be sufficiently large in the following. Let k be the minimum integer satisfying 2€ > |T'|, so
the Boolean function fr representing 7" has truth table 70?171, Suppose C is a size-s circuit for fr. Let
S be a substring of T =t -+ -t € {0, 1}2k, andlet A,B € {1,...,2k} be such that S =14 ---13. Let £ < k
be a minimum intezger which satisfies 2¢ > B— A. We wish to construct a small circuit D with ¢ inputs
and truth table S0 ~(B~4)_ Let x|,...,x, be the ¢-bit strings in lexicographic order. Our circuit D on
input x; first computes i + A; if i+A < B— A then D outputs C(x;14), otherwise D outputs 0. Note there
are circuits of ¢’ - n size for addition of two n-bit numbers (this is folklore). Therefore in size at most ¢’ - k
we can, given input x; of length ¢, output i + A. Determining if i +A < B— A can be done with (¢’ - £)-size
circuits. Therefore D can be implemented as a circuit of size at most s+ ¢’(k+ ¢+ 1). To complete the
proof, let ¢ > 3. a

3 MCSP and sub-polynomial time reductions

In this section, we prove the following impossibility results for NP-hardness of MCSP.

Reminder of Theorem 1.3. For every § < 1/2, there is no TIME(n®) reduction from PARITY to MCSP.
As a corollary, MCSP is not ACO[2]-hard under TIME(n®) reductions.

Reminder of Theorem 1.5. For every § < 1/5, there is no TIME(n®) randomized reduction from
PARITY to MCSP.

3.1 Deterministic reductions

The proof of the deterministic case has the following outline. First we show that there are poly(logn)-time
reductions from PARITY to itself which can “insert poly(n) zeroes” into a PARITY instance. Then,
assuming there is a TIME(n%) reduction from PARITY to MCSP, we use the aforementioned zero-
inserting algorithm to turn the reduction into a “natural reduction” (in the sense of Kabanets and Cai [20])
from PARITY to MCSP, where the circuit size parameter k output by the reduction depends only on
the input length n. Next, we show how to bound the value of k from above by O(n?), by exploiting
naturalness. Then we use this bound on k to construct a depth-three circuit family of size 20(”5), and
appeal to Hastad’s ACO lower bound for PARITY for a contradiction.

We start with a simple poly(logn)-time reduction for padding a string with zeroes in a poly(n)-size
set of prescribed bit positions. Let S € Z for a positive integer £. We say S is sorted if S[i] < S[i+ 1] for

alli=1,....0—1.

Proposition 3.1. Let p(n) be a polynomial. There is an algorithm A such that, given x of length n,
a sorted tuple S = (i1,...,iyy)) of indices from {1,...,n+ p(n)}, and a bit index j=1,...,p(n) +n,
A(x,S, j) outputs the j-th bit of the string X' obtained by inserting zeroes in the bit positions iy, iy, ..., i ()
of x. Furthermore, A(x,S, j) runs in O(log>n) time on x of length n.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 8

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

Proof. Given x of length n, a sorted S = (iy,...,i,) € {1,...,n+ p}”, and an index j =1,...,n+p,
first A checks if j € S in O(log?n) time by binary search, comparing pairs of O(logn)-bit integers in
O(logn) time. If yes, then A outputs 0. If no, there are two cases: either (1) j < iy, or (2) i, < j for
some k= 1,...,p. In case (1), A simply outputs x;. In case (2), A outputs x;_. (Note that computing
J —k is possible in O(logn) time.) It is easy to verify that the concatenation of all outputs of A over
j=1,...,|x|+ p is the string x but with zeroes inserted in the bit positions ii,...,i,. O

Let #(n) = n'~¢ for some &€ > 0. The next step is to show that a TIME(¢(n)) reduction from PARITY
to MCSP can be turned into a natural reduction, in the following sense:

Definition 3.2 (Kabanets-Cai [20]). A reduction from a language L to MCSP is natural if the size of all
output instances and the size parameters k depend only on the length of the input to the reduction.

The main restriction in the above definition is that the size parameter k output by the reduction does
not vary over different inputs of length n.

Claim 3.3. If there is a TIME(t(n)) reduction from PARITY to MCSP, then there is a TIME(t(n)log” n)
natural reduction from PARITY to MCSP. Furthermore, the value of k in this natural reduction is

O(t(m)).

Proof. By assumption, we can choose n large enough to satisfy #(2n)log(2n) < n. We define a new
(natural) reduction R’ from PARITY to MCSP as follows.

R'(x,1) begins by gathering a list of the bits of the input that affect the size parameter k of the
output, for a hypothetical 2n-bit input which has zeroes in the positions read by R. This works
as follows. We simulate the TIME(#(n)) reduction R from L to MCSP on the output indices
corresponding to bits of the size parameter k, as if R is reading an input x’ of length 2n. When
R attempts to read a bit of the input, record the index i; requested in a list S, and continue
the simulation as if the bit at position i; is a 0. Since the MCSP instance is polynomial in
size, k written in binary is at most O(logn) bits (otherwise we may simply output a trivial
“yes” instance), so the number of indices of the output that describe k is at most O(logn) in
the binary encoding. It follows that the size parameter k in the output depends on at most
t(2n)log(2n) bits of the (hypothetical) 2n-bit input. Therefore |S| < 7(2n)log(2n). Sort
S = (i1,-.-,i|g)) in O(t(n) log? n) time, and remove duplicate indices.

R’ then simulates the TIME(z(n)) reduction R(x,i) from PARITY to MCSP. However,
whenever an input bit j of x is requested by R, if j < n+ |S| then run the algorithm A(x, S, j)
from Proposition 3.1 to instead obtain the j-th bit of the O(n + |S|)-bit string x’ which has
zeroes in the bit positions in the sorted tuple S. Otherwise, if j > n+ |S| and j < 2n then
output 0, and if j > 2n then output * (out of bounds). Since the algorithm of Proposition 3.1
runs in O(log?n) time, this step of the reduction takes O(¢(n)log?n) time.

That is, the reduction R’ first looks for all the bits in a 2n-bit input that affect the output size parameter

k in the reduction R, assuming the bits read are all 0. Then R’ runs R on a simulated 2n-bit string x’ for
which all those bits are zero (and possibly more at the end, to enforce |x'| = 2n). Since the parity of x’

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 9

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

equals the parity of x, the MCSP instance output by R’ is a yes-instance if and only if x has odd parity.
However for the reduction R, the output parameter k is now a function of only the input length; that is, R’
is natural.

Now let us argue for an upper bound on k. Define a function f(i) which computes z := 0", then runs
and outputs R'(z,i). Since instances of MCSP are not exact powers of 2, assume that this function adds
zero padding at the end, outputting zero when the index is out of range. Some prefix of the truth table of
1> tt(f), is therefore an instance of MCSP. Since R’ is natural, the value of k appearing in 7¢(f) is the
same as the value of k for all length-# instances of PARITY.

However, the circuit complexity of f is small: on any i, R'(0",i) can be computed in time
O(t(n)log*n). Therefore the circuit complexity of f is at most some s which is O(¢(n)). In partic-
ular, the TIME(z(n) log? n) reduction can be efficiently converted to a circuit, with any bit of the input 0"
efficiently computed in O(logn) time at every request (the only thing to check is that the index requested
does not exceed n). As the function f has CC(f) < s, by Lemma 2.3 the truth table 7' corresponding to
the instance of MCSP in #¢(f) has CC(T') < cs as well for some constant c.

Since 0" has even parity, the truth table of f is not in MCSP. This implies that the value of k in
the instance 7¢(f) must be less than cs = O(t(n)). Therefore the value of fixed in the reduction from
PARITY to MCSP must be at most O(¢(n)log>n). O

Finally, we can complete the proof of Theorem 1.3:

Proof of Theorem 1.3. Suppose that PARITY has a TIME(n5) reduction from PARITY to MCSP, for
some 8 < 1/2. Then by Claim 3.3, there is a reduction R’ running in time O(n®log?n) for which the
witness circuit has size at most 0~(n5). Such an algorithm can be used to construct a depth-three OR-
AND-OR circuit of size 20"°) that solves PARITY: the top OR at the output has incoming wires for all
possible 20(n°) existential guesses for the witness circuit C, the middle AND has incoming wires for all
n®W bits i of the truth table produced by the reduction R, and the remaining deterministic computation
on n+ O(n®) bits, checking whether C(i) = R'(x,i) on all inputs i, is computable with a CNF (AND of
ORs) of size 200, Therefore, the assumed reduction implies that PARITY has depth-three ACO circuits
of size 200°) For & < 1 /2, this is false by Hastad (Theorem 2.1). O

3.2 Randomized reductions

Now we turn to proving that PARITY does not have ultra-efficient randomized reductions to MCSP
(Theorem 1.5). The proof of Theorem 1.5 mostly follows the same form as the deterministic case. Starting
with a reduction from PARITY to MCSP, we add a poly(logn)-time reduction from PARITY to itself
that can insert “poly(n)” zeroes to a PARITY instance, in such a way that the reduction is converted into
a “natural reduction.” (Recall that a natural reduction to MCSP creates instances whose size parameter k
only depends on the length of the input string.) From this reduction, we can construct a faster algorithm
for PARITY which can be converted into a constant depth circuit family that contradicts Hastad’s ACO
lower bound for PARITY. However, there are new complications that appear in the randomized case.
First, for every fixed random string r, a TIME(z(n)) reduction R (with randomness r) can only depend
on O(t(n)) bits of the input. However, since every random string can depend on a different set of input
bits, a deterministic padding reduction cannot fix the value of k in every case. To solve this problem, it is

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 10

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

enough to make the padding reduction randomized as well, and argue that k is fixed to a specific value
with high probability. To this end, we begin with a proposition:

Proposition 3.4. Let p(n) be a polynomial. There is an algorithm A" which, given x of length n, r of
length log,(p(n)) (interpreted as an integer), and a bit index j=1,--- ,p(n)-n, A'(x,r, j) outputs the
J-th bit of the string X' obtained by inserting p(n) — 1 zeroes between each consecutive pair of bits of the
string x, r zeroes before the first bit, and p(n) — (r+ 1) bits after the last bit. Furthermore, A(x,r, j) runs
in O(log(n) +1log(p(n))) time.

Proof. Given x of length n, r of length log(p(n)), and j < n- p(n), compute ji, j» such that j = j; -
p(n)+ jo. If jo» = r, then output the j;-th bit of x. Otherwise, output 0. Since division (with remainder)
of unsigned integers can be computed in time linear in the number of bits, the algorithm runs in
O(log(p(n)) +1log(n)) time. O

Essentially, this reduction algorithm A’ takes the original instance and embeds it uniformly spaced
into a string of n(p(n) — 1) zeroes, and the randomness r determines where in the all-zeroes string to start
inserting bits of the original input. We will crucially use the following fact: over all choices of r, the
probability that a random output bit of R’ comes from the original input x is 1/p(n). This is true because
in every substring of x” of p(n) bits, there is exactly one bit of the original input x, and the position of that
input bit is uniformly distributed across all p(n) indices by the value of r.

Claim 3.5. Let c € (0,1). If there is a TIME(n®) randomized reduction R from PARITY to MCSP, then
there is a TIME(O(n¢/(=9))) natural randomized reduction R' from PARITY to MCSP. Furthermore,
the value of the size parameter k in this natural reduction is O(n¢/1=¢)),

Again, this result follows from the deterministic case (Claim 3.3), though the instance requires much
more padding. Also, since the padding is randomized and does not depend on the algorithm R, the
reduction R’ does not have to simulate R to determine which of the input bits the value of k depends on.

Proof. Suppose there is a TIME(n¢) randomized reduction R from PARITY to MCSP. Define a reduction
R'(x,r1ry,i) which simply simulates and returns the output of R(x’,ry,i), where

X =A(x,r2,1)-A'(x,r2,2) - A’ (x, 2, |x| - p(|x]))

is the PARITY instance produced by running the randomized padding algorithm A’ from Proposition 3.4
on randomness r,, and p(n) is a polynomial to be specified later. Since R is a local reduction, the string
x' is implicit, and does not need to be stored in memory: whenever R attempts to read the j-th bit of
x' (for some j), R’ computes A’(x,r,, j) and continues the simulation using this value as the j-th bit of
. Since A’ runs in logarithmic time, the reduction R’ runs in time O(|x|° - p(|x|)°log?(|x|)) for some
constant d > 0.

Let n = |x|, and fix r;, the randomness for reduction R. The probability that a given bit read by R
is not a padding bit is 1/p(n); since r; and r, are independent, this is true for every bit read by R. For
a fixed string r, the algorithm R becomes a standard deterministic reduction; in that case, the value of

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 11

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

k depends on at most O((n- p(n))“log(n- p(n))) input bits. By a union bound, the probability over all
values of r, that at least one read bit is not a padding bit is at most

O((n-p(n))“log(n-p(n)))
p(n)

< O(n°- p(n)*~" -log(n)).

Setting p(n) = nre ! -log®(n) for a constant e > 1 (using (1/(1 —¢) — 1)logn + eloglogn) random bits
in the PARITY reduction), the probability that the value of k depends on a non-padding bit is at most
0(1)/log®~'=¢n. Noting that ¢ < 1, and setting e to be sufficiently large, the reduction R’ has a high
probability of fixing the value of k to a constant, and the probability that the reduction both fixes k to
a constant and maps to a correct instance of MCSP is at least 1 — p —o(1) > 1 — p’ for some constant
p' < 1/2. Therefore this randomized reduction is natural.

Under the above setting of p(n), the instance x’ produced by the padding reduction A’ has size
n-p(n) = n'/1=<1og(n), and running the given reduction R on x’ takes time O(|x’'|) = O(n¢/(1=9),

Given the natural reduction R’, define a family of functions f(i) = R'(0",ry,i), where r, is a random
string that maps 0" to a no instance of MCSP. Since at least 1 — p’ of all random strings meet this
requirement, such an r,, must exist. As in the deterministic case, the circuit complexity of f is small,
since R'(0", r,,i) can be computed in time O(n¢/(1=¢)). Treating the randomness as hardwired advice,
this reduction can be efficiently converted to a circuit of size O(n°/(1=9)). As a result, the truth table T
produced by the reduction R’ on input (0", r,) has CC(T) < O(n®/(1=9)); since the output of R’ is not an
instance of MCSP, we can conclude that the fixed value of k is at most O (n¢/(1-9)). O

Finally, we complete the proof of Theorem 1.5:

Proof of Theorem 1.5. Suppose that PARITY does have a TIME(n®) randomized reduction to MCSP,
for some 8 < 1/5. Then by applying Claim 3.5, there is a natural randomized reduction R’ running in
O(n%/1=9)) time for which k is at most O (n®/(1=9)). Let §' = §/(1—§). If § < 1/5, then &' < 1/4,
which means that there is a TIME(O(n?")) randomized reduction.

We can construct a depth-five circuit for PARITY of size 20("6,), as follows. For each possible O(n?)-
bit random string r used by the reduction, we can simulate the deterministic part of the TIME(O(n%"))
reduction by taking an OR over all possible witness circuits of size O (n‘s/ (1-8)) which may compute the
output of the reduction R’ on input x, then taking an AND over all possible inputs to the circuit to verify
the guess (the remaining deterministic computation on 0~(n5/) bits can be computed with a CNF of size

20("5/)). This would be a depth-three circuit C, of size 20?12 solving the generated MCSP instance,
for a fixed random string .

There are 20(”5l) possible random strings to be given as input to the reduction. Using depth-three
(OR-AND-OR) circuits for Approximate-Majority (Ajtai [2]) of size 20(”5/>, we can compute the correct
output over all possible depth-three circuits C,. Merging the bottom OR of the Approximate Majority
circuit with the top ORs of the C,, we obtain a depth-five circuit computing PARITY. Therefore, the
reduction implies that PARITY has depth-5 circuits of size 20(”5,). For &’ < 1/4 this is false, by Hastad
(Theorem 2.1). 0

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 12

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

Remark 3.6. We used only the following properties of PARITY in the above proof: (a) one can insert
zeroes into a string efficiently without affecting its membership in PARITY, (b) PARITY has trivial
no-instances (strings of all zeroes), and (c) PARITY lacks small constant-depth circuits. We imagine that
some of the ideas in the above proof may be useful for other “non-hardness” results in the future.

4 NP-hardness of MCSP implies lower bounds

We now turn to stronger reducibility notions, showing that even NP-hardness of MCSP under these
reductions implies separation results that currently appear out of reach.

4.1 Consequences of NP-hardness under polytime and logspace reductions

Our two main results here are:

Reminder of Theorem 1.6. If MCSP is NP-hard under polynomial-time reductions, then EXP #
NP NP /poly. Consequently, EXP # ZPP.

Reminder of Theorem 1.7. If MCSP is NP-hard under logarithmic-space reductions, then PSPACE £
ZPP.

These theorems follow from establishing that the NP-hardness of MCSP and small circuits for EXP
implies NEXP = EXP. In fact, it suffices that MCSP is hard for only sparse languages in NP. (Recall
that a language L is sparse if there is a ¢ such that for all n, [LN{0,1}"| <n®+c.)

Theorem 4.1. If every sparse language in NP has a polynomial-time reduction to MCSP, then EXP C
P/poly = EXP = NEXP.

Proof. Suppose that MCSP is hard for sparse NP languages under polynomial-time reductions, and that
EXP C P/poly. Let L € NTIME(2") for some ¢ > 1. It is enough to show that L € EXP.

Define the padded language L' := {xOleC | x € L}. The language L’ is then a sparse language in NP.
By assumption, there is a polynomial-time reduction from L' to MCSP. Composing the obvious reduction
from L to L' with the reduction from L' to MCSP, we have a 2¢'1°_time reduction R from n-bit instances
of L to 2¢"" -bit instances of MCSP, for some constant ¢’. Define the language

BITSg := {(x,i) | the i-th bit of R(x) is 1}.

BITSg, is clearly in EXP. Since EXP C P/poly, for some d > 1 there is a circuit family {C,} of size at
most n¢ 4+ d computing BITSg on n-bit inputs.

Now, on a given instance x of L, the circuit D(i) := Cy|y| 4| (¥, i) has ¢’ - |x|° inputs (ranging over
all possible i = 1,...,2¢"M") and size at most s(|x|) := (2 + ¢')¢|x|*’ +d, such that the output of R(x)
is 1¢(D) (the truth table of D). Therefore, for every x, the truth tables output by R(x) all have circuit
complexity at most e - s(|x|) for some constant e, by Lemma 2.3. This observation leads to the following
exponential-time algorithm for L.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 13

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

On input x, run the reduction R(x), obtaining an exponential-size instance (7', k) of MCSP.
If k > e s(|x|) then accepr. Otherwise, cycle through every circuit E of size at most k; if
1t(E) =T then accept. If no such E is found, reject.

Producing the truth table 7' takes exponential time, and checking all 200(1025() circuits of size
O(s(n)) on all polynomial-size inputs to the truth table also takes exponential time. As a result L € EXP,
which completes the proof. O

The same argument can be used to prove collapses for other reducibilities. For example, swapping
time for space in the proof of Theorem 4.1, we obtain:

Corollary 4.2. If MCSP is NP-hard under logspace reductions, then PSPACE C P /poly = NEXP =
PSPACE.

Theorem 4.1 shows that complexity class separations follow from establishing that MCSP is NP-
hard in the most general sense. We now prove Theorem 1.6, that NP-hardness of MCSP implies
EXP # NP NP /poly.

Proof of Theorem 1.6. By contradiction. Suppose MCSP is NP-hard and EXP = NP NP /poly. Then
EXP C P/poly implies NEXP = EXP by Theorem 4.1, but NEXP = EXP C NP, contradicting the
nondeterministic time hierarchy [27]. L]

Theorem 1.7 immediately follows from the same argument as Theorem 1.6, applying Corollary 4.2.

We would like to strengthen Theorem 1.6 to show that the NP-hardness of MCSP actually implies
circuit lower bounds such as EXP ¢ P /poly. This seems like a more natural consequence: an NP-hardness
reduction would presumably be able to print truth tables of high circuit complexity from no-instances
of low complexity. (Indeed this is the intuition behind Kabanets and Cai’s results concerning “natural”
reductions [20].)

4.2 Consequences of NP-hardness under ACO reductions

Now we turn to showing consequences of the assumption that MCSP is NP-hard under uniform ACO
reductions.

Reminder of Theorem 1.8. If MCSP is NP-hard under logtime-uniform ACO reductions, then NP ¢
P /poly and E ¢ i.0.-SIZE(2%") for some & > 0. As a consequence, P = BPP also follows.
We will handle the two consequences in two separate theorems.

Theorem 4.3. [f MCSP is NP-hard under logtime ACO reductions, then NP C P /poly = NEXP C
P /poly.

Proof. The proof is similar in spirit to that of Theorem 4.1. Suppose that MCSP is NP-hard under
logtime-uniform ACO reductions, and that NP C P /poly. Then ;P C P/poly for every k > 1.

Let L € NEXP; in particular, let L € NTIM E(Z”C) for some c. As in Theorem 4.1, define the sparse
NP language L' = {x01' | x € L, t = 2"}, By assumption, there is a logtime-uniform ACO reduction R
from the sparse language L' to MCSP. This reduction can be naturally viewed as a X;P reduction S(-,-)

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 14

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

from L to exponential-size instances of MCSP, for some constant k. In particular, S(x,i) outputs the i-th
bit of the reduction R on input x01?, and S can be implemented in X;P, and hence in P /poly as well.
That is, for all inputs x, the string S(x, 1) ---S(x,2°(")) is the truth table of a function with poly |x|)-
size circuits. Therefore by Lemma 2.3, the truth table of the MCSP instance being output on x must have
a poly(|x|)-size circuit. We can then decide L in X, ,P time: on an input x, existentially guess a circuit C
of poly(|x|) size, then for all inputs y to C, verify that S(x,y) = C(y). The latter equality can be checked
in X;P. As a result, we have NEXP C X, ,P C P/poly. O

Theorem 4.4. If MCSP is NP-hard under P-uniform ACO reductions, then there is a 0 > 0 such that
Eg i.o.-SIZE(Z‘S”). As a consequence, P = BPP also follows from the same assumption (Impagliazzo
and Wigderson [19]).

Proof. Assume the opposite: that MCSP is NP-hard under P-uniform ACO reductions and for every € > 0,
E Ci.0.-SIZE(2%"). By Agrawal et al. [1] (Theorem 4.1), all languages hard for NP under P-uniform
ACO reductions are also hard for NP under P-uniform NCO reductions. Therefore MCSP is NP-hard
under P-uniform NCO reductions. Since in an NCQ circuit all outputs depend on a constant number of
input bits, the circuit size parameter k in the output of the reduction depends on only O(logn) input bits.
Similar to the argument given for Claim 3.3, the NCO reduction from PARITY to MCSP can be converted
into a natural reduction. Therefore we may assume that the size parameter k in the output of the reduction
is a function of only the length of the input to the reduction. (Nevertheless, we are not yet done at this
point: the P-uniformity prevents us from upper-bounding the circuit complexity of the MCSP instances
output by this reduction. Our additional hypothesis will let us do precisely that.)

Let R be a polynomial-time algorithm that on input 1” produces a P-uniform NCO circuit C, on n
inputs that reduces PARITY to MCSP. Fix ¢ such that R runs in at most n¢ + ¢ time and every truth table
produced by the reduction is of length at most n¢ + c. Define an algorithm R’ as follows:

On input (n,i,b), where n is a binary integer, i € {1,...,n°+c}, and b € {0,1}, run R(1")
to produce the circuit Cy,, then evaluate C,(0") to produce a truth table 7,. If b = 0, output
the " bit of C,,. If b = 1, output the i’ bit of T;,.

For an input (n,i,b), R’ runs in time O(n°); when m = |(n,i,b)|, this running time is 200" <).
By assumption, for every £ > 0, R’ has circuits {D,,} of size O(28") < O(n'“*?)?¢) for infinitely many
input lengths m. This has two important consequences:
1. For every € > 0 there are infinitely many input lengths m = O(logn) such that the size parameter
k in the natural reduction from PARITY to MCSP is at most n*¢ (or, the instance is trivial). To
see this, first observe that 0" is always a no-instance of PARITY, so R(0") always maps to a truth
table T, of circuit complexity greater than k(n) (for some k(n)). Since R'(n,i, 1) prints the i"" bit
of R(0"), and the function R'(n, -, 1) is computable with an O(n(“+2)2€)_size circuit D,,, the circuit
complexity of T, is at most O(n(‘”rz)28), by Lemma 2.3. Therefore the output size parameter k of
R(0") for these input lengths m is at most O(n%¢).
2. On the same input lengths m for which k is O(n(¢+2)2¢), the same circuit D,, of size O(n'*?)%¢) can
compute any bit of the NCO circuit C, that reduces PARITY to MCSP. This follows from simply
setting b = 0 in the input of D,,.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 15

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

The key point is that both conditions are simultaneously satisfied for infinitely many input lengths m,
because both computations are made by the same 20()_time algorithm R’. We use these facts to construct
depth 3 circuits of size 200) for y = 2¢&(c +2) that computes parity for infinitely many input lengths m.
As with previous proofs, the top OR has incoming wires for all possible circuits of size O(n”) and the
middle AND has wires for all possible bits i of the truth table produced by the reduction. At the bottom,
construct a CNF of size 2°("") computing the following TIME(O(n?)) algorithm A.

On input (x,C’,i,D), where n = |x| and D is an O(n?) size circuit with m = O(logn) inputs:

Assume D computes R'(n,i,b) on inputs such that m = |(n,i,b)|. Evaluate D on n, O(logn)
different choices of i, and b = 0, to construct the portion of the NCO circuit C, that computes
the size parameter k in the output of the reduction from PARITY to MCSP. Then, use this
O(logn)-size subcircuit to compute the value of k for the input length n.

Check that C' is a circuit of size at most k on inputs of length |i|. We wish to verify that
C'(i) outputs the i’ bit of the truth table T, produced by the NCO reduction on input x. We
can verify this by noting that the i’ bit of T, can also be computed in O(n?) time, via D.
Namely, produce the O(1)-size subcircuit that computes the " output bit of the NCO circuit
C, (by making a constant number of queries to D with b = 0). Then, simulate the resulting
O(1)-size subcircuit on the relevant input bits of x to compute the i bit of T, and check that
C'(i) equals this bit. If all checks pass, accept, else reject.

Assuming the circuit D actually computes R', A(x,C’,i, D) checks whether C’(i) computes the i-th bit
of the NCO reduction. Taken as a whole, the depth-3 circuit computes PARITY correctly. For every € > 0,
there are infinitely many m such that the circuit size parameter k is at most O(28") < O(n(*2)?2¢), and
the circuit D of size O(25™) < O(n(¢*2)%¢) exists. Under these conditions, the above algorithm A runs in
O(n”) time. As a result, for every y > 0 we can find for infinitely many n such that has a corresponding
depth-3 ACO circuit of 29"") size. Suppose we hardwire the O(n?¢)-size circuit D that computes R’ into
the corresponding ACO circuit, on input lengths n for which D exists. Then for all ¥ > 0, PARITY can be

solved infinitely often with depth-3 ACO circuits of 200" size, contradicting Hastad (Theorem 2.1). [

Proof of Theorem 1.8. Suppose MCSP is NP-hard under logtime-uniform ACO reductions. The conse-
quence E ¢ SIZE(2%") was already established in Theorem 4.4. The consequence NP ¢ P /poly follows
immediately from combining Theorem 4.3 and Theorem 4.4. O

4.3 The hardness of nondeterministic circuit complexity

Finally, we consider the generalization of MCSP to the nondeterministic circuit model. Recall that a
nondeterministic circuit C of size s takes two inputs, a string x on 7 bits and a string y on at most s bits.
We say C computes a function f: {0,1}" — {0, 1} if for all x € {0, 1}",

flx)=1 = there is a y of length at most s such that C(x,y) = 1.

Observe that the Cook-Levin theorem implies that every nondeterministic circuit C of size s has an
equivalent nondeterministic depth-two circuit C’ of size s - poly(logs) (and unbounded fan-in). Therefore,

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 16

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

it is no real loss of generality to define Nondeterministic MCSP (NMCSP) to be the set of all pairs (T, k)
where T is the truth table of a function computed by a depth-two nondeterministic circuit of size at most
k. This problem is in £,P: given (T, k), existentially guess a nondeterministic circuit C of size at most k,
then for every x such that T'(x) = 1, existentially guess a y such that C(x,y) = 1; for every x such that
T (x) = 0, universally verify that for all y, C(x,y) = 0. However, NMCSP is not known to be X,P-hard.
(The proof of Theorem 1.9 below will work for the depth-two version with unbounded fan-in, and the
unrestricted version.)

Recall that it is known that MCSP for depth-two circuits is NP-hard [11, 7]. That is, the “deterministic
counterpart” of NMCSP is known to be NP-hard.

Reminder of Theorem 1.9. If NMCSP is MA-hard under polynomial-time reductions, then EXP ¢
P /poly.

Proof. Suppose that NMCSP is MA-hard under polynomial-time reductions, and suppose that EXP C
P /poly. We wish to establish a contradiction. The proof is similar in structure to other theorems of this
section (such as Theorem 4.1). Let L € MATIME(2"), and define

L' = {x01" |xeL} e MA.

By assumption, there is a reduction R from L’ to NMCSP that runs in polynomial time. Therefore for
some constant d we have a reduction R’ from L that runs in 2" time, and outputs 2% -size instances of
NMCSP with a size parameter s(x) on input x. Since R’ runs in exponential time, and we assume EXP is
in P/poly, there is a k such that for all x, there is a nondeterministic circuit C((x,i),y) of < n* +k size
that computes the i-th bit of R’ (x). Therefore we know that s(x) < |x|¥ 4+ k on such instances (otherwise
we can trivially accept). We claim that L € EXP, by the following algorithm:

Given x, run R'(x) to compute s(x). If s(x) > |x|* 4+ k then accept.
For all circuits C in increasing order of size up to s(x),
Initialize a table T of 29" bits to be all-zero.
Forall i=1,...,2% and all 2°™ possible nondeterministic strings y,
Check for each i if there is a y such that C((x,i),y) = 1; if so, set T[i] = 1.
If T = R'(x) then accept.
Reject (no nondeterministic circuit of size at most s(x) was found).

Because s(x) < |x|¥ + k, the above algorithm runs in 27 Po¥(°¢n) time and decides L. Therefore
L € EXP. But this implies that MAEXP = EXP C P/poly, which contradicts the circuit lower bound of
Buhrman, Fortnow, and Thierauf [10].]

5 Conclusion

We have demonstrated several formal reasons why it has been difficult to prove that MCSP is NP-hard.
In some cases, proving NP-hardness would imply longstanding complexity class separations; in other
cases, it is simply impossible to prove NP-hardness.

There are many open questions left to explore. Based on our study, we conjecture that:

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 17

http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

e If MCSP is NP-hard under polynomial-time reductions then EXP ¢ P /poly. We showed that
if MCSP is hard for sparse NP languages then EXP # ZPP; surely a reduction from SAT to
MCSP would provide a stronger consequence. After the conference version of this paper appeared,
Hitchcock and Pavan [17] showed that EXP #£ NP N SIZE[Z"E] (for some € > 0) is a consequence of
the NP-hardness of MCSP under truth-table reductions, and Hirahara and Watanabe [16] have also
shown that EXP £ ZPP follows from weaker hypotheses about the NP-completeness of MCSP.

e MCSP is (unconditionally) not NP-hard under logtime-uniform ACO reductions. Theorem 1.3
already implies that MCSP is not NP-hard under polylogtime-uniform NCO reductions. Perhaps
this next step is not far away, since we already know that hardness under P-uniform ACO reductions
implies hardness under P-uniform NCO reductions (by Agrawal et al. [1]).

It seems that we can prove that finding the minimum DNF for a given truth table is NP-hard, because
of 22(") size lower bounds against DNFs [7]. Since there are 290"°) size lower bounds against ACO, can it
be proved that finding the minimum ACO circuit for a given truth table is QuasiNP-hard? In general, can
circuit lower bounds imply hardness results for circuit minimization?

While we have proven consequences if MCSP is NP-hard under general polynomial-time reductions,
we have none if it is hard under polynomial-time randomized reductions. Is it possible to get a lower
bound for this case as we were able to in the case of local reductions?

A Appendix: Unary and binary encodings of MCSP

We will describe our reductions in the reduction model with “out of bounds” errors (Definition 1.1). In
that model, we may define a unary encoding of MCSP (T, k) to be Tx where |T| is the largest power
of two such that |T| < |Tx|, k = |x|. This encoding is sensible because we may assume without loss of
generality that k < 2|T'|/log|T|: the size of a minimum circuit for a Boolean function on »n inputs is
always less than 2! /n (for a reference, see for example [25, p.28-31]). Similarly, we defined MCSP
(T, k) in the binary encoding to simply be Tk where |T| is the largest power of two such that |T'| < |Tk|.

Note that these encodings may be undesirable if one really wants to allow trivial yes instances in a
reduction to MCSP where the size parameter k is too large for the instance to be interesting, or if one
wants to allow T to have length other than a power of two. For those cases, the following binary encoding
works: we can encode the instance (7, k) as the strings T00k’ such that k" is k written “in binary” over the
alphabet {01, 11}. There are also TIME(poly(logn)) reductions to and from this encoding to the others
above, mainly because &’ has length O(logn).

Proposition A.1. There are TIME(poly(logn)) reductions between the unary encoding of MCSP and
the binary encoding of MCSP.

Proof. We can reduce from the binary encoding to the unary encoding as follows. Given an input y,
perform a doubling search (probing positions 1, 2, 4, ..., 2¢, etc.) until a x character is returned. Letting
2% < |y| be the position of the last bit read, this takes O(log|y|) probes to the input. Then we may “parse”
the input y into 7T as the first 2¢ bits, and integer k" as the remainder. To process the integer k', we begin
by assuming k¥’ = 1, then we read in log y|) bits past the position 2¢, doubling &’ for each bit read and
adding 1 when the bit read is 1, until ¥’ > |y| (in which case we do not have to read further: the instance
is trivially yes) or we read a % (in which case we have determined the integer k). Finally, if the bit

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 18

http://dx.doi.org/10.4086/toc

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

position i requested is at most 2¢, then we output the identical bit from the input Tk. If not, we print 1 if
i <2'+k+1, and * otherwise. The overall output of this reduction is 71 where k < |T'|. Since addition
of O(logn) numbers can be done in O(logn) time, the above takes poly(logn) time.
To reduce from the unary encoding to the binary encoding, we perform a doubling search on the input
y as in the previous reduction, to find the largest £ such that 2¢ < |y|. Then we let the first 2¢ bits be T,
and set the parameter k = |y| —2¢ — 1. (Finding |y| can be done via binary search in O(log|y|) probes
to the input.) From here, outputting the i-th bit of either T or k in the binary encoding is easy, since
k| = O(loglyl).
O

Acknowledgments. We thank Greg Bodwin and Brynmor Chapman for their thoughtful discussions
on these results. We also thank Eric Allender, Oded Goldreich, and anonymous referees for helpful
comments. We are also grateful to Eric for providing a preprint of his work with Dhiraj Holden.

References

[1] MANINDRA AGRAWAL, ERIC ALLENDER, RUSSELL IMPAGLIAZZO, TONIANN PITASSI, AND
STEVEN RUDICH: Reducing the complexity of reductions. Comput. Complexity, 10(2):117-138,
2001. Preliminary version in STOC’97. [doi:10.1007/s00037-001-8191-1] 15, 18

[2] MIKLOS AJTATIL: E}—formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1-48,
1983. [doi:10.1016/0168-0072(83)90038-6] 12

[3] ERIC ALLENDER: When worlds collide: Derandomization, lower bounds, and Kolmogorov com-
plexity. In 31th IARCS Conf. Found. of Software Tech. and Theoret. Comput. Sci. (FSTTCS’01),
volume 2245 of LNCS, pp. 1-15. Springer, 2001. [doi:10.1007/3-540-45294-X_1] 7

[4] ERIC ALLENDER: Personal communication, 2014. 2

[5] ERIC ALLENDER, HARRY BUHRMAN, MICHAL KOUCKY, DIETER VAN MELKEBEEK, AND
DETLEF RONNEBURGER: Power from random strings. SIAM J. Comput., 35(6):1467-1493, 2006.
Preliminary version in FOCS’02. [d0i:10.1137/050628994] 2, 3,7

[6] ERIC ALLENDER AND BIRESWAR DAS: Zero knowledge and circuit minimization. Inform. and
Comput., 2017. Preliminary versions in MFCS’ 14 and ECCC. [d0i:10.1016/].ic.2017.04.004] 2

[7] ERIC ALLENDER, LISA HELLERSTEIN, PAUL MCCABE, TONIANN PITASSI, AND MICHAEL
SAKS: Minimizing disjunctive normal form formulas and AC? circuits given a truth table. STAM J.
Comput., 38(1):63-84, 2008. Preliminary version in CCC’06. [doi:10.1137/060664537] 2, 17, 18

[8] ERIC ALLENDER, DHIRAJ HOLDEN, AND VALENTINE KABANETS: The minimum oracle circuit
size problem. Comput. Complexity, 26(2):469—496, 2017. Preliminary version in STACS’15.
[doi:10.1007/s00037-016-0124-0] 3

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 19

http://dx.doi.org/10.1145/258533.258671
http://dx.doi.org/10.1007/s00037-001-8191-1
http://dx.doi.org/10.1016/0168-0072(83)90038-6
http://dx.doi.org/10.1007/3-540-45294-X_1
http://dx.doi.org/10.1109/SFCS.2002.1181992
http://dx.doi.org/10.1137/050628994
http://dx.doi.org/10.1007/978-3-662-44465-8_3
http://eccc.hpi-web.de/report/2014/068/
http://dx.doi.org/10.1016/j.ic.2017.04.004
http://dx.doi.org/10.1109/CCC.2006.27
http://dx.doi.org/10.1137/060664537
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21
http://dx.doi.org/10.1007/s00037-016-0124-0
http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

[9] SANJEEV ARORA AND BOAZ BARAK: Computational Complexity: A Modern Approach. Cam-
bridge Univ. Press, 2009. 6

[10] HARRY BUHRMAN, LANCE FORTNOW, AND THOMAS THIERAUF: Nonrelativizing separations.
In Proc. 13th IEEE Conf. on Computational Complexity (CCC’98), pp. 8—12. IEEE Comp. Soc.
Press, 1998. [doi:10.1109/CCC.1998.694585] 17

[11] SEBASTIAN CZORT: The complexity of minimizing disjunctive normal form formulas, 1999.
Master’s Thesis, University of Aarhus. 2, 17

[12] VITALY FELDMAN: Hardness of approximate two-level logic minimization and PAC learning with
membership queries. J. Comput. System Sci., 75(1):13-26, 2009. Preliminary versions in STOC’06
and ECCC. [doi:10.1016/].jcss.2008.07.007] 2

[13] ODED GOLDREICH, SHAFI GOLDWASSER, AND SILVIO MICALI: How to construct random
functions. J. ACM, 33(4):792-807, 1986. Preliminary version in FOCS’84. [doi:10.1145/6490.6503]
2

[14] ODED GOLDREICH, SILVIO MICALI, AND AVI WIGDERSON: Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691-729, 1991.
Preliminary version in FOCS’86. [doi:10.1145/116825.116852] 2

[15] JOHAN HASTAD: Almost optimal lower bounds for small depth circuits. In Proc. 18th STOC, pp.
6—20. ACM Press, 1986. [doi1:10.1145/12130.12132] 6

[16] SHUICHI HIRAHARA AND OSAMU WATANABE: Limits of minimum circuit size problem as
oracle. In Proc. 31st IEEE Conf. on Computational Complexity (CCC’16), volume 50, pp.
18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. Available at ECCC.
[doi:10.4230/LIPIcs.CCC.2016.18] 18

[17] JOHN M. HITCHCOCK AND ADURI PAVAN: On the NP-completeness of the minimum circuit size
problem. In 35th IARCS Conf. Found. of Software Tech. and Theoret. Comput. Sci. (FSTTCS’15),
volume 45 of LIPIcs, pp. 236-245, 2015. [doi:10.4230/LIPIcs. FSTTCS.2015.236] 18

[18] RUSSELL IMPAGLIAZZO, VALENTINE KABANETS, AND AVI WIGDERSON: In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. Comput. System Sci., 65(4):672-694,
2002. Preliminary version in CCC’01. [doi:10.1016/S0022-0000(02)00024-7] 6

[19] RUSSELL IMPAGLIAZZO AND AVl WIGDERSON: P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma. In Proc. 29th STOC, pp. 220-229. ACM Press, 1997.
[doi:10.1145/258533.258590] 3, 15

[20] VALENTINE KABANETS AND JIN-YI CAI: Circuit minimization problem. In Proc. 32nd STOC, pp.
73-79. ACM Press, 2000. [doi:10.1145/335305.335314] 2,5, 6, 8,9, 14

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 20

http://dx.doi.org/10.1109/CCC.1998.694585
http://dx.doi.org/10.1145/1132516.1132569
http://eccc.hpi-web.de/eccc-reports/2005/TR05-127/
http://dx.doi.org/10.1016/j.jcss.2008.07.007
http://dx.doi.org/10.1109/SFCS.1984.715949
http://dx.doi.org/10.1145/6490.6503
http://dx.doi.org/10.1109/SFCS.1986.47
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1145/12130.12132
https://eccc.weizmann.ac.il/report/2015/198/
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.18
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236
http://dx.doi.org/10.1109/CCC.2001.933865
http://dx.doi.org/10.1016/S0022-0000(02)00024-7
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/335305.335314
http://dx.doi.org/10.4086/toc

[21]

[22]

[23]

[24]

[25]

[26]

[27]

ON THE (NON) NP-HARDNESS OF COMPUTING CIRCUIT COMPLEXITY

CoDpYy D. MURRAY AND R. RYAN WILLIAMS: On the (non) NP-hardness of computing
circuit complexity. In Proc. 30th IEEE Conf. on Computational Complexity (CCC’15), vol-
ume 33 of LIPIcs, pp. 365-380. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
[doi:10.4230/LIPIcs.CCC.2015.365] 1

CHRISTOS H. PAPADIMITRIOU AND MIHALIS YANNAKAKIS: A note on succinct representations
of graphs. Inf. Control, 71(3):181-185, 1986. [doi:10.1016/S0019-9958(86)80009-2] 4

SVEN SKYUM AND LESLIE G. VALIANT: A complexity theory based on Boolean algebra. J. ACM,
32(2):484-502, 1985. Preliminary version in SFCS’81. [doi:10.1145/3149.3158] 4

N. VARIYAM VINODCHANDRAN: Nondeterministic circuit minimization problem and de-
randomizing Arthur-Merlin games. [Int. J. Found. Comput. Sci., 16(6):1297-1308, 2005.
[doi:10.1142/S0129054105003819] 5

HERIBERT VOLLMER: Introduction to Circuit Complexity: A Uniform Approach. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 1999. [doi:10.1007/978-3-662-03927-4]
18

R. RYAN WILLIAMS: Natural proofs versus derandomization. SIAM J. Comput., 45(2):497-529,
2016. Preliminary version in STOC’13. [doi:10.1137/130938219, arXiv:1212.1891] 6, 8

STANISLAV ZAK: A Turing machine time hierarchy. Theoret. Comput. Sci., 26(3):327-333, 1983.
[doi:10.1016/0304-3975(83)90015-4] 14

AUTHORS

Cody D. Murray
Ph.D. student

MIT, Cambridge, MA
cdmurray @mit.edu

R. Ryan Williams

Associate professor

MIT, Cambridge, MA

rrw @mit.edu
http://csail.mit.edu/"rrw/

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22 21

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://dx.doi.org/10.1016/S0019-9958(86)80009-2
http://dx.doi.org/10.1109/SFCS.1981.3
http://dx.doi.org/10.1145/3149.3158
http://dx.doi.org/10.1142/S0129054105003819
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1145/2488608.2488612
http://dx.doi.org/10.1137/130938219
http://arxiv.org/abs/1212.1891
http://dx.doi.org/10.1016/0304-3975(83)90015-4
http://csail.mit.edu/~rrw/
http://dx.doi.org/10.4086/toc

CoDpY D. MURRAY AND R. RYAN WILLIAMS

ABOUT THE AUTHORS

CoDY D. MURRAY got an undergraduate degree from UCSD in 2013, a Masters from

Stanford in 2016, and is now a Ph. D. student at MIT. His advisor is Ryan Williams.

At Stanford, he enjoyed riding his bike around Palo Alto, and he enjoys designing cool
games. He doesn’t like to talk about himself.

R. RYAN WILLIAMS was an assistant professor at Stanford from 2011 to 2016, and is now
an associate professor at MIT. He got his Ph. D. from Carnegie Mellon in 2007, advised
by Manuel Blum. He doesn’t like to talk about himself, either.

THEORY OF COMPUTING, Volume 13 (4), 2017, pp. 1-22

22

http://www.ucsd.edu
http://www.stanford.edu
http://www.mit.edu
http://www.stanford.edu
http://www.mit.edu
http://cs.cmu.edu
http://www.cs.cmu.edu/~mblum/
http://dx.doi.org/10.4086/toc

	Introduction
	Intuition

	Preliminaries
	MCSP and sub-polynomial time reductions
	Deterministic reductions
	Randomized reductions

	NP-hardness of MCSP implies lower bounds
	Consequences of NP-hardness under polytime and logspace reductions
	Consequences of NP-hardness under AC0 reductions
	The hardness of nondeterministic circuit complexity

	Conclusion
	Appendix: Unary and binary encodings of MCSP
	References

