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Abstract: A recent model for property testing of probability distributions (Chakraborty et
al., ITCS 2013, Canonne et al., SICOMP 2015) enables tremendous savings in the sample
complexity of testing algorithms, by allowing them to condition the sampling on subsets of
the domain. In particular, Canonne, Ron, and Servedio (SICOMP 2015) showed that, in this
setting, testing identity of an unknown distribution D (i. e., whether D = D∗ for an explicitly
known D∗) can be done with a constant number of queries (i. e., samples), independent of the
support size n—in contrast to the required Ω(

√
n) in the standard sampling model. However,

it was unclear whether the same stark contrast exists for the case of testing equivalence,
where both distributions are unknown. Indeed, while Canonne et al. established a poly(logn)-
query upper bound for equivalence testing, very recently brought down to Õ(log logn) by
Falahatgar et al. (COLT 2015), whether a dependence on the domain size n is necessary was
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still open, and explicitly posed by Fischer at the Bertinoro Workshop on Sublinear Algorithms
(2014). In this article, we answer the question in the affirmative, showing that any testing
algorithm for equivalence must make Ω

(√
log logn

)
queries in the conditional sampling

model. Interestingly, this demonstrates a gap between identity and equivalence testing, absent
in the standard sampling model (where both problems have sampling complexity nΘ(1)).

We also obtain results on the query complexity of uniformity testing and support-size
estimation with conditional samples. In particular, we answer a question of Chakraborty et al.
(ITCS 2013) showing that non-adaptive uniformity testing indeed requires Ω(logn) queries
in the conditional model. This is an exponential improvement on their previous lower bound
of Ω(log logn), and matches up to polynomial factors their poly(logn) upper bound. For the
problem of support-size estimation, we provide both adaptive and non-adaptive algorithms,
with query complexities poly(log logn) and poly(logn), respectively, and complement them
with a lower bound of Ω(logn) conditional queries for non-adaptive algorithms.

1 Introduction

“No, Virginia, there is no constant-query tester.”1

Understanding properties and characteristics of an unknown probability distribution is a fundamental
problem in statistics, and one that has been thoroughly studied. However, it is only since the work of
Goldreich and Ron [27] and Batu et al. [9] that the problem has been considered through the lens of
theoretical computer science, more particularly in the setting of property testing. In this framework, an
unknown “huge object”—here a probability distribution over a humongous domain—can be accessed only
by making a few local inspections, and the goal is to decide whether the object satisfies some prespecified
property. While most of the literature focuses on the large sample regime and studies error exponents and
rates of convergence, more recent testing algorithms look at these problems in the small-sample regime
focusing on the probability of errors and sample complexity. (We refer the reader to [25, 35, 36, 26] for
an introduction and surveys on the general field of property testing. Moreover, due to the specificities of
our model we will interchangeably use the terms sample and query complexity, referring to conditional
samples as “queries.”)

Over the subsequent decade, a flurry of work explored this new area, resulting in a better and often
complete understanding of a number of questions in property testing of distributions, or distribution testing
(see, e. g., [27, 8, 11, 33, 39, 4, 12, 38, 29, 5, 18, 45] or [13] for a survey). In many cases, these culminated
in provably sample-optimal algorithms, all of which required at least an nΩ(1) dependence on the domain
size n in the sample complexity—a dependence which, while sublinear, can still be prohibitively large.
However, the standard setting of distribution testing, where one only obtains independent samples from an
unknown distribution D, does not encompass all scenarios one may encounter. In recent years, alternative
models have thus been proposed to capture more specific situations [28, 16, 14, 30, 15]. Among these
is the conditional oracle model [16, 14] which will be the focus of our work. In this setting, the testing
algorithm is given the ability to sample from conditional distributions: that is, to specify a subset S of
the domain and obtain samples from DS, the distribution induced by D on S (the formal definition of the

1The curious reader is referred to [47].
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model can be found in Definition 2.1). The hope is that allowing a richer set of queries to the unknown
underlying distributions might significantly reduce the number of samples the algorithms need, thereby
sidestepping the strong lower bounds that hold in the standard sampling model.

1.1 Motivation for the conditional model

A recent trend in testing and learning circumvents these impossibility results by providing a more flexible
type of queries than independent samples. One example can be found in the recent paradigm of active
learning [20, 40] (and its testing counterpart, active testing [7]), which modifies and generalizes the usual
unsupervised learning paradigm. In this setting, the algorithm is provided with unlabeled examples only,
but can then adaptively request the label of any of these examples. While not directly comparable to
these two frameworks (which are not applicable to the study of probability distributions), the conditional
sampling model we shall work on shares some similarity in spirit. Specifically, it provides the algorithm
with some additional power, and the ability to perform (some type of) more powerful queries to the object
to be learned or tested.

The setting of conditional sampling is related to that of group testing, where the objective is to identify
a set of defective individuals among a large population, by querying whether suitably chosen subsets
contain at least one defective individual. Group testing has been a field of interest since the 40’s and has
remained an active area of research since (see, e. g., [21, 22, 32, 17]). The type of queries allowed in this
framework is reminiscent of conditional sampling, where one obtains samples conditioned on a subset.
This connection between group testing and conditional sampling is explored in greater detail in [2].

Of course, a crucial aspect of designing and studying these new models of learning and testing is to
understand how justified and natural they are, and argue that they do indeed capture natural situations.
In the case of distribution testing, the conditional access model does meet these criteria, as discussed
in [16] and [14]. Namely, besides the purely theoretical aspect of helping understand the key aspects and
limitations of the underlying statistical problems, this framework is characteristic of situations which arise
in natural and social sciences. At a very high-level, any scenario where an experimenter or practitioner
is able to restrict the set of possible outcomes of an experiment or poll—e. g., in chemistry, where one
might control some factor such as the acidity of a solution; or in sociology by performing stratified
polling—provides this experimenter with the sort of access granted by the conditional model.

1.2 Background and previous work

We focus in this paper on proving lower bounds for testing two extremely natural properties of distribu-
tions, namely equivalence testing (“are these two distributions identical?”) and support-size estimation
(“how many different outcomes can actually be observed?”). Along the way, we use some of the techniques
we develop to obtain an upper bound on the query complexity of the latter. We state below an informal def-
inition of these two problems, along with closely related ones (uniformity and identity testing). Hereafter,
“oracle access” to a distribution D over [n] = {1, . . . ,n} means access to samples generated independently
from D, and “far” is with respect to the total variation distance dTV(D1,D2) = supS⊆[n](D1(S)−D2(S))
between probability distributions. Moreover, as in usual in property testing, in all the problems below we
allow the algorithms to be randomized. In the description of the results below, we will often consider the
distance parameter ε as a constant (and focus on the domain size n as the key parameter).
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Uniformity testing: granted oracle access to D, decide whether D equals U[n] (the uniform distribution
on [n]) or is far from it.

Identity testing: granted oracle access to D and the full description of a fixed D∗, decide whether D
equals D∗ or is far from it.

Equivalence (closeness) testing: granted independent oracle accesses to D1, D2 (both unknown), decide
whether D1 and D2 are equal or far from each other.

Support-size estimation: granted oracle access to D, return a multiplicative approximation of the size
of the support2 supp(D) ={ x : D(x)> 0 }.

It is not difficult to see that each of the second and third problems generalizes the previous, and therefore
has query complexity at least as big. All of these tasks are known to require sample complexity nΩ(1)

in the standard sampling model (SAMP); yet, as prior work [16, 14] shows, their complexity decreases
tremendously when one allows the more flexible type of access to the distribution(s) provided by a
conditional sampling oracle (COND). For the problems of uniformity testing and identity testing, the
sample complexity even becomes a constant provided the testing algorithm is allowed to be adaptive (i. e.,
when the next queries it makes can depend on the samples it previously obtained).

Testing uniformity and identity. The identity testing question is a generalization of uniformity testing,
where D∗ is taken to be the uniform distribution over [n]. The complexity of both tasks is well-understood
in the sampling model; in particular, it is known that for both uniformity and identity testing Θ

(√
n/ε2

)
samples are necessary and sufficient (see [27, 10, 33, 45] for the tight bounds on these problems).

The uniformity testing problem exemplifies the savings granted by conditional sampling—as Canonne,
Ron, and Servedio [14] showed, in this setting only Õ

(
1/ε2

)
adaptive queries3 are sufficient (and this

is optimal, up to logarithmic factors). They further prove that identity testing has constant sample
complexity as well, namely Õ

(
1/ε4

)
—very recently improved to a near-optimal Õ

(
1/ε2

)
by Falahatgar

et al. [24]. The power of the COND model is evident from the fact that a task requiring polynomially
many samples in the standard model can now be achieved with a number of samples independent of the
domain size n.

The aforementioned algorithms crucially leverage the ability to make adaptive conditional queries to
the probability distributions. Restricting the study to non-adaptive algorithms, Chakraborty et al. [16]
describe a poly(logn,1/ε)-query non-adaptive tester for uniformity, showing that even without the full
power of conditional queries one can still get an exponential improvement over the standard sampling
setting. They also obtain an Ω(log logn) lower bound for this problem, and leave open the possibility
of improving this lower bound to a logarithmic dependence. We answer this question, establishing
in Theorem 1.3 that any non-adaptive uniformity tester must perform Ω(logn) conditional queries.

2For this problem, it is typically assumed that all points in the support have probability mass at least Ω(1)/n, as without such
guarantee it becomes impossible to give any non-trivial estimate (consider for instance a distribution D such that D(i) ∝ 1/2in).

3Here and throughout, we use the notation Õ( f ) to hide polylogarithmic dependencies on the argument, i. e., for expressions
of the form O( f logc f ) (for some absolute constant c).
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Testing equivalence. The equivalence testing problem has been extensively studied over the past
decade, and its sample complexity is now known to be Θ(max(n2/3/ε4/3,

√
n/ε2)) in the sampling

model [10, 46, 18].
In the COND setting, Canonne, Ron, and Servedio showed that equivalence testing is possible

with only poly(logn,1/ε) queries. Concurrent to our work, Falahatgar et al. [24] brought this upper
bound down to Õ

(
(log logn)/ε5

)
, a doubly exponential improvement over the nΩ(1) samples needed in

the standard sampling model. However, these results still left open the possibility of a constant query
complexity—given that both uniformity and identity testing admit constant-query testers, it is natural to
wonder where equivalence testing lies.4 This question was posed by Fischer at the Bertinoro Workshop
on Sublinear Algorithms 2014 [Sublinear.info, Problem 66]. We make decisive progress in answering
it, ruling out the possibility of any constant-query tester for equivalence. Along with the upper bound
of Falahatgar et al. [24], our results nearly settle the dependence on the domain size, showing that
(log logn)Θ(1) samples are both necessary and sufficient.

Support-size estimation. Raskhodnikova et al. [34] showed that obtaining additive estimates of the
support size requires sample complexity almost linear in n. Subsequent work by Valiant and Valiant [44,
42] settles the question, establishing that Θ(n/ logn) samples are both necessary and sufficient. Note
that the proof of the Valiants’ lower bound translates to multiplicative approximations as well, as it
hinges on the hardness of distinguishing a distribution with support s≤ n from a distribution with support
s+ εn≥ (1+ ε)s. To the best of our knowledge, the question of getting a multiplicative-factor estimate
of the support size of a distribution given conditional sampling access has not been previously considered.
We provide upper and lower bounds for both the adaptive and non-adaptive versions of this problem.

1.3 Our results

We make significant progress in each of the problems introduced in the previous section, yielding a better
understanding of their query complexities. We prove four results pertaining to the sample complexity of
equivalence testing, support-size estimation, and uniformity testing in the COND framework.

Our main result gives a lower bound on the sample complexity of testing equivalence with adaptive
queries under the COND model, resolving in the negative the question of whether constant-query
complexity was achievable [Sublinear.info, Problem 66].

Theorem 1.1 (Testing Equivalence). Any adaptive algorithm which, given COND access to unknown
distributions D1,D2 on [n], distinguishes with probability at least 2/3 between (a) D1 = D2 and (b)
dTV(D1,D2)≥ 1/4, must have query complexity Ω

(√
log logn

)
.

Combined with the recent Õ(log logn) upper bound of Falahatgar et al. [24], this almost settles the sample
complexity of this question. Furthermore, as the related task of identity testing can be performed with
a constant number of queries in the conditional sampling model, this demonstrates an intriguing and
intrinsic difference between the two problems. Our result also shows an interesting contrast with the
usual sampling model, where both identity and equivalence testing have polynomial sample complexity.

4It is worth noting that an Ω(logc n) lower bound was known for equivalence testing in a weaker version of the conditional
oracle, PAIRCOND (where the tester’s queries are restricted to being either [n] or subsets of size 2 [14]).
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Next, we establish a logarithmic lower bound on non-adaptive support-size estimation, for any (large
enough) constant factor. This improves on the result of Chakraborty et al. [16], which gave a doubly
logarithmic lower bound for constant factor support-size estimation.

Theorem 1.2 (Non-Adaptive Support-Size Estimation). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n], estimates the size of its support up to a factor γ ≥

√
2 must

have query complexity Ω
(
(logn)/log2

γ
)
.

Moreover, the approach used to prove this theorem also implies an analogous lower bound on non-
adaptive uniformity testing in the conditional model, answering a conjecture of Chakraborty et al. [16].

Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n] and parameter ε ∈ (0,1/4), distinguishes with probability at
least 2/3 between (a) D = U[n] and (b) dTV(D,U[n])≥ ε , must have query complexity Ω((logn)/ε).

We note that these results complement polylog(n)-query upper bounds on non-adaptive support-size
estimation and uniformity testing, the former of which we sketch in this paper, and the latter obtained by
Chakraborty et al. [16]. This shows that both of these problems have query complexity logΘ(1) n in the
non-adaptive case.

Finally, we conclude with an upper bound for adaptive support-size estimation. Specifically, we
provide a Õ(log logn)-query algorithm for support-size estimation. This shows that the question becomes
double exponentially easier when conditional samples are allowed.

Theorem 1.4 (Adaptive Support-Size Estimation). Let τ > 0 be any constant. There exists an adaptive
algorithm which, given COND access to an unknown distribution D on [n] (guaranteed to have prob-
ability mass at least τ/n on every element of its support) and accuracy parameter ε ∈ (0,1), makes
Õ
(
(log logn)/ε3

)
queries to the oracle5 and returns a value ω̃ such that the following holds. With

probability at least 2/3, ω̃ ∈ [(1/(1+ ε)) ·ω,(1+ ε) ·ω], where ω = |supp(D)|.

1.3.1 Relation to the Ron-Tsur model

Recent work of Ron and Tsur [37] studies a model which is slightly different—and more favorable to
the—than ours. In their setting, the algorithm still performs queries consisting of a subset of the domain,
as in our case. However, the algorithm is also given the promise that the distribution is uniform on a
subset of the domain, and whenever a query set contains 0 probability mass the oracle explicitly indicates
this is the case. Their paper provides a number of results for support-size estimation in this model.

We point out two connections between our work and theirs. First, our Ω(logn) lower bound for
non-adaptive support-size estimation (Theorem 1.2) holds in the model of Ron and Tsur. Although lower
bounds in the conditional sampling setting do not apply directly to their model, our construction and
analysis do carry over, and provide a nearly tight answer to a question left unanswered in their paper.
Also, our Õ(log logn)-query algorithm for adaptive support-size estimation (Theorem 1.4) can be seen as
generalizing their result to the weaker conditional sampling model (most significantly, when we are not
given the promise that the distribution be uniform).

5We remark that the constant in the Õ depends polynomially on 1/τ .
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Problem COND model Standard model

Testing equivalence
Õ
(

log logn
ε5

)
[24]

Θ

(
max

(
n2/3

ε4/3 ,
n1/2

ε2

))
[18]

Ω
(√

log logn
)

(Theorem 1.1)

Estimating support size
(adaptive)

Õ
(

log logn
ε3

)
(Theorem 1.4)

Θ

(
n

logn

)
[42]Ω

(√
log logn

)
[16] (†)

Estimating support size
(non-adaptive)

O(poly(logn,1/ε)) (Section 5.4)

Ω(logn) (Theorem 1.2)

Testing uniformity
(non-adaptive)

Õ
(

log5 n
ε6

)
[16]

Θ

(√
n

ε2

)
[33]

Ω

(
logn

ε

)
(Theorem 1.3)

Table 1: Summary of results. Note that the lower bound (†) can also be easily derived from our lower
bound on testing equivalence.

1.4 Techniques and proof ideas

Lower bound on adaptive equivalence testing. In order to prove our main lower bound, Theorem 1.1,
we have to deal with one main conceptual issue: adaptivity. While the standard sampling model does
not, by definition, allow any choice on what the next query to the oracle should be, this is no longer the
case for COND algorithms. Quantifying the power that this grants an algorithm makes things much more
difficult. To handle this point, we follow the approach of Chakraborty et al. [16] and focus on a restricted
class of algorithms they introduce, called “core adaptive testers” (see Section 2.2 for a formal definition).
They show that this class of testers is equivalent to general algorithms for the purpose of testing a broad
class of properties, namely those which are invariant to any permutation of the domain. Using this
characterization, it remains for us to show that none of these structurally much simpler core testers can
distinguish whether they are given conditional access to (a) a pair of random identical distributions
(D1,D1), or (b) two distributions (D1,D2) drawn according to a similar process, which are far apart.

At a high level, our lower bound works by designing instances where the property can be tested if
and only if the support size is known to the algorithm. Our construction randomizes the support size by
embedding the instance into a polynomially larger domain. Since the algorithm is only allowed a small
number of queries, Yao’s Minimax Principle allows us to argue that, with high probability, a deterministic
algorithm is unable to “guess” the support size. This separates queries into several cases. First, in a sense
we make precise, it is somehow “predictable” whether or not a query will return an element previously
observed. If this occurs, it is similarly predictable which element the query will return. On the other hand,
if a fresh element is observed, the query set is either “too small” or “too large.” In the former case, the
query will entirely miss the support, and the sampling process is identical for both types of instance. In
the latter case, the query will hit a large portion of the support, and the amount of information gleaned
from a single sample is minimal.

At a lower level, this process itself is reminiscent of the “hard” instances underlying the lower
bound of Canonne, Ron, and Servedio [14] for testing identity (with a PAIRCOND oracle), with one
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pivotal twist. As in their work, both D1 and D2 are uniform within each of ω(1) “buckets” whose size
grows exponentially and are grouped into “bucket-pairs.” Then, D2 is obtained from D1 by internally
redistributing the probability mass of each pair of buckets, so that the total mass of each pair is preserved
but each particular bucket has mass going up or down by a constant factor (see Section 3.1 for details of
the construction). However, we now add a final step, where in both D1 and D2 the resulting distribution’s
support is scaled by a random factor, effectively reducing it to a (randomly) negligible fraction of the
domain. Intuitively, this last modification has the role of “blinding” the testing algorithm. We argue
that unless its queries are on sets whose size somehow match (in a sense formalized in Section 3.2) this
random size of the support, the sequences of samples it will obtain under D1 and D2 are almost identically
distributed. The above discussion crucially hides many significant aspects and technical difficulties which
we address in Section 3. Moreover, we observe that the lower bound we obtain seems to be optimal with
regard to our proofs techniques (specifically, to the decision tree approach), and not an artifact of our
lower bound instances. Namely, there appear to be conceptual barriers to strengthening our result, which
would require new ideas.

Lower bound on non-adaptive support-size estimation. Turning to the (non-adaptive) lower bound
of Theorem 1.2, we define two families of distributions D1 and D2, where an instance is either a draw
(D1,D2) from D1×D2, or simply (D1,D1). Any distribution in D2 has support size γ times that of its
corresponding distribution in D1. Yet, we argue that no non-adaptive deterministic tester making too
few queries can distinguish between these two cases, as the tuple of samples it will obtain from D1 or
(the corresponding) D2 is almost identically distributed (where the randomness is over the choice of the
instance itself). To show this last point, we analyze separately the case of “small” queries (conditioning
on sets which turn out to be much smaller than the actual support size, and thus with high probability will
not even intersect it) and the “large” ones (where the query set S is so big compared to the support T that a
uniform sample from S∩T is essentially indistinguishable from a uniform sample from S). We conclude
the proof by invoking Yao’s Principle, carrying the lower bound back to the setting of non-adaptive
randomized testers.

Interestingly, this argument essentially gives us Theorem 1.3 “for free.” Indeed, the big-query-set case
above is handled by proving that the distribution of samples returned on those queries is indistinguishable,
both for D1 and D2, from samples obtained from the actual uniform distribution. Considering again
the small-query-set case separately, this allows us to argue that a random distribution from (say) D1 is
indistinguishable from uniform.

Upper bound on support-size estimation. Our algorithm for estimating the support size within a
constant factor (Theorem 1.4) is simple in spirit, and follows a guess-and-check strategy. In more detail, it
first obtains a “reference point” outside the support, to check whether subsequent samples it may consider
belong to the support. Then, it attempts to find a rough upper bound on the size of the support, of the
form 22 j

(so that only loglogn many options have to be considered); by using its reference point to check
if a uniform random subset of this size contains, as it should, at least one point from the support. Once
such an upper bound has been obtained using this double-exponential strategy, a refined bound is then
obtained via a binary search on the new range of values for the exponent, {2 j−1, . . . ,2 j}. Not surprisingly,
our algorithm draws on similar ideas as in [37, 41], with some additional machinery to supplement
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the differences in the models. Interestingly, as a side-effect, this upper bound shows our analysis of
Theorem 1.1 to be tight up to a quadratic improvement. Indeed, the lower bound construction we consider
(see Section 3.1) can be easily “defeated” if an estimate of the support size is known, and therefore cannot
yield better than a Ω(log logn) lower bound. Similarly, this further shows that the adaptive lower bound
for support-size estimation of Chakraborty et al. [16] is also tight up to a quadratic improvement.

Organization. The rest of the paper describes details and proofs of the results mentioned in the above
discussion. In Section 2, we introduce the necessary definitions and some of the tools we shall use.
Section 3 covers our main result on adaptive equivalence testing, Theorem 1.1. In Section 4 we prove our
lower bounds for support-size estimation and uniformity testing, and Section 5 details our upper bounds
for support-size estimation. The corresponding sections may be read independently.

2 Preliminaries

2.1 Notation and sampling models

All throughout this paper, we denote by [n] the set {1, . . . ,n}, and by log the logarithm in base 2. A
probability distribution over a (countable) domain [n] is a non-negative function D : [n]→ [0,1] such that
∑x∈[n] D(x) = 1. We denote by US the uniform distribution on a set S. Given a distribution D over [n]
and a set S ⊆ [n], we write D(S) for the total probability mass ∑x∈S D(x) assigned to S by D. Finally,
for S⊆ [n] such that D(S)> 0, we denote by DS the conditional distribution of D restricted to S, that is
DS(x) = D(x)/D(S) for x ∈ S and DS(x) = 0 otherwise.

As is usual in distribution testing, in this paper the distance between two distributions D1,D2 on [n]
will be the total variation distance.

dTV(D1,D2)
def
=

1
2
‖D1−D2‖1 =

1
2 ∑

x∈[n]
|D1(i)−D2(i)|= max

S⊆[n]
(D1(S)−D2(S)) (2.1)

which takes value in [0,1].

In this work, we focus on the setting of conditional access to the distribution, as introduced and
studied in [16, 14]. We reproduce below the corresponding definition of a conditional oracle, henceforth
referred to as COND.

Definition 2.1 (Conditional access model). Fix a distribution D over [n]. A COND oracle for D, denoted
CONDD, is defined as follows: the oracle takes as input a query set S⊆ [n], chosen by the algorithm, that
has D(S) > 0. The oracle returns an element i ∈ S, where the probability that element i is returned is
DS(i) = D(i)/D(S), independently of all previous calls to the oracle.

Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i. e., the set S has
zero probability under D. Various definitional choices could be made to deal with this. These choices
do not make a significant difference in most situations, as adaptive algorithms can include in their next

5Recall that a non-adaptive tester is an algorithm whose queries do not depend on the answers obtained from previous ones,
but only on its internal randomness. Equivalently, it is a tester that can commit “upfront” to all the queries it will make to the
oracle.
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queries a sample previously obtained; while our lower bounds can be thought of as putting exponentially
small probability mass of elements outside the support. For this reason, and for convenience, we shall
hereafter assume, following Chakraborty et al., that the oracle returns in this case a sample uniformly
distributed in S. Furthermore, as in [14, 16] we do not take the complexity of specifying the set S to the
oracle into account, and indeed allow arbitrary sets as queries.6

Finally, recall that a property P of distributions over [n] is a set consisting of all distributions that have
the property. The distance from D to a property P, denoted dTV(D,P), is then defined as infD′∈P dTV(D,P).
We use the standard definition of testing algorithms for properties of distributions over [n], tailored for
the setting of conditional access to an unknown distribution.

Definition 2.2 (Property tester). Let P be a property of distributions over [n]. A t-query COND testing
algorithm for P is a randomized algorithm T which takes as input n, ε ∈ (0,1], as well as access to
CONDD. After making at most t(ε,n) calls to the oracle, T either returns ACCEPT or REJECT, such
that the following holds:

• if D ∈ P, T returns ACCEPT with probability at least 2/3;

• if dTV(D,P)≥ ε , T returns REJECT with probability at least 2/3.

We observe that the above definitions can be straightforwardly extended to the more general setting
of pairs of distributions, where given independent access to two oracles CONDD1 , CONDD2 the goal is to
test whether (D1,D2) satisfies a property (now a set of pairs of distributions). This will be the case in
Section 3, where we will consider equivalence testing, that is the property Peq ={ (D1,D2) : D1 = D2 }.

2.2 Adaptive core testers

In order to deal with adaptivity in our lower bounds, we will use ideas introduced by Chakraborty et
al. [16]. These ideas, for the case of label-invariant properties7 allow one to narrow down the range of
possible testers and focus on a restricted class of such algorithms called adaptive core testers. These
core testers do not have access to the full information of the samples they draw, but instead only get to
see the relations (inclusions, equalities) between the queries they make and the samples they get. Yet,
Chakraborty et al. [16] show that any tester for a label-invariant property can be converted into a core tester
with same query complexity; thus, it is enough to prove lower bounds against this—seemingly—weaker
class of algorithms.

We here rephrase the definitions of a core tester and the view they have of the interaction with the
oracle (the configuration of the samples), tailored to our setting.

Definition 2.3 (Atoms and partitions). Given a family A= (A1, . . . ,At)⊆ [n]t , the atoms generated by A

are the (at most) 2t distinct sets of the form
⋂t

r=1Cr, where Cr ∈ {Ar, [n]\Ar}. The family of all atoms,
denoted At(A), is the partition generated by A.

6We further observe that, besides the general CONDD oracle which allows these arbitrary query sets, the authors of [14]
introduce two weaker variants of the conditional model (the “pair-cond” PAIRCONDD and “interval-cond” INTCONDD
oracles) which restrict algorithms to “simple” queries.

7Recall that a property is label-invariant (or symmetric) if it is closed under relabeling of the elements of the support.
More precisely, a property of distributions (resp. pairs of distributions) P is label-invariant if for any distribution D ∈ P (resp.
(D1,D2) ∈ P) and permutation σ of [n], one has D◦σ ∈ P (resp. (D1 ◦σ ,D2 ◦σ) ∈ P).
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This definition essentially captures “all sets (besides the Ai) about which something can be learned
from querying the oracle on the sets of A.” Now, given such a sequence of queries A = (A1, . . . ,At)

and pairs of samples s = ((s(1)1 ,s(2)1 ), . . . ,(s(1)t ,s(2)t )) ∈ A2
1×·· ·×A2

t , we would like to summarize “all
the label-invariant information available to an algorithm that obtains ((s(1)1 ,s(2)1 ), . . . ,(s(1)t ,s(2)t )) upon
querying A1, . . . ,At for D1 and D2.” This calls for the following definition.

Definition 2.4 (t-configuration). Given A = (A1, . . . ,At) and s = ((s(1)j ,s(2)j ))1≤ j≤t as above, the t-
configuration of s consists of the 6t2 bits indicating, for all 1≤ i, j ≤ t, whether

• s(k)i = s(`)j , for k, ` ∈ {1,2}; and (relations between samples)

• s(k)i ∈ A j, for k ∈ {1,2}. (relations between samples and query sets)

In other terms, it summarizes which is the unique atom Si ∈ At(A) that contains s(k)i , and what collisions
between samples have been observed.

As mentioned before the key idea is to argue that, without loss of generality, one can restrict one’s
attention to algorithms that only have access to t-configurations, and generate their queries in a specific
(albeit adaptive) fashion.

Definition 2.5 (Core adaptive tester). A core adaptive distribution tester for pairs of distributions is an
algorithm T that acts as follows.

• In the i-th phase, based only on its own internal randomness and the configuration of the previous
queries A1, . . . ,Ai−1 and samples obtained (s(1)1 ,s(2)1 ), . . . ,(s(1)i−1,s

(2)
i−1)—whose labels it does not

actually know, T provides:

– a number kA
i for each A ∈ At(A1, . . . ,Ai−1), between 0 and∣∣∣A\{s(1)j ,s(2)j }1≤ j≤i−1

∣∣∣
(How many fresh, not-already-seen elements of each particular atom A should be included in
the next query.)

– sets K(1)
i ,K(2)

i ⊆ {1, . . . , i− 1} (Which of the samples s(k)1 , . . . ,s(k)i−1 will be included in the
next query. The labels of these samples are unknown, but are indexed by the index of the
query which returned them.)

• based on these specifications, the next query Ai is drawn (but not revealed to T) by

– drawing uniformly at random a set Λi in{
Λ⊆ [n]\{s(1)j ,s(2)j }1≤ j≤i−1 : ∀A ∈ At(A1, . . . ,Ai−1), |Λ∩A|= kA

i

}
. (2.2)

That is, among all sets, containing only “fresh elements,” whose intersection with each atom
contains as many elements as T requires.
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– adding the selected previous samples to this set:

Γi
def
=
{

s(1)j : j ∈ K(1)
i

}
∪
{

s(2)j : j ∈ K(2)
i

}
; Ai

def
= Λi∪Γi . (2.3)

This results in a set Ai, not fully known to T besides the samples it already got and decided to
query again; in which the labels of the fresh elements are unknown, but the proportions of elements
belonging to each atom are known.

• samples s(1)i ∼ (D1)Ai and s(2)i ∼ (D2)Ai are drawn (but not disclosed to T). This defines the
i-configuration of A1, . . . ,Ai and (s(1)1 ,s(2)1 ), . . . ,(s(1)i ,s(2)i ), which is revealed to T. Put differently,
the algorithm only learns (i) to which of the A` the new sample belongs, and (ii) if it is one of the
previous samples, in which stage(s) and for which of D1,D2 it has already seen it.

After t = t(ε,n) such stages, T returns either ACCEPT or REJECT, based only on the configuration of
A1, . . . ,At and (s(1)1 ,s(2)1 ), . . . ,(s(1)t ,s(2)t ) (which is all the information it ever had access to).

Note that in particular, T does not know the labels of samples it got, nor the actual queries it makes:
it knows all about their sizes and sizes of their intersections, but not the actual “identity” of the elements
they contain.

2.3 On the use of Yao’s Principle in our lower bounds

We recall Yao’s Principle (e. g., see Chapter 2.2 of [31]), a technique which is ubiquitous in the analysis
of randomized algorithms. Consider a set S of instances of some problem: what this principle states is
that the worst-case expected cost of a randomized algorithm on instances in S is lower-bounded by the
expected cost of the best deterministic algorithm on an instance drawn randomly from S.

As an example, we apply it in a standard way in Section 4: instead of considering a randomized
algorithm working on a fixed instance, we instead analyze a deterministic algorithm working on a random
instance. (We note that, importantly, the randomness in the samples returned by the COND oracle is
“external” to this argument, and these samples behave identically in an application of Yao’s Principle.)

On the other hand, our application in Section 3 is slightly different, due to our use of adaptive
core testers. Once again, we focus on deterministic algorithms working on random instances, and the
randomness in the samples is external and therefore unaffected by Yao’s Principle. However, we stress
that the randomness in the choice of the set Λi is also external to the argument, and therefore unaffected—
similar to the randomness in the samples, the algorithm has no control here. Another way of thinking
about this randomness is via another step in the distribution over instances: after an instance (which is
a pair of distributions) is randomly chosen, we permute the labels on the elements of the distribution’s
domain uniformly at random. We note that since the property in question is label-invariant, this does not
affect its value. We can then use the model as stated in Section 2.2 for ease of analysis, observing that
this can be considered an application of the principle of deferred decisions (as in Chapter 3.5 of [31]).
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2.4 Chernoff bounds for binomials and hypergeometrics

We will make extensive use of Chernoff-style bounds in this article. Recall that the Binomial(n, p)
distribution describes the distribution of the number of successes when we run n independent Bernoulli
trials, each with success probability p.

Lemma 2.6 (Chernoff Bound for Binomials). Let X ∼ Binomial(n, p) and µ = E[X ] = np. Then

∀δ ∈ (0,1), Pr[ |X−µ| ≥ δ µ ]≤ 2exp
(
−δ 2µ

3

)
.

We will also need a similar Chernoff-style bound for the hypergeometric distribution. The
Hypergeometric(n,K,N) distribution describes the distribution of the number of successes when we
draw n times without replacement from a population of size N, in which K objects have the pertinent
feature (and thus count as successes). Note that if the drawing were done with replacement, and K/N = p,
then this would be equivalent to Binomial(n, p). Sampling without replacement introduces negative
correlation between the probability of each draw being successful. This type of negative correlation
generally “helps” with concentration, allowing one to prove similar concentration bounds (see, e. g.,
[19, 23], Theorem 1.17 of [6]).

Lemma 2.7 (Chernoff Bound for Hypergeometrics). Let X ∼ Hypergeometric(n,K,N) and µ = E[X ] =
nK/N. Then,

∀δ ∈ (0,1), Pr[ |X−µ| ≥ δ µ ]≤ 2exp
(
−δ 2µ

3

)
.

3 A lower bound for equivalence testing

We prove our main lower bound on the sample complexity of testing equivalence between unknown
distributions. We construct two priors Y and N over pairs of distributions (D1,D2) over [n]. Y is a
distribution over pairs of distributions of the form (D,D), namely the case when the distributions are
identical. Similarly, N is a distribution over (D1,D2) with dTV(D1,D2) ≥ 1/4. We then show that no
algorithm T making O

(√
log logn

)
queries to CONDD1 ,CONDD2 can distinguish between a draw from

Y and N with constant probability (over the choice of (D1,D2), the randomness in the samples it obtains,
and its internal randomness).

We describe the construction of Y and N in Section 3.1, and provide a detailed analysis in Section 3.2.

3.1 Construction

We now summarize how a pair of distribution is constructed under Y and N. (Each specific step will be
described in more detail in the subsequent paragraphs.)

1. Effective Support

(a) Pick kb from the set {0,1, . . . , 1
2 logn} at random.

(b) Let b = 2kb and m def
= b ·n1/4.
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2. Buckets

(a) Choose ρ and r such that ∑
2r
i=1 ρ i = n1/4.

(b) Divide {1, . . . ,m} into intervals B1, . . . ,B2r with |Bi|= b ·ρ i.

3. Distributions

(a) For each i ∈ [2r], assign probability mass 1/(2r) uniformly over Bi to generate distribution
D1.

(b) For each i ∈ [r] independently, pick πi to be a Bernoulli trial with Pr(πi = 0) = 1/2; if πi = 0
then assign probability mass 1/(4r) and 3/(4r) over B2i−1 and B2i, respectively, else 3/(4r)
and 1/(4r), respectively. This generates a distribution D2.

4. Support relabeling

(a) Pick a permutation σ ∈ Sn of the total support n.

(b) Relabel the symbols of D1 and D2 according to σ .

5. Output: Generate (D1,D1) for Y, and (D1,D2) otherwise.

B1 B2 B3 B4 (. . .)

D j(i)

im n

Figure 1: A no-instance (D1,D2) (before permutation).

We now describe the various steps of the construction in greater detail.

Effective support. Both D1 and D2, albeit distributions on [n], will have (common) sparse support.

The support size is taken to be m def
= b ·n1/4. Note that, from the above definition, m is chosen uniformly

at random from products of n1/4 with powers of 2, resulting in values in [n1/4,n3/4].
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In this step b will act as a random scaling factor. The objective of this random scaling is to induce
uncertainty in the algorithm’s knowledge of the true support size of the distributions, and to prevent it
from leveraging this information to test equivalence. In fact one can verify that the class of distributions
induced for a single value of b, namely all distributions have the same value of m, then one can distinguish
the Y and N cases with only O(1) conditional queries. The test would (roughly) go as follows. Since
|Bi| is known, one can choose a random subset S of the domain which (with high probability) has no
intersection with Bi for i≤ 2r−2, a O(1) size intersection with B2r−1, and a O(ρ) size intersection with
B2r. Perform O(1) conditional queries over the set S, for both distributions. Given these queries, we can
then identify which elements of S belong to B2r−1 or B2r—namely, those which occur at most once belong
to B2r, and those which occur at least twice belong to B2r−1. In a Y instance, then in both distributions, a
1/2 fraction of queries will belong to B2r−1, whereas in a N instance, one distribution will have either a
1/4 or 3/4 fraction of queries in B2r−1, allowing us to distinguish the two cases.

Buckets. Our construction is inspired by the lower bound of Canonne, Ron, and Servedio [14, Theorem
8] for the more restrictive PAIRCOND access model. We partition the support into 2r consecutive
intervals (henceforth referred to as buckets) B1, . . . ,B2r, where the size of the i-th bucket is bρ i. We note
that r and ρ will be chosen such that ∑

2r
i=1 bρ i = bn1/4, i. e., the buckets fill the effective support.

Distributions. We output a pair of distributions (D1,D2). Each distribution that we construct is uniform
within any particular bucket Bi. In particular, the first distribution assigns the same mass 1/2r to each
bucket. Therefore, points within Bi have the same probability mass 1/2rbρ i. For the Y case, the second
distribution is identical to the first. For the N case, we pair buckets in r consecutive bucket-pairs
Π1, . . . ,Πr, with Πi = B2i−1∪B2i. For the second distribution D2, we consider the same buckets as D1,
but repartition the mass 1/r within each Πi. More precisely, in each pair, one of the buckets gets now
total probability mass 1/4r while the other gets 3/4r (so that the probability of every point is either
decreased by a factor 1/2 or increased by 3/2). The choice of which goes up and which goes down is
done uniformly and independently at random for each bucket-pair determined by the random choices of
the πi.

Random relabeling. The final step of the construction randomly relabels the symbols, namely is a ran-
dom injective map from [m] to [n]. This is done to ensure that no information about the individual symbol
labels can be used by the algorithm for testing. For example, without this the algorithm can consider
a few symbols from the first bucket and distinguish the Y and N cases. As mentioned in Section 2.3,
for ease of analysis, the randomness in the choice of the permutation is, in some sense, deferred to the
randomness in the choice of Λi during the algorithm’s execution.

Summary. A no-instance (D1,D2) is thus defined by the following parameters: the support size m,
the vector (π1, . . . ,πr) ∈ {0,1}r (which only impacts D2), and the final permutation σ of the domain. A
yes-instance (D1,D1) follows an identical process, however, ~π has no influence on the final outcome.
See Figure 1 for an illustration of such a (D1,D2) when σ is the identity permutation and thus the
distribution is supported over the first m natural numbers.
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Values for ρ and r. By setting r = logn/(8logρ)+O(1), we have as desired ∑
2r
i=1 |Bi|= m and there

is a factor (1+o(1))n1/4 between the height of the first bucket B1 and the one of the last, B2r. It remains
to choose the parameter ρ itself; we shall take it to be 2

√
logn, resulting in r = (1/8)

√
logn+O(1). (Note

that for the sake of the exposition, we ignore technical details such as the rounding of parameters, e. g.,
bucket sizes; these can be easily taken care of at the price of cumbersome case analyses, and do not bring
much to the argument.)

3.2 Analysis

We now prove our main lower bound, by analyzing the behavior of core adaptive testers (as per Def-
inition 2.5) on the families Y and N from the previous section. In Section 3.2.1, we argue that, with
high probability, the sizes of the queries performed by the algorithm satisfy some specific properties.
Conditioned upon this event, in Section 3.2.2, we show that the algorithm will get similar information
from each query, whether it is running on a yes-instance or a no-instance.

Before moving to the heart of the argument, we state the following fact, straightforward from the
construction of our no-instances.

Fact 3.1. For any (D1,D2) drawn from N, one has dTV(D1,D2) = 1/4.

Moreover, as allowing more queries can only increase the probability of success, we hereafter focus on a
core adaptive tester that performs exactly q = (1/10)

√
log logn (adaptive) queries; and will show that it

can only distinguish between yes and no-instances with probability o(1).

3.2.1 Banning “bad queries”

As mentioned in Section 3.1, the draw of a yes or no-instance involves a random scaling of the size of
the support of the distributions, meant to “blind” the testing algorithm. Recall that a testing algorithm
is specified by a decision tree, which at step i, specifies how many unseen elements from each atom to
include in the query ({kA

i }) and which previously seen elements to include in the query (sets K(1)
i ,K(2)

i ,
as defined in Section 2.2), where the algorithm’s choice depends on the observed configuration at that
time. Note that, using Yao’s Principle (as discussed in Section 2.3), these choices are deterministic for a
given configuration—in particular, we can think of all {kA

i } and K(1)
i ,K(2)

i in the decision tree as being
fixed. In this section, we show that all kA

i values satisfy with high probability some particular conditions
with respect to the choice of distribution, where the randomness is over the choice of the support size.

First, we recall an observation from [16], though we modify it slightly to apply to configurations on
pairs of distributions and we apply a slightly tighter analysis. This essentially limits the number of states
an algorithm could be in by a function of how many queries it makes.

Proposition 3.2. The number of nodes in a decision tree corresponding to a q-sample algorithm is at
most 26q2+1.

Proof. As mentioned in Definition 2.4, an i-configuration can be described using 6i2 bits, resulting
in at most 26i2 i-configurations. Since each i-configuration leads us to some node on the i-th level of
the decision tree, the total number of nodes can be upper bounded by summing over the number of
i-configurations for i ranging from 0 to q, giving us the desired bound.
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For the sake of the argument, we will introduce a few notions applying to the sizes of query sets:
namely, the notions of a number being small, large, or stable, and of a vector being incomparable.
Roughly speaking, a number is small if a uniformly random set of this size does not, in expectation, hit
the largest bucket B2r—in other words, the set is likely to be disjoint from the support. On the other hand,
it is large if we expect such a set to intersect many bucket-pairs (i. e., a significant fraction of the support).

The definition of stable numbers is slightly more quantitative: a number β is stable if a random set
of size β , for each bucket Bi, is either disjoint from Bi or has an intersection with Bi of size close to the
expected value. In the latter case, we say the set concentrates over Bi. Finally, a vector of values (β j) is
incomparable if the union of random sets S1, . . . ,Sm of sizes β1, . . . ,βm contains (with high probability)
an amount of mass D

(⋃
j S j
)

which is either much smaller or much larger than the probability D(s) of
any single element s.
We formalize these concepts in the definitions below. To motivate them, it will be useful to bear in mind
that, from the construction described in Section 3.1, the expected intersection of a uniform random set of
size β with a bucket Bi is of size βbρ i/n; while the expected probability mass from Bi it contains (under
either D1 or D2) is β/2rn.

Definition 3.3. Let q be an integer, and let ϕ = Θ(q5/2). A number β is said to be small if β < n/(bρ2r);
it is large (with relation to some integer q) if β ≥ n/(bρ2r−2ϕ).

Note that the latter condition equivalently means that, in expectation, a set of large size will intersect
at least ϕ + 1 bucket-pairs (as it hits an expected 2ϕ + 1 buckets, since β

∣∣B2r−2ϕ

∣∣/n ≥ 1). From the
above definitions we get that, with high probability, a random set of any fixed size will in expectation
either hit many or no buckets.

Proposition 3.4. A number is either small or large with probability 1−O
(

ϕ logρ

logn

)
.

Proof. A number β is neither large nor small if

ρ2ϕn
βρ2r ≤ b≤ n

βρ2r .

The ratio of the endpoints of the interval is ρ2ϕ . Since b = 2kb , this implies that at most logρ2ϕ = 2ϕ logρ

values of kb could result in a fixed number falling in this range. As there are Θ(logn) values for kb, the
proposition follows.

The next definition characterizes the sizes of query sets for which the expected intersection with any
bucket is either close to 0 (less than 1/α , for some threshold α), or very big (more than α). (It will be
helpful to keep in mind that we will eventually use this definition with α = poly(q).)

Definition 3.5. A number β is said to be α-stable (for α ≥ 1) if, for each j ∈ [2r],

β /∈
[

n
αbρ j ,

αn
bρ j

]
.

A vector of numbers is said to be α-stable if all numbers it contains are α-stable.
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Proposition 3.6. A number is α-stable with probability 1−O
(

r logα

logn

)
.

Proof. Fix some j ∈ [2r]. A number β does not satisfy the definition of α-stability for this j if

n
αβρ j ≤ b≤ nα

βρ j .

Since b = 2kb , this implies that at most log2α values of kb could result in a fixed number falling in this
range. Noting that there are Θ(logn) values for kb and taking a union bound over all 2r values for j, the
proposition follows.

The following definition characterizes the sizes of query sets which have a probability mass far from
the probability mass of any individual element. (For the sake of building intuition, the reader may replace
ν in the following by the parameter b of the distribution.)

Definition 3.7. A vector of numbers (β1, . . . ,β`) is said to be (α,τ)-incomparable with respect to ν (for
τ ≥ 1) if the two following conditions hold.

• (β1, . . . ,β`) is α-stable.

• Let ∆ j be the minimum ∆ ∈ {0, . . . ,2r} such that

β jνρ2r−∆

n
≤ 1

α
,

or 2r if no such ∆ exists. For all i ∈ [2r],

1
2rn

`

∑
j=1

β j∆ j 6∈
[

1
τ2rνρ i ,

τ

2rνρ i

]
.

Recall from the definition of α-stability of a number that a random set of this size either has essentially
no intersection with a bucket or “concentrates over it” (i. e., with high probability, the probability mass
contained in the intersection with this bucket is very close to the expected value). The above definition
roughly captures the following. For any j, ∆ j is the number of buckets that will concentrate over a random
set of size β j. The last condition asks that the total probability mass from D1 (or D2) enclosed in the
union of m random sets of size β1, . . . ,β` be a multiplicative factor of τ from the individual probability
weight 1/2rbρ i of a single element from any of the 2r buckets.

Proposition 3.8. Given that a vector of numbers of length ` is α-stable, it is (α,q2)-incomparable with
respect to b with probability at least

1−O
(

r logq
logn

)
.

Proof. Fix any vector (β1, . . . ,β`). By the definition above, for each value b such that (β1, . . . ,β`) is
α-stable, we have

β j ·
αρ2r

n
≤ ρ∆ j

b
< β j ·

αρ2r+1

n
, j ∈ [`]
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or, equivalently,

log αβ j
n

logρ
+2r+

logb
logρ

≤ ∆ j <
log αβ j

n
logρ

+2r+
logb
logρ

+1, j ∈ [`].

Writing

λ j
def
=

log αβ j
n

logρ
+2r

for j ∈ [`], we obtain that

`

∑
j=1

β j∆ jb = b
`

∑
j=1

β j(λ j +O(1))+
b logb
logρ

`

∑
j=1

β j . (3.1)

• If it is the case that

logρ ·
`

∑
j=1

β j(λ j +O(1))� logb ·
`

∑
j=1

β j .

Then, for any fixed i ∈ [2r], to meet the second item of the definition of incomparability we need

`

∑
j=1

β j∆ jb /∈ [n/(200qρ
i),200qn/ρ

i] .

This is essentially, with the assumption equation (3.1) above, requiring that

b logb /∈

[
n logρ

2q2ρ i ∑
`
j=1 β j

,
2q2n logρ

ρ i ∑
`
j=1 β j

]
.

Recalling that b logb = kb2kb , this means that O(logq/ log logq) values of kb are to be ruled out.
(Observe that this is the number of possible “bad values” for b without the condition from the
case distinction above; since we add an extra constraint on b, there are at most this many values to
avoid.)

• Conversely, if logρ ·∑`
j=1 β j(λ j +O(1))� logb ·∑`

j=1 β j the requirement becomes

b /∈

[
n logρ

2q2ρ i ∑
`
j=1 β j(λ j +O(1))

,
2q2n logρ

ρ i ∑
`
j=1 β j(λ j +O(1))

]
,

ruling out this time O(logq) values for kb.

• Finally, the two terms are comparable only if

logb = Θ

logρ ·
`

∑
j=1

β j(λ j +O(1)) ·

(
`

∑
j=1

β j

)−1
 ;

given that logb = kb, this rules out this time O(1) values for kb.
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A union bound over the 2r possible values of i, and the fact that kb can take Θ(logn) values, complete the
proof.

We put these together to obtain the following lemma.

Lemma 3.9. With probability at least

1−O

(
26q2+q(r logα +ϕ logρ)+26q2

(r logq)
logn

)
,

the following holds for the decision tree corresponding to a q-query algorithm:

• the size of each atom is α-stable and either large or small;

• the size of each atom, after excluding elements we have previously observed,8 is α-stable and
either large or small;

• for each i, the vector (kA
i )A∈At(A1,...,Ai) is (α,q2)-incomparable (with respect to b).

Proof. From Proposition 3.2, there are at most 26q2+1 tree nodes, each of which contains one vector
(kA

i )A, and at most 2q atom sizes. The first point follows from Proposition 3.4 and Proposition 3.6 and
applying the union bound over all 26q2+1 ·2 ·2q sizes, where we note the additional factor of 2 comes
from either including or excluding the old elements. The latter point follows from Proposition 3.8 and
applying the union bound over all 26q2+1 nodes in the tree (each containing a single kA

i vector).

3.2.2 Key lemma: Bounding the variation distance between decision trees

In this section, we prove a key lemma on the variation distance between the distribution on leaves of
any decision tree, when given access to either an instance from Y or N. This lemma will in turn directly
yield Theorem 1.1. Hereafter, we set the parameters α (the threshold for stability), ϕ (the parameter for
smallness and largeness) and γ (an accuracy parameter for how well things concentrate over their expected
value) as follows.9 α

def
= q7, ϕ

def
= q5/2 and γ

def
= 1/ϕ = q−5/2. (Recall further that q = (1/10)

√
log logn.)

Lemma 3.10. Conditioned on the events of Lemma 3.9, consider the distribution over leaves of any
decision tree corresponding to a q-query adaptive algorithm when the algorithm is given a yes-instance,
and when it is given a no-instance. These two distributions have total variation distance o(1).

Proof. This proof is by induction on 1≤ i≤ q. We will have three inductive hypotheses, EEE111(t),EEE222(t),
and EEE333(t). Assuming all three hold for all t < i, we prove EEE111(i). Additionally assuming EEE111(i), we prove
EEE222(i) and EEE333(i).

Roughly, the first inductive hypothesis states that the query sets behave similarly to as if we had
picked a random set of that size. It also implies that whether or not we get an element we have seen before

8More precisely, we mean to say that for each i≤ q, for every atom A defined by the partition of (A1, . . . ,Ai), the values kA
i

and |A\{s(1)1 ,s(2)1 , . . . ,s(1)i−1,s
(2)
i−1}|− kA

i are α-stable and either large or small.
9This choice of parameters is not completely arbitrary: combined with the setting of q, r and ρ , they ensure a total bound o(1)

on variation distance and probability of “bad events” as well as a (relative) simplicity and symmetry in the relevant quantities.
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is “obvious” based on past observances and the size of the query we perform. The second states that we
never observe two distinct elements from the same bucket-pair. The third states that the next sample is
distributed similarly in either a yes-instance or a no-instance. Note that this distribution includes both
features which our algorithm can observe (i. e., the atom which the sample belongs to and if it collides
with a previously seen sample), as well as those which it can not (i. e., which bucket-pair the observed
sample belongs to). It is necessary to show the latter, since the bucket-pair a sample belongs to may
determine the outcome of future queries.

More precisely, the three inductive hypotheses are as follows:

• EEE111(i): In either a yes-instance or a no-instance, the following occurs: For an atom S in the partition
generated by A1, . . . ,Ai, let S′ = S \ {s(1)1 ,s(2)1 , . . . ,s(1)i−1,s

(2)
i−1}. For every such S′, let `S′ be the

largest index ` ∈ {0, . . . ,2r} such that |S′|bρ`/n ≤ 1/α , or 0 if no such ` exists. We claim that
`S′ ∈ {0, . . . ,2r−ϕ−2}∪{2r}, and say S′ is small if `S′ = 2r and large otherwise. Additionally:

– for j ≤ `S′ ,
∣∣S′∩B j

∣∣= 0;

– for j > `S′ ,
∣∣S′∩B j

∣∣ lies in [1− iγ,1+ iγ] |S
′|bρ j

n .

Furthermore, let p1 and p2 be the probability mass contained in Λi and Γi, respectively. Then

p1

p1 + p2
≤ O

(
1
q2

)
or

p2

p1 + p2
≤ O

(
1
q2

)
(that is, either almost all the probability mass comes from elements which we have not yet observed,
or almost all of it comes from previously seen ones).

• EEE222(i): No two elements from the set {s(1)1 ,s(2)1 , . . . ,s(1)i ,s(2)i } belong to the same bucket-pair.

• EEE333(i): Let T yes
i be the random variable representing the atoms and bucket-pairs10 containing

(s(1)i ,s(2)i ), as well as which of the previous samples they intersect with, when the i-th query is
performed on a yes-instance, and define T no

i similarly for no-instances. Then

dTV
(
T yes

i ,T no
i

)
≤ O

(
1/q2 +1/ρ + γ +1/ϕ

)
= o(1) .

We will show that EEE111(i) holds with probability 1−O
(
2i exp(−2γ2α/3)

)
and EEE222(i) holds with probability

1−O(i/ϕ). Let T yes be the random variable representing the q-configuration and the bucket-pairs
containing each of the observed samples in a yes-instance, and define T no similarly for a no-instance. We
note that this random variable determines which leaf of the decision tree we reach, which EEE333(q) bounds.
We can then take a union bound over all i ∈ [q] to upper bound the probability that EEE111(i) and EEE222(i) do
not hold, and use EEE333(i) and the coupling interpretation of total variation distance to upper bound the
probability that T yes

i and T no
i ever differ. Any of these “failure” events happens with probability at most

O
(

2q exp
(
−2γ2α

3

)
+

q2

ϕ
+

1
q
+

q
ρ
+qγ +

q
ϕ

)
= o(1)

10If a sample s(k)i does not belong to any bucket (if the corresponding i-th query did not intersect the support), it is marked in
T yes

i with a “dummy label” to indicate so.
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(from our choice of α,γ,ϕ). This upper bounds the total variation distance between T yes and T no, giving
the desired result.

We proceed with the inductive proofs of EEE111(i), EEE222(i), and EEE333(i), noting that the base cases hold
trivially for all three of these statements. Throughout this proof, recall that Λi is the set of unseen support
elements which we query, and Γi is the set of previously seen support elements which we query.

Lemma 3.11. Assume that EEE111(t),EEE222(t),EEE333(t) hold for all 1≤ t ≤ i−1. Then EEE111(i) holds with probability
at least

1−O
(

2i exp
(
−2γ2α

3

))
= 1−2i−Ω(q2) .

Proof. We start with the first part of EEE111(i) (the statement prior to “Furthermore”). Let S (and the
corresponding S′) be any atom as in EEE111(i). First, we note that `S′ ∈ {0, . . . ,2r−ϕ−2}∪{2r} since we
are conditioning on Lemma 3.9: |S′| is α-stable and either large or small, which enforces this condition.
Next, suppose S′ is contained in some other atom T generated by A1, . . . ,Ai−1, and let

T ′ = T \{s(1)1 ,s(2)1 , . . . ,s(1)i−1,s
(2)
i−1} .

Since |S′| ≤ |T ′|, this implies that `T ′ ≤ `S′ . We argue about |T ′∩B j| for three regimes of j:

• The first case is j≤ `T ′ . By the inductive hypothesis,
∣∣T ′∩B j

∣∣= 0, so
∣∣S′∩B j

∣∣= 0 with probability
1.

• The next case is `T ′ < j ≤ `S′ . Recall from the definition of a core adaptive tester that S′ will be
chosen uniformly at random from all subsets of T ′ of appropriate size. By the inductive hypothesis,∣∣T ′∩B j

∣∣
|T ′|

∈ [1− (i−1)γ,1+(i−1)γ]
bρ j

n
,

and therefore

E
[∣∣S′∩B j

∣∣] ∈ [1− (i−1)γ,1+(i−1)γ]
|S′|bρ j

n
, implying E

[∣∣S′∩B j
∣∣]≤ 2

αρ`S′− j
;

where the inequality is by the definition of `S′ and using the fact that (i− 1)γ ≤ 1. Using a

Chernoff bound for hypergeometric random variables (Lemma 2.7), and writing µ
def
= E

[∣∣S′∩B j
∣∣]

for conciseness,

Pr
[∣∣S′∩B j

∣∣≥ 1
]
= Pr

[∣∣S′∩B j
∣∣≥ (1+

1−µ

µ

)
µ

]
≤ exp

(
−(1−µ)2

3µ

)
≤ exp

(
− 1

12
αρ

`S′− j
)
,

where the second inequality holds because µ ≤ 2/αρ`S′− j and (1−µ)2 ≥ 1/2 for n sufficiently
large.
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• The final case is j > `S′ . As in the previous one,

E
[∣∣S′∩B j

∣∣] ∈ [1− (i−1)γ,1+(i−1)γ]
|S′|bρ j

n
, implying E

[∣∣S′∩B j
∣∣]≥ αρ j−`S′−1

2
;

where the inequality is by the definition of `S′ , α-stability, and using the fact that (i−1)γ ≤ 1/2.
Using again a Chernoff bound for hypergeometric random variables (Lemma 2.7),

Pr
[∣∣S′∩B j

∣∣−E
[∣∣S′∩B j

∣∣]≥ γ
|S′|bρ j

n

]
≤ Pr

[∣∣S′∩B j
∣∣−E

[∣∣S′∩B j
∣∣]≥ γ2E

[∣∣S′∩B j
∣∣]]

≤ 2exp

(
−
(2γ)2E

[∣∣S′∩B j
∣∣]

3

)

≤ 2exp
(
−2

3
γ

2
αρ

j−`S′−1
)
,

where the first inequality comes from 2(1− (i−1)γ)≥ 1, the second is from Chernoff bound, and
the third follows from E

[∣∣S′∩B j
∣∣]≥ αρ j−`S′−1/2.

Since we wish to prove the statement for all buckets B j simultaneously, we take a union bound over all j.
Recall that we want to bound the probability that S′ satisfies two conditions, for j ≤ `S′ ,

∣∣S′∩B j
∣∣= 0;

and for j > `S′ ,
∣∣S′∩B j

∣∣ lies in

[1− iγ,1+ iγ]
|S′|bρ j

n
.

Using bounds from all three of these regimes of j, and a union bound, the probability that S′ does not
satisfy the conditions of EEE111(i) is at most

∑
j≤`T ′

0+ ∑
`T ′< j≤`S′

exp
(
− 1

12
αρ

`S′− j
)
+ ∑

j>`S′
2exp

(
−2

3
γ

2
αρ

j−`S′−1
)
.

This probability is maximized when `S′ = `T ′ = 0, in which case it is

2r

∑
j=1

2exp
(
−2

3
γ

2
αρ

j−1
)
≤

∞

∑
j=1

2exp
(
−2

3
γ

2
αρ

j−1
)
≤ 3exp

(
−2

3
γ

2
α

)
.

Taking a union bound over at most 2i sets gives us the desired probability bound.

Finally, we prove the remainder of EEE111(i) (the statement following “Furthermore”); this will follow
from the definition of incomparability (Definition 3.7).

• First, we focus on Γi. Suppose that Γi contains at least one element with positive probability mass
(if not, the statement trivially holds). Let p′2 be the probability mass of the heaviest element in
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Γi. Since our inductive hypothesis implies that Γi has no elements in the same bucket pair, the
maximum possible value for p2 is

p2 ≤ p′2 +
3p′2
ρ

+
3p′2
ρ3 + · · · ≤ p′2 +

3p′2
ρ

∞

∑
k=0

1
ρ2k =

(
1+

3
ρ

ρ2

ρ2−1

)
p′2

≤ (1+o(1))p′2 .

Therefore, p2 ∈ [p′2,(1+o(1))p′2]. Supposing this heaviest element belongs to bucket j, we can
say that

p2 ∈
[

1
2
,(1+o(1))

3
2

]
1

2rbρ j .

• Next, we focus on Λi. Consider some atom A, from which we selected kA elements which have
not been previously observed: call the set of these elements A′. In the first part of this proof, we
showed that for each bucket Bk, either |A′∩Bk|= 0 or |A′∩Bk| ∈ [1− iγ,1+ iγ] |A′|bρk/n. In the
latter case, noting that iγ ≤ 1/2 and that the probability of an individual element in Bk is within

[1,3]
1

4rbρk ,

the probability mass contained by |A′∩Bk| belongs to

[1,9]
|A′|
8rn

.

Recalling the definition of ∆A as stated in Definition 3.7, as shown earlier in this proof, this non-
empty intersection happens for exactly ∆A buckets. Therefore, the total probability mass in Λi is in
the interval [

1
4
,
9
4

]
1

2rn ∑
A∈At(A1,...,Ai)

kA
i ∆A .

Recall that we are conditioning on Lemma 3.9 which states that the vector (kA
i )A∈At(A1,...,Ai) is (α,q2)-

incomparable with respect to b. Applying this definition to the bounds just obtained on the probability
masses in Λi and Γi gives Lemma 3.11.

Lemma 3.12. Assume that EEE111(t),EEE222(t),EEE333(t) hold for all 1≤ t ≤ i−1, and additionally EEE111(i) holds.
Then EEE222(i) holds with probability at least 1−O(i/ϕ).

Proof. We focus on s(1)i . If s(1)i ∈ Γi, the conclusion is trivial, so suppose s(1)i ∈ Λi. From EEE111(i), no small
atom intersects any of the buckets, so let us condition on the fact that s(1)i belongs to some large atom
S. Since we want s(1)i to fall in a distinct bucket-pair from 2(i−1)+1 other samples, there are at most
2i−1 bucket-pairs which s(1)i should not land in. Using EEE111(i), the maximum probability mass contained
in the intersection of these bucket-pairs and S is (1+ iγ)(2i−1)|S|/rn. Similarly, using the definition of
a large atom, the minimum probability mass contained in S is (1− iγ)ϕ|S|/rn. Taking the ratio of these
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two terms gives an upper bound on the probability of breaking this invariant, conditioned on landing in S,
as O(i/ϕ), where we note that

1+ iγ
1− iγ

= O(1) .

Since the choice of which large atom was arbitrary, we can remove the conditioning. Taking a union
bound for s(1)i and s(2)i gives the result.

Lemma 3.13. Assume that EEE111(t),EEE222(t),EEE333(t) hold for all 1≤ t ≤ i−1, and additionally EEE111(i) holds.
Then EEE333(i) holds.

Proof. We fix some setting of the intersection history, i. e., the configuration and the bucket-pairs the
past elements belong to, and show that the results of the next query will behave similarly, whether the
instance is a yes-instance or a no-instance. We note that, since we are assuming the inductive hypotheses
hold, certain settings which violate these hypotheses are not allowed. We also note that s(1)i is distributed

identically in both instances, so we focus on si
def
= s(2)i for the remainder of this proof.

First, we condition that, based on the setting of the past history, si will either come from Λi or Γi—this
event happens with probability 1−O

(
1/q2

)
.

Proposition 3.14. In either a yes-instance or a no-instance, si will either come from Λi with probability
1−O

(
1/q2

)
, or Γi with probability 1−O

(
1/q2

)
, where the choice of which one is deterministic based

on the fixed configuration and choice for the bucket-pairs of previously seen elements.

Proof. This is simply a rephrasing of the portion of EEE111(i) following “Furthermore.”

We now try to bound the total variation distance between T yes
i and T no

i conditioning on this event. In
the case when it does not hold, we trivially bound the total variation distance by 1, incurring a cost of
O
(
1/q2

)
to the total variation distance between the unconditioned variables. Since our target was for

this quantity was O
(
1/q2 +1/ρ + γ +1/ϕ

)
, it remains to show, in the conditioned space, that the total

variation distance in either case is at most O(1/ρ + γ +1/ϕ) = O(1/q5/2). We break this into two cases,
the first being when s comes from Γi. In this case, we incur a cost in total variation distance which is
O(1/ρ):

Proposition 3.15. In either a yes-instance or a no-instance, condition that si comes from Γi. Then one of
the following holds:

• |Γi∩B j|= 0 for all j ∈ [2r], in which case si is distributed uniformly at random from the elements
of Γi;

• or |Γi∩B j| 6= 0 for some j ∈ [2r], in which case si will be equal to some s ∈ Γi with probability
1−O(1/ρ), where the choice of s is deterministic based on the fixed configuration and choice for
the bucket-pairs of previously seen elements.
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Proof. The former case follows from the definition of the sampling model. For the latter case, let p be
the probability mass of the heaviest element in Γi. Since our inductive hypothesis implies that Γi has no
elements in the same bucket-pair, the maximum possible value for the rest of the elements is

3p
ρ

+
3p
ρ3 +

3p
ρ5 + · · · ≤ 3p

ρ

∞

∑
k=0

1
ρ2k =

3p
ρ

ρ2

ρ2−1
= O

(
p
ρ

)
.

Since the ratio of this value and p is O(1/ρ), with probability 1−O(1/ρ) the sample returned is the
heaviest element in Γi.

Finally, we examine the case when s comes from Λi:

Proposition 3.16. Condition that si comes from Λi. Then either:

• |Λi∩B j|= 0 for all j ∈ [2r], in which case dTV(T
yes

i ,T no
i ) = 0;

• or |Λi∩B j| 6= 0 for some j ∈ [2r], in which case dTV(T
yes

i ,T no
i )≤ O

(
γ + 1

ϕ

)
= O

(
1

q5/2

)
.

Proof. The former case follows from the definition of the sampling model—since Λi does not intersect
any of the buckets, the sample will be labeled as such. Furthermore, the sample returned will be drawn
uniformly at random from Λi, and the probability of each atom will be proportional to the cardinality of
its intersection with Λi, in both the yes and the no-instances.

We next turn to the latter case. Let X be the event that, if the intersection of Λi and some atom A has
a non-empty intersection with an odd number of buckets, then si does not come from the unpaired bucket.
Note that EEE111(i) and the definition of a large atom imply that an unpaired bucket can only occur if the
atom intersects at least ϕ bucket-pairs: conditioned on the sample coming from a particular atom, the
probability that it comes from the unpaired bucket is O(1/ϕ). Since the choice of A was arbitrary, we
may remove the conditioning, and note that Pr(X) = 1−O(1/ϕ).

Since

dTV(T
yes

i ,T no
i )≤ dTV(T

yes
i ,T no

i | X)Pr(X)+dTV(T
yes

i ,T no
i | X̄)Pr(X̄)

≤ dTV(T
yes

i ,T no
i | X)+O(1/ϕ) , (3.2)

it remains to show that dTV(T
yes

i ,T no
i | X)≤ O(γ).

First, we focus on the distribution over atoms, conditioned on X. Let NA be the number of bucket-pairs
with which A intersects both buckets, i. e., conditioned on X, the sample could come from 2NA buckets,
and let

N def
= ∑

A∈At(A1,...,Ai)

NA .

By EEE111(i), the maximum amount of probability mass that can be assigned to atom A is

(1+ γ)|S|NA/rn
(1− γ)|S|N/rn

,

THEORY OF COMPUTING, Volume 14 (19), 2018, pp. 1–46 26

http://dx.doi.org/10.4086/toc


A CHASM BETWEEN IDENTITY AND EQUIVALENCE TESTING WITH CONDITIONAL QUERIES

and the minimum is
(1− γ)|S|NA/rn
(1+ γ)|S|N/rn

,

so the total variation distance in the distribution incurred by this atom is at most O(γNA/N). Summing
over all atoms, we get the desired result of O(γ).

Finally, we bound the distance on the distribution over bucket-pairs, again conditioned on X. By
EEE111(i) only large atoms will contain non-zero probability mass, so condition on the sample coming from
some large atom A. Let NA be the number of bucket-pairs with which A intersects both buckets, i. e.,
conditioned on X, the sample could come from 2NA buckets. Using EEE111(i), the maximum amount of
probability mass that can be assigned to any intersecting bucket-pair is

(1+ γ)
|A|
rn

(
(1− γ)

|A|
rn

NA
)−1

,

and the minimum is

(1− γ)
|A|
rn

(
(1+ γ)

|A|
rn

NA
)−1

,

so the total variation distance in the distribution incurred by this bucket-pair is at most O(γ/NA). Summing
this difference over all NA bucket-pairs, we get 2γ/(1− γ2) = O(γ). Since the choice of large atom A
was arbitrary, we can remove the conditioning on the choice of atom. The statement follows by applying
the union bound on the distribution over bucket-pairs and the distribution over atoms. This concludes the
proof of Proposition 3.16.

We note that in both cases, the cost in total variation distance which is incurred is O(1/ρ + γ +1/ϕ),
which implies EEE333(i)—proving Lemma 3.13.

This concludes the proof of Lemma 3.10.

With Lemma 3.10 in hand, the proof of the main theorem is straightforward.

Proof of Theorem 1.1. Conditioned on Lemma 3.9, Lemma 3.10 implies that the distribution over the
leaves in a yes-instance vs. a no-instance is o(1). Since an algorithm’s choice to accept or reject depends
deterministically on which leaf is reached, this bounds the difference between the conditional probability
of reaching a leaf which accepts. Since Lemma 3.9 occurs with probability 1− o(1), the difference
between the unconditional probabilities is also o(1).

4 Lower bounds for non-adaptive algorithms

In this section, we prove our lower bounds for non-adaptive support-size estimation and uniformity
testing, restated here.

Theorem 1.2 (Non-Adaptive Support-Size Estimation). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n], estimates the size of its support up to a factor γ ≥

√
2 must

have query complexity Ω
(
(logn)/log2

γ
)
.
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Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n] and parameter ε ∈ (0,1/4), distinguishes with probability at
least 2/3 between (a) D = U[n] and (b) dTV(D,U[n])≥ ε , must have query complexity Ω((logn)/ε).

These two theorems follow from the same argument, which we outline below before turning to the proof
itself. (Note that we will, in this section, establish Theorem 1.3 for constant ε , i. e., ε = 1/4; before
explaining in Section 4.1 how to derive the general statement as a corollary.)

Structure of the proof. By Yao’s Minimax Principle, we consider deterministic tests and study their
performance over random distributions, chosen to be uniform over a random subset of carefully picked
size. The proof of Theorem 1.2 then proceeds in 3 steps: in Lemma 4.2, we first argue that all queries
made by the deterministic tester will (with high probability over the choice of the support size s) behave
very “nicely” with regard to s, i. e., not be concentrated around it. Then, we condition on this to bound
the total variation distance between the sequence of samples obtained in the two cases we “oppose,” a
random distribution from a family D1 and the corresponding one from a family D2. In Lemma 4.4 we
show that the part of total variation distance due to samples from the small queries is zero, except with
probability o(1) over the choice of s. Similarly, Lemma 4.4 allows us to say (comparing both cases to a
third “reference” case, a honest-to-goodness uniform distribution over the whole domain, and applying a
triangle inequality) that the remaining part of the total variation distance due to samples from the big
queries is zero as well, except again with probability o(1). Combining these three lets us to conclude by
properties of the total variation distance, as (since the queries are non-adaptive) the distribution over the
sequence of samples is a product distribution. (Moreover, applying Lemma 4.4 as a stand-alone enables
us, with little additional work, to obtain Theorem 1.3, as our argument in particular implies distributions
from D1 are hard to distinguish from uniform.)

The families D1 and D2. Fix γ ≥
√

2 as in Theorem 1.2; writing β
def
= γ2, we define the set

S
def
=

{
β

kn1/4 : 0≤ k ≤ logn
2logβ

}
= {n1/4,βn1/4,β 2n1/4, . . . , ,n3/4} . (4.1)

A no-instance (D1,D2) ∈D1×D2 is then obtained by the following process:

• Draw s uniformly at random from S.

• Pick a uniformly random set S1 ⊆ [n] of size s, and set D1 to be uniform on S1.

• Pick a uniformly random set S2 ⊆ [n] of size β s, and set D2 to be uniform on S2.

(Similarly, a yes-instance is obtained by first drawing a no-instance (D1,D2), and discarding D2 to keep
only (D1,D1) ∈D1×D1.)

We will argue that no algorithm can distinguish with high probability between the cases (D1,D2)∼
D1×D2 and (D1,D2)∼D1×D1, by showing that in both cases D1 and D2 generate transcripts indis-
tinguishable from those the uniform distribution U[n] would yield. This will imply Theorem 1.2, as any
algorithm to estimate the support within a multiplicative γ would imply a distinguisher between instances
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of the form (D1,D1) and (D1,D2) (indeed, the support sizes of D1 and D2 differ by a factor β = γ2).
(As for Theorem 1.3, observe that any distribution D1 ∈ D1 has constant distance from the uniform
distribution on [n], so that a uniformity tester must be able to tell D1 apart from U[n].)

Small and big query sets. Let T be any deterministic non-adaptive algorithm making

qT ≤ q =
1

80000
logn

log2
β

queries. Without loss of generality, we can assume T makes exactly q queries, and denote them by
A1, . . . ,Aq ⊆ [n]. Moreover, we let ai = |Ai|, and (again without loss of generality) write a1 ≥ ·· · ≥ aq.

As a preliminary observation, note that for any A⊂ [n] and 0≤ s≤ n we have

ES |S∩A|= |A|s
n

where the expectation is over a uniform choice of S among all
(n

s

)
subsets of size s. This observation will

lead us to divide the query sets Ai in two groups, depending on the expected size of their intersection with
the (random) support.

With this in mind, the following definition will be crucial to our proof. Intuitively, it captures the
distribution of sizes of intersection of various query sets with the randomly chosen set S.

Definition 4.1. Let s≥ 1, and A= {a1, . . . ,aq} be any set of q integers. For a real number t > 0, define

Ct(s)
def
=
∣∣∣{ i ∈ [q] :

ais
n
∈
(
β
−t ,β t) }∣∣∣ (4.2)

to be the number of t-hit points of A (for s).

The next result will be crucial to prove our lower bounds: it roughly states that if we consider the ai and
scale them by the random quantity s/n, then the distribution of the random variable generated has an
exponential tail with respect to t.

Lemma 4.2 (Hitting Lemma). Fix A as in the previous definition. If s is drawn uniformly at random
from S, then with probability at least 99/100.

sup
t>0

Ct(s)
t

<
2

100
. (4.3)

Proof. Without loss of generality, assume that the ai are in decreasing order. We will work in the
logarithmic domain: a number ai contributes to Ct(s) if and only if logs∈ [log(n/ai)− t logβ , log(n/ai)+
t logβ ]. Indeed, we can restate the lemma in an additive form. Let A= {α1, . . . ,αm} be any set of numbers
in [0, logn]. These are defined as transformations of ai’s: αi , log(n/ai). In the additive restating, x will
play the role of logs, or equivalently, s = 2x. For a point x ∈ [0, logn], let `x

j and rx
j denote the distance of

x from the jth point to its left and right, respectively, from the set A. More precisely, if αγ ≤ x≤ αγ+1,
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`x
j , x−αγ+1− j. If we consider only points to the left of x, `x

j/ logβ is the least value of t such that
Ct(2x) = j. Therefore, if

tx
j ,

1
logβ

min
{
`x

j,r
x
j
}
,

then we are guaranteed that j ≤Ctx
j
(2x)≤ 2 j.

Observe that Ct(2x) is a piecewise-constant function which is monotone non-decreasing in t. There-
fore, the supremum of Ct(2x)/t is attained at one of these discontinuities:

sup
t>0

Ct(2x)

t
= max
{t : ∀δ>0,Ct−δ (2x)<Ct(2x)}

Ct(2x)

t
.

We can in turn upper bound this by looking at the set of all tx
j . Note that this may ignore some discontinuous

points: for instance, suppose that `x
j < rx

j , then rx
j/ logβ will not be considered. However, we note that in

this case, Crx
j/ logβ (2x)≤ 2C`x

j/ logβ (2x) = 2Ctx
j
(2x):

Crx
j/ logβ (2x)

rx
j/ logβ

≤
Crx

j/ logβ (2x)

`x
j/ logβ

≤
2C`x

j/ logβ (2x)

`x
j/ logβ

=
2Ctx

j
(2x)

tx
j

.

Therefore,

sup
t>0

Ct(2x)

t
≤ max
{tx

j : j∈[q]}

2Ctx
j
(2x)

tx
j
≤ max
{tx

j : j∈[q]}

4 j
tx

j
= max
{tx

j : j∈[q]}

4 j logβ

min{`x
j,r

x
j}

.

We would like to upper bound this term by 2/100. Equivalently, we satisfy the conditions of the Lemma
if

min
j

{ tx
j

j

}
≥ 200logβ .

For a constant c > 0, let Sc be the set of all points x (where recall s = 2x is selected according to the
distribution S) such that violate this inequality for c:

min
j

{ tx
j

j

}
≤ c .

We would like to upper bound the probability that a randomly selected x violates this inequality for
c = 200logβ by 1/100. Equivalently, since x is selected uniformly at random from (logn)/(2logβ )
different values, we would like to upper bound the size of S200logβ by logn/200logβ . We do this with
the following claim.

Claim 4.3. |Sc| ≤ 2cq.

Substituting in c = 200logβ and q = logn/80000log2
β will give the desired result.

Proof of Claim 4.3. We consider the set of points in Sc,` ⊂ Sc that satisfy `x
j/ j < c for some j, and show

that their measure is at most cq. An identical bound holds for the set of points of Sc for which rx
j/ j < c.

Let Si
c,` ⊂ Sc,` be the set of points in Sc,` that satisfy min j{tx

j/ j}< c with respect to the set {α1, . . . ,αi}.
We will show by induction that |Si

c,`|< ci.
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For the first point α1, the set S1
c,` = [α1,α1 + c]. Suppose by induction that |Si

c,`| < ci. Let xi be
the right-most point in the set Si

c,`. Then it is clear that xi > αi, in fact xi ≥ αi + c. Furthermore, either
xi = logn, or `xi

j / j = c for some j. Moreover, we claim that [αi,xi] ∈ Si
c,`. Indeed, for the same j that

`xi
j / j < c, all points in [αi,xi] satisfy the condition. If xi = logn, then the result holds trivially. We

therefore consider the point αi+1 and prove the inductive step for xi < logn. There are two cases:

If αi+1 ≥ xi: In this case, Si+1
c,` = Si

c,`∪ [αi+1,xi+1]. We have to show that xi+1 ≤ αi+1 + c. Suppose to
the contrary that xi+1 > αi+1 + c≥ xi + c. Then there is a point αh for h≤ i, such that

xi+1−αh

i+2−h
< c , and then

αi+1 + c−αh

i+2−h
< c ,

so that
αi+1−αh

i+1−h
< c,

however, this implies that αi+1 ∈ Si
c,`, contradicting the assumption of this case.

If αi+1 < xi: In this case, Si+1
c,` = Si

c,` ∪ [xi,xi+1]. We have to show that xi+1 ≤ xi + c. Suppose on the
contrary that xi+1 > xi + c > αi+1 + c. Let h be the index such that

xi+1−αh

i+2−h
< c , and therefore,

xi + c−αh

i+2−h
< c ,

implying that
xi−αh

i+1−h
< c,

contradicting that xi is the rightmost point of Si
c,`.

This concludes the proof of the hitting lemma.

We proceed to show how to use this lemma to bound the contribution of various types of queries
to the distinguishability of D1 and D2. In particular, we will apply Lemma 4.2 to the set of query sizes
{a1, . . . ,aq}.
Recall that the ai are non-increasing. If aq′s/n≤ 1 let q′ def

= q+1, otherwise define q′ as the largest integer
such that aq′s/n > 1. We partition the queries made by T in two: A1, . . . ,Aq′ are said to be big, while
Aq′+1, . . . ,Aq are small queries.

Lemma 4.4. With probability at least 1− 2−10, a random distribution from D1 or from D2 does not
intersect with any small query.

Proof. Let s be the random size drawn for the definition of the instances. We first claim that

E[
∣∣Aq′+ j ∩S

∣∣]≤ β
−50 j

for all j ≥ 1, where the expectation is over the uniform choice of set S1 for D1. Indeed, by contradiction
suppose there is a j ≥ 1 such that

E[
∣∣Aq′+ j ∩S

∣∣] = aq′+ js
n

> β
−50 j .
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By definition of q′, for 1≤ i≤ j,

1≥
aq′+is

n
> β

−50 j.

Therefore, the queries Aq′ ,Aq′+1, . . . ,Aq′+ j contribute to C50 j, and we obtain

C50 j

50 j
≥ j

50 j
=

2
100

,

contradicting Lemma 4.2. Thus, the expected intersection can be bounded as follows:

E[
∣∣(Aq′+1∪Aq′+2 · · ·∪Aq)∩S

∣∣]≤ E[
∣∣Aq′+1∩S

∣∣]+E[
∣∣Aq′+2∩S

∣∣]+ · · ·+E[
∣∣Aq∩S

∣∣]
≤ β

−50 +β
−100 + . . .

≤ 2−12 ,

since β ≥ 2. From this, we obtain the result holds for D1 by Markov’s inequality. The same applies to
D2 with probability of intersection at most 2−10, proving the lemma.

We now turn our attention to the sets with large intersections. We will show that under D1 and D2,
the results of querying the sets A1, . . .Aq′ are indistinguishable from simply picking elements uniformly
from the sets A1, . . . ,Aq′ . More precisely, we establish the following.

Lemma 4.5. Let η∗ = 2−10 and ηs = 1/100; and fix ` ∈ {1,2}. At least an 1−ηs fraction of elements
s1, . . . ,sq′ ∈ A1×A2, . . . ,Aq′ satisfy

Pr
`

[
(s1, . . . ,sq′)

]
∈ [1−5η

∗,1+5η
∗] · 1
|A1| . . .

∣∣Aq′
∣∣ , (4.4)

where Pr`
[
(s1, . . . ,sq′)

]
denotes the probability that s1 . . .sq′ are the results of the queries A1, . . . ,Aq′

under CONDD`
.

As this holds for most distributions in both D1 and D2, this implies the queries are indistinguishable
from the product distribution over A1×A2, . . . ,Aq′ (which is the one induced by the same queries on the
uniform distribution over [n]) in either case, with probability at least 1−ηs−5η∗.

Proof of Lemma 4.5. From standard Chernoff-like concentration bounds for hypergeometric random
variables (Lemma 2.7), we obtain the claim below.

Claim 4.6. Suppose A is a set of size a, and S is a uniformly chosen random set of size s. Then, for all
η ∈ (0,1], we have

Pr
[
|A∩S|> (1+η)

as
n

]
< e−η2· as

3n and Pr
[
|A∩S|< (1−η)

as
n

]
< e−η2· as

3n .

We use this to show that indeed all the |Ai∩S| concentrate around their expected values for 1 ≤
j ≤ q′. First note that, as a consequence of Lemma 4.2, it is the case that these expected values satisfy
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aq′− js/n≥ β 50( j+1) for every 0≤ j ≤ q′−1 (with probability at least 99/100). Conditioning on this, we
first invoke Claim 4.6 on A j with η = 3 ·β 20( j+1), and then apply a union bound to obtain

Pr
[
∃ j ∈ [q′] s.t.

∣∣A j ∩S
∣∣ /∈ [1−4 ·β−20( j+1),1+4 ·β−20( j+1)

]
·

a js
n

]
< e−β 10

(4.5)

i. e., with high probability all intersections simultaneously concentrate around their expected values.

Note that since s is at most n3/4, each Ai under consideration has size at least nβ 50/n3/4 > n1/4. Therefore,
the probability that a random selection of elements from A1, . . . ,Aq′ exhibits no collision is at least

q′

∏
i=1

|Ai|−q′

|Ai|
≥
(

1− q′

n1/4

)q′

≥ 1− (q′)2

n1/4 > 1− log2 n
n1/4 .

We henceforth condition on this event.
Let N =

(n
s

)
be the number of outcomes for the set S. We write N0 ≥ N(1− e−β 10

) for the number
of such sets for which equation (4.5) holds. Let sq′

1 denote s1 . . .sq′ . For a set of distinct (s1, . . . ,sq′) ∈
A1×·· ·×Aq′ , let N(sq′

1 ) =
(n−q′

s−q′
)

be the number of sets of size s that contain sq′
1 , and let N0(s

q′
1 ) of them

satisfy equation (4.5).
By Markov’s inequality, with probability at least 1− e−β 9

, for a randomly chosen sq′
1 we have

N0(s
q′
1 )/N(sq′

1 )> 1− e2−β 9
. For any such sq′

1 ,

Pr
[

sq′
1

]
≥

N0(s
q′
1 )

N
·

q′

∏
i=1

1
|Ai∩S|

≥ (1− e2−β 9
)

s(s−1) . . .(s−q′+1)
n(n−1) . . .(n−q′+1)

· (1−4 ·β−19)
q′

∏
i=1

n
ais

≥ (1−6 ·β−19)
q′

∏
i=1

1
ai
,

for large n and as |S|> n1/4. Since the sum of probabilities of elements is at most 1, the other side of the
inequality in Lemma 4.5 follows.

Proof of Theorem 1.2 and Theorem 1.3. Let T1 (resp. T2, TU ) be the distribution over transcripts gen-
erated by the queries A1, . . . ,Aq when given conditional access to the distribution D1 from a no-
instance (resp. D2, resp. uniform U[n]); that is, a distribution over q-tuples in A1× ·· · ×Aq. Since
the queries were non-adaptive, we can break T1 (and similarly for T2, TU ) in T big

1 ×T small
1 according to

q′, and use Lemma 4.5 and Lemma 4.4 separately to obtain dTV(T1,T2) ≤ ηs +η∗+2−10 < 1/50 and
dTV(T1,TU)≤ ηs+η∗+2−10 < 1/50 (for the latter, recalling that queries that do not intersect the support
receive samples exactly uniformly distributed in the query set)—thus establishing both theorems.

4.1 On the dependence on ε in Theorem 1.3

We remark that Theorem 1.3, by establishing a lower bound of Ω(logn) queries for non-adaptive testing
of uniformity with constant distance parameter 1/4, immediately implies, by a standard argument, an
Ω((logn)/ε) lower bound for distance parameter ε ∈ (0,1/4). In more detail, this is a consequence
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of the following reduction: any q(n,ε)-query non-adaptive tester for uniformity T can be used, given
conditional access to some distribution D on [n], on the mixture distribution

Dε

def
= 4εD+(1−4ε)U[n] , (4.6)

for which a conditional oracle can be easily simulated given a conditional oracle for D. Moreover,
answering q(n,ε) to Dε can be done with an expected 4εq(n,ε) conditional queries to D. As it is
immediate to see that dTV(Dε ,U[n]) = 4ε dTV(D,U[n]), we get that T can be used to obtain a tester for non-
adaptive testing of uniformity with constant distance parameter 1/4, with query complexity O(εq(n,ε))
for every ε < 1/4 (converting the expected query complexity to a worst-case one is straightforward via
Markov’s inequality followed by success probability amplification by a constant number of repetitions).
Therefore, the lower bound of Theorem 1.3 implies that q(n,ε) = Ω((logn)/ε), as claimed. It is also
worth noting that the above argument does not yield an analogue statement for support-size estimation
via Theorem 1.2. Indeed, mixing the distribution D with the uniform distribution does not preserve the
support size in that case (nor the guarantee that every point of the support has probability mass at least
τ/n).

5 An upper bound for support-size estimation

In this section, we prove our upper bound for constant-factor support-size estimation, reproduced below.

Theorem 1.4 (Adaptive Support-Size Estimation). Let τ > 0 be any constant. There exists an adaptive
algorithm which, given COND access to an unknown distribution D on [n] (guaranteed to have prob-
ability mass at least τ/n on every element of its support) and accuracy parameter ε ∈ (0,1), makes
Õ
(
(log logn)/ε3

)
queries to the oracle11 and returns a value ω̃ such that the following holds. With

probability at least 2/3, ω̃ ∈ [(1/(1+ ε)) ·ω,(1+ ε) ·ω], where ω = |supp(D)|.

Before describing and analyzing our algorithm, we shall need the following results, that we will
use as subroutines: the first one will help us detecting when the support is already dense. The second,
assuming the support is sparse enough, will enable us to find an element with zero probability mass,
which can afterwards be used as a “reference” to verify whether any given element is inside or outside
the support. Finally, the last one will use such a reference point to check whether a candidate support size
σ is smaller or significantly bigger than the actual support size.

Lemma 5.1. Given τ > 0 and COND access to a distribution D such that each support element has
probability at least τ/n, as well as parameters ε ∈ (0,1/2),δ ∈ (0,1), there exists an algorithm TESTS-
MALLSUPPORT (Algorithm 2) that makes

Õ
(

1
τε2 +

1
τ2

)
· log(1/δ )

queries to the oracle, and satisfies the following. (i) If supp(D)≥ (1− ε/2)n, then it returns ACCEPT
with probability at least 1−δ ; (ii) if supp(D) ≤ (1− ε)n, then it returns REJECT with probability at
least 1−δ .

11We remark that the constant in the Õ depends polynomially on 1/τ .

THEORY OF COMPUTING, Volume 14 (19), 2018, pp. 1–46 34

http://dx.doi.org/10.4086/toc


A CHASM BETWEEN IDENTITY AND EQUIVALENCE TESTING WITH CONDITIONAL QUERIES

Lemma 5.2. Given COND access to a distribution D, an upper bound m < n on supp(D), as well as
parameter δ ∈ (0,1), there exists an algorithm GETNONSUPPORT (Algorithm 3) that makes

Õ
(

log2 1
δ

log−2 n
m

)
queries to the oracle, and returns an element r ∈ [n] such that r /∈ supp(D) with probability at least 1−δ .

Lemma 5.3. Given COND access to a distribution D, inputs σ ≥ 2 and r /∈ supp(D), as well as
parameters ε ∈ (0,1/2),δ ∈ (0,1), there exists an algorithm ISATMOSTSUPPORTSIZE (Algorithm 4)
that makes Õ

(
1/ε2

)
log(1/δ ) queries to the oracle, and satisfies the following. The algorithm returns

either yes or no, and (i) if σ ≥ supp(D), then it returns yes with probability at least 1− δ ; (ii) if
σ > (1+ ε)supp(D), then it returns no with probability at least 1−δ .

We defer the proofs of these 3 lemmata to the next subsections, and now turn to the proof of the
theorem.

Proof. The algorithm is given in Algorithm 1, and at a high-level works as follows: if first checks whether
the support size is big (an 1−O(ε) fraction of the domain), in which case it can already stop and return
a good estimate. If this is not the case, however, then the support is sparse enough to efficiently find
an element r outside the support, by taking a few uniform points, comparing and ordering them by
probability mass (and keeping the lightest). This element r can then be used as a reference point in a
(doubly exponential) search for a good estimate: for each guess ω̃ , a random subset S of size roughly ω̃

is taken, a point x is drawn from DS, and x is compared to r to check if D(x)> 0. If so, then S intersects
the support, meaning that ω̃ is an upper bound on ω; repeating until this is no longer the case results in
an accurate estimate of ω .

Algorithm 1 ESTIMATESUPPORTD

1: if TESTSMALLSUPPORTD(ε,
1

10) returns ACCEPT then return ω̃ ← (1− ε2)n
2: end if
3: Call GETNONSUPPORTD((1− ε

2 )n,
1
10) to obtain a non-support reference point r.

4: for j from 0 to log1+ε log1+ε n do
5: Set ω̃ ← (1+ ε)(1+ε) j

.
6: Call ISATMOSTSUPPORTSIZED(ω̃,r,ε, 1

100·( j+1)2 ) to check if ω̃ is an upper bound on ω .
7: if the call returned no then
8: Perform a binary search on {(1+ ε) j−1, . . . ,(1+ ε) j} to find i∗, the smallest i≥ 2 such that

ISATMOSTSUPPORTSIZED((1+ ε)i,r,ε, 1
10( j+1)) returns no.

9: return ω̃ ← (1+ ε)i∗−1.
10: end if
11: end for

In the rest of this section, we formalize and rigorously argue the above. Conditioning on each of the
calls to the subroutines TESTSMALLSUPPORT, GETNONSUPPORT and ISATMOSTSUPPORTSIZE being
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correct (which overall happens except with probability at most

1
10

+
1

10
+

∞

∑
j=1

1
100 j2 +

1
10

<
1
3

by a union bound), we show that the output ω̃ of ESTIMATESUPPORT is indeed within a factor (1+ ε) of
ω .

• If the test on Step 1 passes, then by Lemma 5.1 we must have supp(D) > (1− ε)n. Thus, the
estimate we return is correct, as [(1− ε)n,n]⊆ [ω̃/(1+ ε),(1+ ε)ω̃].

• Otherwise, if it does not then by Lemma 5.1 it must be the case that supp(D)< (1− ε/2)n.

Therefore, if we reach Step 3 then (1− ε/2)n is indeed an upper bound on ω , and GETNONSUPPORT

will return a point r /∈ supp(D) as expected. The analysis of the rest of the algorithm is straightforward:
from the guarantee of ISATMOSTSUPPORTSIZE, the binary search will be performed for the first index
j such that ω ∈ [(1+ ε)(1+ε) j−1

,(1+ ε)(1+ε) j
]; and will be on a set of (1+ ε) j−1 values. Similarly, for

the value i∗ eventually obtained, it must be the case that (1+ ε)i∗ > ω (by contrapositive, as no was
returned by the subroutine) but (1+ ε)i∗−1 ≤ (1+ ε)ω (again, as the subroutine returned yes). But then,
ω̃ = (1+ ε)i∗−1 ∈ (ω/(1+ ε),(1+ ε)ω] as claimed.

Query complexity. The query complexity of our algorithm originates from the following different
steps:

• the call to TESTSMALLSUPPORT, which from Lemma 5.1 costs Õ
(
1/ε2

)
queries;

• the call to GETNONSUPPORT, on Step 3, that from the choice of the upper bound also costs
Õ
(
1/ε2

)
queries;

• the (at most) log1+ε log1+ε n = O((log logn)/ε) calls to ISATMOSTSUPPORTSIZE on Step 6.
Observing that the query complexity of ISATMOSTSUPPORTSIZE is only Õ

(
1/ε2

)
· log(1/δ ), and

from the choice of δ = 1/( j+1)2 at the j-th iteration this step costs at most

Õ
(

1
ε2

)
·

log1+ε log1+ε n

∑
j=1

O
(
log( j2)

)
= Õ

(
1
ε2 log1+ε log1+ε n

)
= Õ

(
1
ε3 log1+ε log1+ε n

)
queries.

• Similarly, Step 8 results in at most j ≤ log logn calls to ISATMOSTSUPPORTSIZE with δ set to
1/(10( j+1)), again costing

Õ
(

1
ε2

)
· log j = Õ

(
1
ε2 log1+ε log1+ε n

)
= Õ

(
1
ε3 log logn

)
queries.

Gathering all terms, the overall query complexity is Õ
(

log logn
ε3

)
, as claimed.
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5.1 Proof of Lemma 5.1

Hereafter, we assume without loss of generality that τ < 2: indeed, if τ ≥ 2 then the support is of size
at most n/2, and it suffices to return REJECT to meet the requirements of the lemma. We will rely on
the (easy) fact below, which ensures that any distribution with dense support and minimum non-zero
probability τ/n put significant mass on “light” elements.

Fact 5.4. Fix any ε ∈ [0,1). Assume D satisfies both supp(D)≥ (1−ε)n and D(x)≥ τ/n for x∈ supp(D).

Then, setting Lε

def
= { x ∈ [n] : D(x) ∈ [τ/n,2/n] }, we have |Lε | ≥ (1/2− ε)n and D(Lε)≥ (1/2− ε)τ .

Proof. As the second claim follows directly from the first and the minimum mass of elements of Lε , it
suffices to prove that |Lε | ≥ (1/2− ε)n. This follows from observing that

1 = D([n])≥ D([n]\Lε)≥ (|supp(D)|− |Lε |)
2
n
≥ 2(1− ε)− 2 |Lε |

n

and rearranging the terms.

Description and intuition. The algorithm (as described in Algorithm 2) works as follows: it first takes
enough uniformly distributed samples s1, . . . ,sm to get (with high probability) an accurate enough fraction
of them falling in the support to distinguish between the two cases. The issue is now to detect those
m j which indeed are support elements; note that we do not care about underestimating this fraction in
case (b) (when the support is at most (1− ε)n, but importantly do not want to underestimate it in case
(a) (when the support size is at least (1− ε/2)n). To perform this detection, we take constantly many
samples according to D (which are therefore ensured to be in the support), and use pairwise conditional
queries to sort them by increasing probability mass (up to approximation imprecision), and keep only
the lightest of them, t. In case (a), we now from Fact 5.4 that with high probability our t has mass in
[1/n,2/n], and will therefore be either much lighter than or comparable to any support element: this will
ensure that in case (a) we do detect all of the m j that are in the support.

This also works in case (b), even though Fact 5.4 does not give us any guarantee on the mass of t.
Indeed, either t turns out to be light (and then the same argument ensures that our estimate of the number
of “support” elements m j is good), or t is too heavy—and then our estimate will end up being smaller
than the true value. But this is fine, as the latter only means we will reject the distribution (as we should,
since we are in the small-support case).

Correctness. Let η be the fraction of the elements s j that are in the support of the distribution. By a
multiplicative Chernoff bound and a suitable constant in our choice of m, we get that (i) if supp(D)≥
1−ε/2, then Pr[η < 1−3ε/4 ]≤ 1/12, while (ii) if supp(D)≤ 1−ε/2, then Pr[η ≥ 1−3ε/4 ]≤ 1/12.
We hereafter condition on this (i. e., η being a good enough estimate). We also condition on all calls
to COMPARE yielding results as per specified, which by a union bound overall happens except with
probability 1/12+1/12 = 1/6, and break the rest of the analysis in two cases.

(a) Since the support size ω is in this case at least (1− ε/2)n, from Fact 5.4 we get that

D(Lε/2)≥
1− ε

2
τ ≥ τ

4
.
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Algorithm 2 TESTSMALLSUPPORTD

Require: COND access to D; accuracy parameter ε ∈ (0,1/2), threshold τ > 0, probability of failure δ

1: Repeat the following O(log(1/δ )) times and return the majority vote.
2: loop
3: Draw m def

= Θ
( 1

ε2

)
independent samples s1, . . . ,sm ∼ U[n].

4: Draw k def
= Θ

( 1
τ

)
independent samples t1, . . . , tk ∼ D.

5: for all 1≤ i < j ≤ k do . Order the t j

6: Call COMPARE({ti},{t j},η = 1
2 ,K = 2, 1

4k2 ) to get a 2-approx. ρ of D(t j)
D(ti)

, High or Low.
7: if COMPARE returned High or a value ρ then
8: Record ti � t j

9: else
10: Record t j ≺ t j

11: end if
12: end for
13: Set t to be (any of the) smallest elements t j according to �.
14: for all 1≤ j ≤ m do . Find the fraction of support elements among the m j

15: Call COMPARE({t},{s j},η = 1
2 ,K = 2

τ
, 1

4m) to get either a value ρ , High or Low.
16: if COMPARE returned High or a value ρ ≥ 1/2 then
17: Record s j as “support.”
18: end if
19: end for
20: if the number of elements s j marked “support” is at least (1− 3

4 ε)m then return ACCEPT
21: else return REJECT
22: end if
23: end loop

Therefore, except with probability at most (1− τ/4)k < 1/12, at least one of the t j will belong to
Lε/2. When this happens, and by the choice of parameters in the calls to COMPARE, we get that
t ∈ Lε/2; that is D(t) ∈ [τ/n,2/n]. But then the calls to the routine on Step 15 will always return
either a value (since t is “comparable” to all x ∈ Lε/2—i. e., has probability within a factor 2/τ of
them) or High (possible for those s j that have weight greater than 2/n), unless s j has mass 0 (that
is, is not in the support). Therefore, the fraction of points marked as support is exactly η , which by
the foregoing discussion is at least 1−3ε/4: the algorithm returns ACCEPT at Step 20.

(b) Conversely, if ω ≤ (1−ε)n, there will be a fraction 1−η > 3ε/4 of the s j having mass 0. However,
no matter what t is it will still be in the support and therefore have D(t)≥ τ/n: for these s j, the
call to COMPARE on Step 15 can thus only return Low. This means that there can only be less
than (1− (3/4)ε)m points marked “support” among the s j, and hence that the algorithm will return
REJECT as it should.

Overall, the inner loop of the algorithm thus only fails with probability at most 1/12+1/6+1/12 = 1/3,
(where the 3 events contributing to the union bound are (i) when η fails to be a good estimate, (ii) when
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the calls to COMPARE fail to yield results as claimed, and (iii) when no t j hits Lε/2 in case (a)). Repeating
independently log(1/δ ) times and taking the majority vote boosts the probability of success to 1−δ .

Query complexity. The sample complexity comes from the k2 calls on Step 4 (each costing O(logk)
queries) and the m calls on Step 15 (each costing O((1/τ) logm) queries). By the setting of m and because
of the log(1/δ ) repetitions, this results in an overall query complexity

O
((

1
τ2 log

1
τ
+

1
τε2 log

1
ε

)
log

1
δ

)
.

5.2 Proof of Lemma 5.2

As described in Algorithm 3, the subroutine is fairly simple: using its knowledge of an upperbound on
the support size, it takes enough uniformly distributed samples to have (with high probability) at least one
falling outside the support. Then, it uses the conditional oracle to “order” these samples according to
their probability mass, and returns the lightest of them—i. e., one with zero probability mass.

Algorithm 3 GETNONSUPPORTD(m,δ )

Require: COND access to D; upper bound m on supp(D), probability of failure δ

Ensure: Returns r ∈ [n] such that, with probability at least 1−δ , r /∈ supp(D)

1: Set k def
=
⌈
log 2

δ
log−1 n

m

⌉
.

2: Draw independently k points s1, . . . ,sk ∼ U[n]
3: for all 1≤ i < j ≤ k do
4: Call COMPARE({si},{s j},η = 1

2 ,K = 2, δ

2k2 ) to get a 2-approx. ρ of D(s j)
D(si)

, High or Low.
5: if COMPARE returned High or a value ρ then
6: Record si � s j

7: else
8: Record s j ≺ s j

9: end if
10: end for
11: return argmin�{s1, . . . ,sk} . Return (any) minimal element for �.

Correctness. It is straightforward to see that provided at least one of the s j falls outside the support and
that all calls to COMPARE behave as expected, then the procedure returns one of the “lightest” elements
s j, i. e., a non-support element. By a union bound, the latter holds with probability at least 1−δ/2; as for
the former, since m is by assumption an upper bound on the support size it holds with probability at least
1− (m/n)k ≥ 1−δ/2 (from our setting of k). Overall, the procedure’s output is correct with probability
at least 1−δ , as claimed.

Query complexity. The query complexity of GETNONSUPPORT is due to the
(k

2

)
calls to

COMPARE, and is therefore O
(
k2 logk/δ

)
because of our setting for η and K (which is in turn
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Õ
(
log2(1/δ ) log−2(n/m)

)
). (In our case, we shall eventually take m = (1− ε/2)n and δ = 1/10, thus

getting k = O(1/ε) and a query complexity of Õ
(
1/ε2

)
.)

5.3 Proof of Lemma 5.3

Our final subroutine, described in Algorithm 4, essentially derives from the following observation: a
random set S of size (approximately) σ obtained by including independently each element of the domain
with probability 1/σ will intersect the support on ω/σ points on expectation. What we can test given
our reference point r /∈ supp(D), however, is only whether S∩ supp(D) = /0. But this is enough, as by
repeating sufficiently many times (taking a random S and testing whether it intersects the support at all)
we can distinguish between the two cases we are interested in. Indeed, the expected fraction of times
S includes a support element in either cases is known to the algorithm and differs by roughly Ω(ε), so
O
(
1/ε2

)
repetitions are enough to tell the two cases apart.

Algorithm 4 ISATMOSTSUPPORTSIZED(σ ,r,ε,δ )
Require: COND access to D; size σ ≥ 2, non-support element r, accuracy ε , probability of failure δ

Ensure: Returns, with probability at least 1−δ , yes if σ ≤ |supp(D)| and no if σ > (1+ ε) |supp(D)|.
1: Set α ←

(
1− 1

σ

)σ ∈ [1
4 ,e
−1], τ ← α(α−

ε

2 −1) = Θ(ε).
2: Repeat the following O(log(1/δ )) times and return the majority vote.
3: loop
4: for m = O

( 1
τ2

)
times do

5: Draw a subset S⊆ [n] by including independently each x ∈ [n] with probability 1/σ .
6: Draw x∼ DS.
7: Call COMPARE({x},{r},η = 1

2 ,K = 1, 1
100m) . Low if S∩ supp(D) 6= /0; ρ ∈ [1

2 ,2) o.w.
8: Record yes if COMPARE returned Low, no otherwise.
9: end for

10: return yes if at least m
(
α + τ

2

)
“yes”’s were recorded, no otherwise. . Thresholding.

11: end loop

Correctness. We condition on all calls to COMPARE being correct: by a union bound, this overall
happens with probability at least 99/100. We shall consider the two cases σ ≤ ω and σ > (1+ ε)ω , and
focus on the difference of probability p of recording yes on Step 8 between the two, in any fixed of the m
iterations. In both cases, note p is exactly (1−1/σ)ω .

• If σ ≤ ω , then we have p≤
(
1− 1

σ

)σ
= α .

• If σ > (1+ ε)ω , then p >
(
1− 1

σ

)σ/(1+ε)
>
(
1− 1

σ

)σ(1−ε/2)
= α1−ε/2.

As α ∈ [1
4 ,e
−1], the difference between the two is τ = α(α−ε/2−1) = Θ(ε). Thus, repeating the atomic

test of Step 4 O
(
1/τ2

)
before thresholding at Step 10 yields the right answer with constant probability,

then brought to 1−δ by the outer repeating and majority vote.
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Query complexity. Each call to COMPARE at Step 7 costs O(logm) queries, and is in total repeated
O(m log(1/δ ) times. By the setting of m and τ , the overall query complexity is therefore

O
(

1
ε2 log

1
ε

log
1
δ

)
.

5.4 A non-adaptive upper bound

In this section, we sketch how similar—yet less involved—ideas can be used to derive a non-adaptive
upper bound for support-size estimation. For simplicity, we describe the algorithm for 2-approximation:
adapting it to general (1+ ε)-approximation is straightforward.

The high-level idea is to perform a simple binary search (instead of the double exponential search
from the preceding section) to identify the greatest lower bound on the support size of the form k = 2 j.
For each guess k ∈ {2,4,8 . . . ,n}, we pick uniformly at random a set S⊆ [n] of cardinality k, and check
whether DS is uniform using the non-adaptive tester of Chakraborty et al. [16, Theorem 4.1.2]. If DS is
found to be uniform for all values of k, we return n as our estimate (as the distribution is close to uniform
on [n]); otherwise, we return n/k, for the smallest k on which DS was found to be far from uniform.
Indeed, DS can only be far from uniform if S contains points from the support of D, which intuitively
only happens if n/k = Ω(1).

To be more precise, the algorithm proceeds as follows, where τ > 0 is an absolute constant.
for all k ∈ {2,4, . . . ,n} do

Set a counter ck← 0.
for m = O(log logn) times do

Pick uniformly at random a set S⊆ [n] of k elements.
Test (non-adaptively) uniformity of DS on S, with the tester of [16].
if the tester rejects then increment ck.
end if

end for
if ck > τ ·m then return ω̃ ← n

k .
end if

end for
return ω̃ ← n.

The query complexity is easily seen to be poly logn, from the Õ(logn) calls to the poly(logn) tester
of [16, Theorem 4.1.2]. As for correctness, it follows from the fact that for any set S with mass D(S)> 0
which contains at least an η fraction of points outside the support, it holds that DS is η-far from US.
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