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Abstract. The orthogonality dimension of a graph � = (+, �) over a field F is the

smallest integer C for which there exists an assignment of a vector DE ∈ F C with

〈DE , DE〉 ≠ 0 to every vertex E ∈ + , such that 〈DE , DF〉 = 0 whenever E and F are

adjacent vertices in �. The study of the orthogonality dimension of graphs is

motivated by various applications in information theory and in theoretical computer

science. The contribution of the present work is twofold.

First, we prove that there exists a constant 2 such that for every sufficiently large

fixed integer C, it is NP-hard to distinguish between the cases that the orthogonality

dimension over ℝ of an input graph is at most C and at least 3C/2 − 2. At the heart
of the proof lies a geometric result, which might be of independent interest, on a

generalization of the orthogonality dimension parameter (where vertices correspond
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to subspaces rather than vectors) for the family of Kneser graphs. The result is related to

a long-standing graph-theoretic conjecture due to Stahl (J. Combin. Theory–B, 1976).

Second, we study the smallest possible orthogonality dimension over finite

fields of the complement of graphs that do not contain certain fixed subgraphs. In

particular, we provide an explicit construction of triangle-free =-vertex graphs whose

complement has orthogonality dimension over the binary field at most =1−�
for some

constant � > 0. Our results involve constructions from a family of generalized Kneser
graphs (namely, threshold Kneser graphs) and are motivated by the rigidity approach

to circuit lower bounds. We use them to answer questions raised by Codenotti,

Pudlák, and Resta (Theoret. Comput. Sci., 2000), and in particular, to disprove their

Odd Alternating Cycle Conjecture over every finite field.

1 Introduction

A C-dimensional orthogonal representation of a graph � = (+, �) over a field F is an assignment

of a vector DE ∈ F C with 〈DE , DE〉 ≠ 0 to every vertex E ∈ + , such that 〈DE , DE′〉 = 0 whenever E

and E′ are adjacent vertices in �. The orthogonality dimension of a graph � over F , denoted by

�(�, F ), is the smallest integer C for which there exists a C-dimensional orthogonal representation

of � over F .1 Orthogonality dimension is closely related to several other well-studied graph

parameters. In particular, for every graph � and every field F , �(�, F ) is sandwiched between

the clique number and the chromatic number of �, that is, $(�) ≤ �(�, F ) ≤ "(�).
Orthogonal representations of graphs have been found useful over the years for various

applications in information theory and in theoretical computer science. They were originally

introduced over the real field in a seminal paper by Lovász [35], where they were used to

define the influential Lovász '-function. The latter was used in [35] to determine the Shannon

capacity, a notoriously difficult information-theoretic graph parameter, of the cycle on five

vertices, and in the subsequent decades it was successfully applied in combinatorics, algorithms,

and complexity theory (see, e. g., [46, 31, 19, 3]). The orthogonality dimension of graphs

plays an important role in several areas of computational complexity. Over finite fields, the

orthogonality dimension and its relaxation due to Haemers [23, 24], called minrank, are related
to Valiant’s concept of matrix rigidity [47] (see, e. g., [13, 40, 22]). Over the complex field,

the orthogonality dimension was used in a characterization of the quantum communication

complexity of promise equality problems [14, 6, 7] and in the study of the quantum chromatic

number [10, 42]. Orthogonality dimension has also been investigated in the contexts of hardness

of approximation [39, 32], integrality gaps for linear programming [29, 28], and algorithms

based on semidefinite programming [11, 26].

In the present paper we study two aspects of the orthogonality dimension of graphs. First,

we prove an NP-hardness result for approximating the orthogonality dimension of graphs over

1Orthogonal representations of graphs have originally been defined by Lovász [35] as orthogonal representations

of the complement in our sense, i. e., Lovász’s definition requires vectors associated with non-adjacent vertices to
be orthogonal. We have decided to use here the other definition (following, e. g., [14, 6, 7]), but one may view the

notation �(�, F ) as standing for �(�, F ).
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the real field ℝ. At the heart of the proof lies a geometric result, which might be of independent

interest, on a generalization of the orthogonality dimension parameter for the family of Kneser
graphs. The result is related to a long-standing graph-theoretic conjecture due to Stahl [43]. The

second aspect of the orthogonality dimension considered in this paper, motivated by the area of

circuit complexity, is that of determining the smallest possible orthogonality dimension over

finite fields of the complement of graphs that do not contain certain fixed subgraphs. In this

context, we prove an upper bound on the minrank over finite fields for a family of generalized
Kneser graphs (namely, threshold Kneser graphs). The bound is used to settle some questions

raised by Codenotti, Pudlák, and Resta in [13] and to disprove their Odd Alternating Cycle

Conjecture over every finite field.

1.1 Our contribution

1.1.1 The generalized orthogonality dimension of Kneser graphs

We start by considering the computational hardness of determining the orthogonality dimension

of graphs over the real field ℝ. The challenge of understanding the hardness of this parameter

was posed already in the late eighties byLovász, Saks, and Schrĳver [37] (see also [36, Chapter 10]),

and yet, the problem is far from being well-understood. It is easy to see that deciding whether

an input graph � satisfies �(�,ℝ) ≤ C can be solved in polynomial time for C ∈ {1, 2}, and
Peeters [39] has shown that it is NP-hard for C ≥ 3. His result is known to imply that for every

C ≥ 6 it is NP-hard to decide whether an input graph � satisfies �(�,ℝ) ≤ C or �(�,ℝ) ≥ d4C/3e
(see [26]). In the present paper, we improve on the 4/3 multiplicative gap and prove the

following.

Theorem 1.1. There exist constants 2 and C0 such that for every fixed integer C ≥ C0, it is NP-hard to
distinguish between the graphs � that satisfy �(�,ℝ) ≤ C from those satisfying �(�,ℝ) ≥ 3C/2 − 2.

It is worth noting that in order to obtain hardness results for the orthogonality dimension, it

is natural to employ known hardness results regarding the closely related chromatic number of

graphs. Indeed, it is easy to verify (see, e. g., [26]) that every graph � satisfies

log
3
"(�) ≤ �(�,ℝ) ≤ "(�),

hence hardness of deciding whether an input graph � satisfies "(�) ≤ C1 or "(�) ≥ C2

immediately implies the hardness of deciding whether it satisfies �(�,ℝ) ≤ C1 or �(�,ℝ) ≥
log

3
C2. In particular, a result of Dinur, Mossel, and Regev [16] on the hardness of the chromatic

number implies that deciding whether a given graph � satisfies �(�,ℝ) ≤ 3 or �(�,ℝ) ≥ C
is UG′-hard, where UG′ refers to some variant of “Unique Games” (namely, the ‘B<-shaped’
variant).

However, if one is interested in standard NP-hardness for the orthogonality dimension, the

state of the art for the hardness of the chromatic number does not imply any NP-hardness results
using the above reasoning, despite some remarkable recent progress [5, 48]. Moreover, most

hardness proofs for the chromatic number crucially use the fact that an upper bound on the
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independence number of a graph implies a strong lower bound on its chromatic number (namely,

"(�) ≥ |+(�)|(�) ), whereas an analogue of such a statement for the orthogonality dimension does

not hold in general (see, e. g., [26, Proposition 2.2]).

One technique for proving hardness results for the chromatic number that can be applied

to the orthogonality dimension is that of Garey and Johnson [20], who have related hardness

of graph coloring to the multichromatic numbers of Kneser graphs. The :-chromatic number of a

graph �, denoted by ":(�), is the smallest number of colors needed in order to assign to every

vertex of � a set of : colors so that adjacent vertices are assigned to disjoint sets. Notice that

"1(�) is simply the standard chromatic number "(�). The family of Kneser graphs is defined as

follows.

Definition 1.2 (Kneser Graphs). For integers 3 ≥ 2B, the Kneser graph  (3, B) is the graph whose

vertices are all the B-subsets of [3] = {1, . . . , 3}, where two sets are adjacent if they are disjoint.

Note that the multichromatic numbers can be defined in terms of Kneser graphs, namely, ":(�)
is the smallest integer 3 for which there exists a homomorphism from � to  (3, :).

In the seventies, Stahl [43] made the following conjecture.

Conjecture 1.3 (Stahl’s Conjecture [43]). For all integers : and 3 ≥ 2B,

":( (3, B)) =
⌈ :
B

⌉
· (3 − 2B) + 2:.

Stahl’s conjecture has received significant attention in the literature over the years. Even

very recently, it was related to Hedetniemi’s well-known, recently disproved, conjecture [45].

Nevertheless, more than forty years since it was proposed, Stahl’s conjecture is still open. It

is known that the right-hand side in Conjecture 1.3 forms an upper bound on ":( (3, B)), and
that this bound is tight up to an additive constant that depends solely on B [12, 44]. The precise

statement of the conjecture was confirmed only for a few special cases. This includes the case of

: = 1 proved by Lovász [34], the cases of B ≤ 2, : ≤ B, 3 = 2B + 1, and : divisible by B proved by

Stahl [43, 44], and the case of B = 3 and : = 4 proved by Garey and Johnson [20] (extended to

B = 3 with any : in [44]). The result of [20] was combined there with a simple reduction to show

that for every C ≥ 6, it is NP-hard to distinguish for a given graph � between the cases "(�) ≤ C
and "(�) ≥ 2C − 4.

The recent paper [26] has suggested to borrow the reduction of [20] to prove hardness

results for the orthogonality dimension. This approach requires the following generalization of

orthogonal representations of graphs over the reals.

Definition 1.4 (Orthogonal Subspace Representation2). A C-dimensional orthogonal :-subspace
representation of a graph � = (+, �) is an assignment of a subspace*E ⊆ ℝC

with dim(*E) = : to
every vertex E ∈ + , such that the subspaces*E and*E′ are orthogonal whenever E and E′ are

adjacent in �. For a graph �, let �:(�,ℝ) denote the smallest integer C for which there exists a

C-dimensional orthogonal :-subspace representation of �.

2Over the complex field, the definition is equivalent to the notion of a projective representation from [38,

Definition 6.1].
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Note that for : = 1, Definition 1.4 coincides with the orthogonality dimension over the reals,

and that for every graph � and every : it holds that �:(�,ℝ) ≤ ":(�).
A combination of the hardness result of Peeters [39] and the reduction of [20] implies the

following.

Proposition 1.5 ([26, Theorem 1.3]). For every graph �, it is NP-hard to distinguish for an input graph
� between the cases �(�,ℝ) ≤ �

3
(�,ℝ) and �(�,ℝ) ≥ �

4
(�,ℝ).

With Proposition 1.5 in hand, it is of interest to find graphs � with a large gap between �
3
(�,ℝ)

and �
4
(�,ℝ). In the light of Conjecture 1.3, it is natural to consider the generalized orthogonality

dimension for the family of Kneser graphs. For : = 1, it was shown in [28] that the standard

chromatic number and the standard orthogonality dimension over ℝ coincide on all Kneser

graphs. In addition, a result of Bukh and Cox [8, Proposition 23] implies that for every 3 ≥ 2B

and every :, it holds that �:( (3, B),ℝ) ≥ :3/B. This implies that ": and �:(·,ℝ) coincide on
 (3, B)whenever : is divisible by B.

In this article we initiate a systematic study of the generalized orthogonality dimension

of Kneser graphs, analogously to Conjecture 1.3. Let us already mention that the arguments

applied in the study of Stahl’s conjecture do not seem to extend to our question. The main reason

is that the proofs in [43, 20, 12, 44] use Hilton–Milner-type theorems to characterize the possible

structures of the independent sets induced by generalized colorings of Kneser graphs, whereas

in our setting, orthogonal subspace representations do not naturally induce large independent

sets and the problem seems to require a more geometric approach.

The first non-trivial case is that of Kneser graphs  (3, B) with B = 2, for which we show that

the generalized orthogonality dimension is equal to the multichromatic number.

Theorem 1.6. For all integers : ≥ 1 and 3 ≥ 4,

�:( (3, 2),ℝ) =
⌈ :
2

⌉
· (3 − 4) + 2:.

We proceed by considering a general B ≥ 3 and prove the following lower bound.

Theorem 1.7. For all integers : ≥ B ≥ 3 there exists 2 = 2(B, :) such that for all integers 3 ≥ 2B,

�:( (3, B),ℝ) ≥
: − d :+1

B e + 1

B − 1

· 3 − 2.

The proofs of Theorems 1.6 and 1.7 use an inductive argument on 3. Note that for : = ℓ · B − 1

where ℓ is an integer, the bound provided by Theorem 1.7 is tight up to the additive constant 2.

Indeed, in this case we get that there exists a constant 2 such that for all integers 3 ≥ 2B it holds

that

ℓ · 3 − 2 ≤ �ℓ ·B−1
( (3, B),ℝ) ≤ "ℓ ·B−1( (3, B)) ≤ ℓ · 3 − 2,

where the last inequality follows from the fact that the right-hand side in Conjecture 1.3 is an

upper bound on the left-hand side [43]. Note further that for the special case of : = 4 and

THEORY OF COMPUTING, Volume 18 (22), 2022, pp. 1–22 5

http://dx.doi.org/10.4086/toc


ALEXANDER GOLOVNEV AND ISHAY HAVIV

B = 3, Theorem 1.7 implies that there exists a constant 2 such that �
4
( (3, 3),ℝ) ≥ 33/2 − 2 for

every sufficiently large integer 3. This, combined with Proposition 1.5 and with the fact that

�
3
( (3, 3),ℝ) = 3, yields our hardness result Theorem 1.1. Let us emphasize that the proof

relies on elementary ideas in the spirit of the hardness proof of [20] for the chromatic number

rather than on the PCP theory.

It will be interesting to figure out if the bounds given in Theorem 1.7 can be tightened to

the quantity given in the right-hand side of Conjecture 1.3, at least up to an additive term

independent of 3, as is known to hold for the multichromatic numbers [44]. In particular, it

would be nice to decide whether for all integers 3 ≥ 6 it holds that �
4
( (3, 3),ℝ) = 23 − 4.

A positive answer would imply that for every C ≥ 6, it is NP-hard to decide whether an

input graph � satisfies �(�) ≤ C or �(�) ≥ 2C − 4. We remark, however, that the approach

suggested by Proposition 1.5 for the hardness of the orthogonality dimension cannot yield

a multiplicative hardness gap larger than 2, as it is easy to see that every graph � satisfies

�
4
(�,ℝ) ≤ �(�,ℝ) + �

3
(�,ℝ) ≤ 2 · �

3
(�,ℝ).

We note that known relations between the tractable '-function and the orthogonality

dimension over the reals [35] imply that the latter can be approximated in polynomial time to

within a factor of $(=/log
2 =), where = stands for the number of vertices. It would be interesting

to decide if for every & > 0, it is NP-hard to approximate the orthogonality dimension to within

a factor of =1−&
, as is the case for the chromatic number [49].

1.1.2 The orthogonality dimension of threshold Kneser graphs

We next study the orthogonality dimension over finite fields of the complement of graphs that

do not contain some fixed subgraphs. In fact, in this context we consider a relaxation of the

orthogonality dimension, called minrank, that was introduced by Haemers in [23, 24] and is

defined as follows.

Definition 1.8 (Minrank). Let � = (+, �) be a directed graph on the vertex set + = [=] and let F

be a field. We say that an = by = matrix " over F represents � if "8 ,8 ≠ 0 for every 8 ∈ + , and
"8 , 9 = 0 for every distinct 8 , 9 ∈ + such that (8 , 9) ∉ �. The minrank of � over F is defined as

minrkF (�) = min{rankF (") | " represents � over F }.

The definition is naturally extended to (undirected) graphs by replacing every undirected edge

with two oppositely directed edges.

Note that for every graph � and every field F , minrkF (�) ≤ �(�, F ).3
We consider here the question of whether there are graphs with no short odd cycles and yet

low minrank over finite fields. This question is motivated by an attempted superlinear lower

bound on the rigidity of explicit matrices for target rank Ω(=) [13]. The rigidity of an = by =

3Indeed, given a C-dimensional orthogonal representation of an =-vertex graph � over a field F , let � ∈ F =×C
denote the matrix whose rows contain the vectors associated with the vertices of �. Then, the = by = matrix � · �)
represents � and has rank at most C over F , hence minrkF (�) ≤ C.
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matrix " over a field F with respect to a given parameter A (the target rank) is the smallest

number of entries that one has to change in " in order to reduce its rank over F to below A.

Roughly speaking, it was shown in [47, 9] that for = by = matrices � with rigidity $(=) for
A = & · =, where & > 0 is a constant, the computation of the linear transformation G ↦→ �G by

series-parallel arithmetic circuits requires superlinear size. While Valiant has shown that almost

all matrices are highly rigid, no explicit construction of matrices of superlinear rigidity for linear

target rank is known.

In 2000, Codenotti, Pudlák, and Resta [13] proposed the Odd Alternating Cycle Conjecture,
stated below. By an alternating odd cycle we refer to a directed graph which forms an odd cycle

when the orientation of the edges is ignored, and such that the orientation of the edges alternates

with one exception.

Conjecture 1.9 (The Odd Alternating Cycle Conjecture [13]). For every field F there exist & > 0

and an odd integer ℓ such that every =-vertex directed graph � with minrkF (�) ≤ & · = contains an
alternating cycle of length ℓ .

It was proved in [13] that Conjecture 1.9 implies, if true, that certain explicit = by = circulant

matrices have superlinear rigidity, namely, Ω(= · log
� =) for a constant � > 0. It was further

proved in [13] that every =-vertex (undirected) graph � that is free of cycles of length 4 satisfies

minrkℝ(�) > =/6, whereas there are =-vertex (undirected) triangle-free graphs � satisfying

minrkF (�) ≤ $(=3/4) for every field F . It was left open whether Conjecture 1.9 holds for larger

odd values of ℓ . The conjecture was recently disproved [27] over the reals, but remained open

for finite fields which are of particular interest in circuit complexity. For the orthogonality

dimension over the binary field F2, it was shown in [13] that there exist triangle-free =-vertex

graphs � satisfying �(�, F2) = =/4 + 2. It was asked there whether every =-vertex graph �

satisfying �(�, F2) ≤ =/4 + 1 must contain a triangle.

In this article we prove an upper bound on the minrank of threshold Kneser graphs (see
Definition 3.1) over finite fields. In these graphs, the vertices are all the B-subsets of the universe

[3], where two sets are adjacent if their intersection size is smaller than some integer <. Note

that for < = 1 we get the standard family of Kneser graphs (see Definition 1.2). In the proof

we modify and extend an argument of [27], which is based on linear spaces of multivariate

polynomials, building on previous work by Alon [2]. For the precise statement, see Theorem 3.2.

Now we turn to describing several applications of our bound.

As a first application, we establish an explicit construction of graphs that do not contain

short odd cycles and yet have low minrank over every finite field.

Theorem 1.10. For every odd integer ℓ ≥ 3 there exists � = �(ℓ ) > 0 such that for every sufficiently
large integer =, there exists an =-vertex graph � with no odd cycle of length at most ℓ such that for every
finite field F ,

minrkF (�) ≤ =1−� .

Theorem 1.10 immediately implies that the Odd Alternating Cycle Conjecture is false over

every finite field, even for undirected graphs. This rules out the approach suggested in [13] for

lower bounds on the rigidity of certain circulant matrices and thus falls into the recent line of
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non-rigidity results based on the polynomial method (see, e. g., [1, 17, 18]). We note, however,

that the general upper bound of [18] on the rigidity of = by = circulant matrices is insufficient to

disprove the Alternating Cycle Conjecture (because in [18] the upper bound is =1+&
where & > 0

goes to zero at an unspecified (slow) rate as = →∞, whereas in [13] the rigidity is only claimed

to be Ω(= · log
� =) for a constant � > 0).

We next consider the behavior of the orthogonality dimension over the binary field of

the complement of triangle-free graphs. It is relevant to mention here that in the proof of

Theorem 1.10, the matrices that imply the stated bound on the minrank are symmetric (see

Remark 3.3). For the binary field, this can be combined with a matrix decomposition result due

to Lempel [33] to obtain the following theorem, which answers a question of [13] negatively.

Theorem 1.11. There exists a constant � > 0 such that for every sufficiently large integer = there exists a
triangle-free =-vertex graph � such that �(�, F2) ≤ =1−�.

The above result can also be stated in terms of nearly orthogonal systems. For a field F ,

a system of vectors in F< is said to be nearly orthogonal if none of the vectors of the system

is isotropic (self-orthogonal) and any set of three of them contains an orthogonal pair. For

the real field, it was proved by Rosenfeld [41] that every nearly orthogonal system in ℝ<
has

size at most 2<. Theorem 1.11 shows that the situation is quite different over the binary field.

Namely, it implies that there exists a constant � > 0 such that for infinitely many integers <

there exists a nearly orthogonal system in F<
2

of size at least <1+�
. To see this, consider the

triangle-free =-vertex graph � given by Theorem 1.11, put< = �(�, F2) ≤ =1−�
, and observe that

the triangle-freeness of � implies that the = vectors assigned by an <-dimensional orthogonal

representation of � over F2 form a nearly orthogonal system in F<
2
.

We finally mention that our bound on the minrank of threshold Kneser graphs can be used to

obtain graphs with a constant vector chromatic number "v (see Definition 3.8) whose complement

has a polynomially large minrank over every finite field.

Theorem 1.12. There exists a constant � > 0 such that for infinitely many integers = there exists an
=-vertex graph � such that "v(�) ≤ 3 and yet minrkF (�) ≥ =� for every finite field F .

The interest in such graphs comes from the semidefinite programming algorithmic approach

applied in [11] for approximating the minrank. As explained in [25], the existence of such

graphs implies a limitation on this approach, which is based on the constant vector chromatic

number of the complement of the instances. Theorem 1.12 improves on [25, Theorem 1.3] where

the bound on the minrank is shown only for sufficiently large finite fields.

1.2 Outline

The rest of the paper is organized as follows. In Section 2, we prove our bounds on the

generalized orthogonality dimension of Kneser graphs (Theorems 1.6 and 1.7) and derive our

hardness result (Theorem 1.1). In Section 3, we prove our bound on the minrank of threshold

Kneser graphs over finite fields and deduce Theorems 1.10, 1.11, and 1.12.
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2 The generalized orthogonality dimension of Kneser graphs

In this section we study the generalized orthogonality dimension of Kneser graphs, i. e., the

quantities �:( (3, B)) (recall Definitions 1.2 and 1.4), and prove Theorems 1.6 and 1.7. We start

with a linear algebra lemma that will be useful in our proofs.

2.1 Linear algebra lemma

Lemma 2.1. For a real vector space ), let * be a subspace of ) with dim(*) = ℓ , letW be a finite
collection of subspaces of ), and let ℓ ′ ≤ ℓ be an integer satisfying dim(* ∩,) ≤ ℓ ′ for every, ∈ W.
Then, there exists a subspace *′ of * with dim(*′) = ℓ − ℓ ′ such that dim(*′ ∩,) = 0 for every
, ∈ W.

Intuitively, given a subspace* and a collectionW as in the lemma, a generic subspace*′ of
* with dimension ℓ − ℓ ′ is expected to have a trivial intersection with each of the subspaces of

W, and thus to satisfy the assertion of the lemma. For a proof, see, e. g., [4, Chapter 3.1.4].

2.2 The case B = 2

Now we turn to the proof of Theorem 1.6 which determines the generalized orthogonality

dimension of the Kneser graphs  (3, B) for B = 2.

Proof of Theorem 1.6. Fix an integer : ≥ 1. For the upper bound, recall that for all integers 3 ≥ 4

we have

�:( (3, 2),ℝ) ≤ ":( (3, 2)) =
⌈ :
2

⌉
· (3 − 4) + 2:,

where the equality holds because Conjecture 1.3 is valid for B = 2 [44].

For the lower bound, we consider the induced subgraph of  (3, 2), denoted by  −(3, 2),
obtained from  (3, 2) by removing one of its vertices, say, the vertex {1, 2}. Next we prove that

for all integers 3 ≥ 4 it holds that

�:( −(3, 2),ℝ) ≥
⌈ :
2

⌉
· (3 − 4) + 2:, (2.1)

which immediately implies the required lower bound on �:( (3, 2),ℝ) as well. We proceed

by induction on 3. For 3 = 4, the graph  (3, 2) is a perfect matching on 6 vertices, hence its

subgraph  −(3, 2) clearly contains an edge. Since every orthogonal :-subspace representation

of this graph assigns to the vertices of this edge orthogonal :-subspaces it follows that

�:( −(4, 2),ℝ) ≥ 2:,

as desired. Now, fix some 3 > 4. Assuming that (2.1) holds for 3 − 1, we prove it for 3.

Recall that the vertex set + of  −(3, 2) consists of all the 2-subsets of [3] except {1, 2}. Let
(*�)�∈+ be a C-dimensional orthogonal :-subspace representation of  −(3, 2). We proceed by

considering the following two cases.
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Assume first that there exists some 8 ≥ 4 for which

dim(*{1,3} ∩*{1,8}) ≥
⌈ :
2

⌉
. (2.2)

In this case, consider the induced subgraph of  −(3, 2) on the vertex set +′ obtained from +

by removing the vertex {3, 8} and all the vertices that include the element 1. Notice that this

subgraph is isomorphic to  −(3 − 1, 2) and that every vertex of +′ is disjoint from either {1, 3}
or from {1, 8} (or both). This implies that the restriction (*�)�∈+′ of the given assignment to

the vertices of +′ forms an orthogonal :-subspace representation of  −(3 − 1, 2), all of whose

subspaces lie in the subspace of ℝC
that is orthogonal to * = *{1,3} ∩*{1,8}. By applying an

orthogonal linear transformation from this subspace to ℝC−dim(*)
, we obtain that

�:( −(3 − 1, 2),ℝ) ≤ C − dim(*) ≤ C −
⌈ :
2

⌉
,

where in the second inequality we have used (2.2). Using the induction hypothesis, this implies

that

C ≥ �:( −(3 − 1, 2),ℝ) +
⌈ :
2

⌉
≥

⌈ :
2

⌉
· (3 − 5) + 2: +

⌈ :
2

⌉
=

⌈ :
2

⌉
· (3 − 4) + 2:,

and we are done.

We are left with the case where for every 8 ≥ 4 it holds that

dim(*{1,3} ∩*{1,8}) ≤
⌈ :
2

⌉
− 1.

Apply Lemma 2.1 to the :-subspace*{1,3} and the collection {*{1,8} | 4 ≤ 8 ≤ 3}. It follows that

there exists a subspace* of*{1,3} with dim(*) = : − (d :
2
e − 1) ≥ d :

2
e such that for every 8 ≥ 4 it

holds that dim(* ∩*{1,8}) = 0. Consider the induced subgraph of  −(3, 2) on the vertex set +′

obtained from + by removing the vertex {2, 3} and all the vertices that include the element 1.

As before, this subgraph is isomorphic to the graph  −(3 − 1, 2).
We define an orthogonal :-subspace representation of this graph as follows. Let � be a set in

+′. If 3 ∉ � we define *̃� = *�. Otherwise we have � = {3, 8} for some 8 ≥ 4, and we let *̃{3,8}
be the projection of*{1,8} to the subspace of ℝC

that is orthogonal to* . Note that the fact that

dim(* ∩*{1,8}) = 0 guarantees that dim(*̃{3,8}) = dim(*{1,8}) = :.
To prove that the assignment (*̃�)�∈+′ forms an orthogonal :-subspace representation of the

graph, let �1 and �2 be disjoint sets in +
′
. If 3 ∉ �1 ∪ �2 then we have *̃�1

= *�1
and *̃�2

= *�2
,

so it is clear that *̃�1
and *̃�2

are orthogonal. Otherwise, assume without loss of generality that

�1 = {3, 8} for some 8 ≥ 4 and that 3 ∉ �2. In this case we have *̃�2
= *�2

, and since �2 is disjoint

from �1 it is also disjoint from {1, 8} and from {1, 3}, hence *̃�2
is orthogonal to both*{1,8} and

*{1,3} as well as to the projection *̃�1
of*{1,8} to the subspace orthogonal to* ⊆ *{1,3}. We get

that *̃�1
and *̃�2

are orthogonal, as required.

Finally, observe that all the subspaces *̃� lie in the subspace of ℝC
that is orthogonal to* .

Indeed, for sets � with 3 ∈ � this follows from the definition of *̃�, and for the other sets this
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holds because they are disjoint from {1, 3}. By applying an orthogonal linear transformation

from this subspace to ℝC−dim(*)
, we obtain that

�:( −(3 − 1, 2),ℝ) ≤ C − dim(*) ≤ C −
⌈ :
2

⌉
,

and as in the previous case, by the induction hypothesis it follows that C ≥ d :
2
e · (3 − 4) + 2:,

completing the proof. �

2.3 General B

We now prove Theorem 1.7 which provides a lower bound on the generalized orthogonality

dimension of Kneser graphs  (3, B) for B ≥ 3. The approach resembles the one applied for B = 2

in the proof of Theorem 1.6.

Proof of Theorem 1.7. Fix integers : ≥ B ≥ 3 and denote < = d :+1

B e. Let 30 = 30(B, :) be a

sufficiently large integer to be determined later. We apply an induction on 3. To do so, we

define 2 = 2(B, :) to be sufficiently large, say, 2 = :−<+1

B−1
· (30 + B − 2), so that the statement of the

theorem trivially holds for all integers 3 ≤ 30 + B − 2, and turn to the proof of the statement for

3 ≥ 30 assuming that it holds for 3 − (B − 1).
Let (*�)�∈+ be a C-dimensional orthogonal :-subspace representation of  (3, B). We start

with some notation. For an B-subset � of [3], an element 8 ∈ �, and an B-subset � of [3] satisfying
�∩� = {8}, we let G�,8(�) denote the collection that consists of the set � and all the sets obtained

from � by replacing 8with some element from�\{8}. Note that |G�,8(�)| = B. We say that a vertex

� of  (3, B) is good (with respect to the given orthogonal subspace representation) if there exists

an 8 ∈ � such that for every vertex � satisfying � ∩ � = {8} it holds that dim(*� ∩*�) ≤ < − 1

for some � ∈ G�,8(�).
Assume first that there exists a good vertex � in  (3, B) associated with an element 8 ∈ �.

Applying Lemma 2.1, we get that there exists a (: − < + 1)-subspace * of *� such that for

every vertex � satisfying � ∩ � = {8} it holds that dim(* ∩*�) = 0 for some � ∈ G�,8(�). We

define an orthogonal :-subspace representation of the graph  (3 − (B − 1), B) on the ground

set [3] \ (� \ {8}) as follows. Let � be an B-subset of [3] \ (� \ {8}). If 8 ∉ � we define *̃� = *�.

Otherwise, we have � ∩ � = {8}, and we let *̃� be the projection of *� to the subspace of ℝC

orthogonal to* , where � ∈ G�,8(�) is a set satisfying dim(* ∩*�) = 0. Note that this condition

guarantees that dim(*̃�) = dim(*�) = :.
We claim that the subspaces *̃� form an orthogonal :-subspace representation of the graph

 (3−(B −1), B). To see this, let �1 and �2 be disjoint B-subsets of [3] \ (� \ {8}). If 8 ∉ �1∪�2 then

we have *̃�1
= *�1

and *̃�2
= *�2

, so it is clear that *̃�1
and *̃�2

are orthogonal. Otherwise,

assume without loss of generality that 8 ∈ �1 and 8 ∉ �2. In this case, *̃�2
= *�2

, and *̃�1
is

the projection of *� to the subspace of ℝC
orthogonal to * for some � ∈ G�,8(�1). Since �2 is

disjoint from �, it follows that the subspace *̃�2
is orthogonal to*� as well as to its subspace* .

It also follows that �2 is disjoint from every set in G�,8(�1), hence the subspace *̃�2
is orthogonal

to*� . We get that *̃�2
is orthogonal to *̃�1

, as required.
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Now, observe that the above orthogonal :-subspace representation of  (3 − (B − 1), B) lies in
the subspace ofℝC

that is orthogonal to the (: −< + 1)-subspace* . Indeed, for sets �with 8 ∈ �
this follows from the definition of *̃�, and for the other sets this holds because they are disjoint

from �. By applying an orthogonal linear transformation from this subspace to ℝC−dim(*)
, it

follows that

�:( (3 − (B − 1), B),ℝ) ≤ C − dim(*) = C − (: − < + 1).
Using the induction hypothesis, this implies that

C ≥ : − < + 1

B − 1

· (3 − (B − 1)) − 2 + (: − < + 1) = : − < + 1

B − 1

· 3 − 2,

and we are done.

We are left with the case where no vertex of  (3, B) is good, for which we need the following

lemma.

Lemma 2.2. If a vertex � of  (3, B) is not good then there exists a nonzero vector D� ∈ *� such that the
number of vertices � of  (3, B) for which*� is not orthogonal to D� is at most(

2B − 1

2

)
·
(
3 − 2

B − 2

)
.

We first show how Lemma 2.2 completes the proof of the theorem. Assume that no vertex

of  (3, B) is good, and consider the following process: We start with the entire vertex set of

 (3, B), and in every iteration we choose an arbitrary vertex � associated with its nonzero vector

D� ∈ *� from Lemma 2.2 and eliminate all vertices whose subspaces are not orthogonal to D�.

The nonzero vectors associated with the chosen vertices are clearly pairwise orthogonal, and

their number, just like the number of iterations in the process, is at least(3
B

)(
2B−1

2

)
·
(3−2

B−2

) ≥ : − < + 1

B − 1

· 3 − 2,

where the inequality holds for every 3 ≥ 30 assuming that 30 = 30(B, :) is sufficiently large

(because the left-hand side of the inequality is quadratic in 3 whereas the right-hand side is

linear in 3). However, the size of the obtained orthogonal set cannot exceed the dimension C,

hence

C ≥ : − < + 1

B − 1

· 3 − 2,

and we are done. It remains to prove Lemma 2.2.

Proof of Lemma 2.2. Assume that � is not a good vertex of  (3, B) and fix an arbitrary 8 ∈ �.
Then there exists a vertex � satisfying � ∩ � = {8} such that dim(*� ∩*�) ≥ < for every vertex

� ∈ G�,8(�). Denote G�,8(�) = {�1 , . . . , �B}, and recall that every set � 9 intersects � at one

distinct element. For every 9 ∈ [B] define +9 = *� ∩*� 9 and,9 = +1 + · · · ++9 . Note that

,1 ⊆ ,2 ⊆ · · · ⊆ ,B ⊆ *�.
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Since dim(,1) = dim(+1) ≥ < and dim(*�) = : < < · B, there must exist some 9 ∈ [B − 1] for
which

dim(,9+1) − dim(,9) < <. (2.3)

For this 9, we have

dim(+9+1 ∩,9) = dim(+9+1) + dim(,9) − dim(+9+1 +,9)
= dim(+9+1) + dim(,9) − dim(,9+1) > < − < = 0,

where the inequality follows by combining (2.3) with the fact that dim(+9+1) ≥ <. This implies

that there exists a nonzero vector D� in +9+1 ∩,9 . Observe that

D� ∈ *� ∩*� 9+1
∩ (*�1

+ · · · +*� 9 ).

Now, consider a vertex � of  (3, B) whose subspace*� is not orthogonal to D�. It follows that

*� is not orthogonal to*�, to*� 9+1
, and to*�1

+ · · · +*� 9 , hence � intersects the sets � and

� 9+1 as well as at least one of the sets �1 , . . . , � 9 . We claim that � must include at least two

elements from � ∪ �. Indeed, � intersects � but if � includes from � ∪ � only one element

and this element belongs to � then � either does not intersect � 9+1 or does not intersect any

of �1 , . . . , � 9 . It follows that the number of vertices � for which*� is not orthogonal to D� is

bounded from above by the number of B-subsets of [3] that include at least two elements from

the 2B − 1 elements of � ∪ �. The latter is at most

(
2B−1

2

)
·
(3−2

B−2

)
, as required. �

The proof of Theorem 1.7 is completed. �

As immediate corollaries of Theorem 1.7, we obtain the following.

Corollary 2.3. For every integers B ≥ 3 and ℓ ≥ 2 there exists 2 = 2(B, ℓ ) such that for all integers
3 ≥ 2B,

�ℓ ·B−1
( (3, B),ℝ) ≥ ℓ · 3 − 2.

As mentioned before, the bound given in Corollary 2.3 is tight up to the additive constant 2.

Corollary 2.4. There exists an absolute constant 2 such that for all integers 3 ≥ 6,

�
4
( (3, 3),ℝ) ≥ 33/2 − 2.

Equipped with Corollary 2.4, we are ready to deduce Theorem 1.1.

Proof of Theorem 1.1. Let C be a sufficiently large integer. Recall that a result of [8] implies that

�
3
( (C , 3),ℝ) = C, whereas Corollary 2.4 implies that �

4
( (C , 3),ℝ) ≥ 3C/2 − 2 for an absolute

constant 2. Applying Proposition 1.5 with � =  (C , 3), it follows that it is NP-hard to distinguish

between the graphs � that satisfy �(�,ℝ) ≤ C from those satisfying �(�,ℝ) ≥ 3C/2 − 2, as
desired. �
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3 The minrank of threshold Kneser graphs

In this section we consider a generalization of the family of Kneser graphs, defined as follows.

Definition 3.1 (Threshold Kneser Graphs). For integers < ≤ B ≤ 3, the threshold Kneser graph
 <(3, B, <) is the graphwhose vertices are all the B-subsets of [3], and two sets, �, �, are adjacent

if |� ∩ �| < <.

For this family of graphs, we prove the following upper bound on the minrank over finite

fields (recall Definition 1.8).

Theorem 3.2. For all integers < ≤ B ≤ 3 and for every finite field F ,

minrkF ( <(3, B, <)) ≤
B−<∑
8=0

(
3

8

)
.

Moreover, the bound on the minrank can be achieved by a symmetric matrix.

Remark 3.3. Theorem 3.2 guarantees that the bound on the minrank can be achieved by a

symmetric matrix. This will be crucial for one of our applications, namely, for a construction

of triangle-free graphs whose complement has low orthogonality dimension over the binary

field F2 (see Section 3.3.2). We remark, however, that for undirected graphs and for fields of

characteristic different from 2, attaining the bound on the minrank by a symmetric matrix can be

achieved easily with a factor of 2 worse bound on the minrank. Indeed, if a matrix" represents

a graph � over a field F of characteristic different from 2 and satisfies rankF (") = A then the

matrix " +")
also represents � and has rank at most 2A over F . This argument does not hold

over fields of characteristic 2, since in this case the diagonal entries of " +")
are all zero.

As in the previous section, we start with a simple linear algebra lemma.

3.1 Linear algebra lemma

Lemma 3.4. For a graph � on the vertex set [=], let " ∈ ℤ=×= be an integer matrix such that "8 ,8 = 1

for every 8 ∈ [=], and "8 , 9 = 0 for every pair of distinct non-adjacent vertices 8 and 9 in �. Then, for
every finite field F , minrkF (�) ≤ rankℝ(").

Proof. The lemma follows from the fact that for every finite field F , it holds that rankF (") ≤
rankℝ("). �

3.2 Proof of Theorem 3.2

We are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Consider the polynomial @ ∈ ℝ[G] defined by

@(G) =
(
G − <
B − <

)
=

1

(B − <)! · (G − <)(G − (< + 1)) · · · (G − (B − 1)).
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Observe that @ is an integer-valued polynomial of degree B −<. Let 5 : {0, 1}3 × {0, 1}3 → ℝ be

the function defined by

5 (G, H) = @
( 3∑
8=1

G8H8

)
for every G, H ∈ {0, 1}3. Expanding 5 as a linear combination of monomials, the relation I2 = I

for I ∈ {0, 1} implies that one can reduce to 1 the exponent of each variable occuring in a

monomial. It follows that 5 can be represented as a multilinear polynomial in the 23 variables

of G and H. By combining terms involving the same monomial in the variables of G, one can

write 5 as

5 (G, H) =
'∑
8=1

,8(G)ℎ8(H)

for an integer ' and functions ,8 , ℎ8 : {0, 1}3 → ℝ, 8 ∈ ['], such that the ,8’s are distinct

multilinear monomials of total degree at most B − < in 3 variables. It follows that ' ≤ ∑B−<
8=0

(3
8

)
.

Now, let "1 and "2 be the 2
3 × ' matrices whose rows are indexed by {0, 1}3 and whose

columns are indexed by ['], defined by ("1)G,8 = ,8(G) and ("2)G,8 = ℎ8(G). Then, the rank over

ℝ of the matrix" = "1 ·")
2
is at most ' and for every G, H ∈ {0, 1}3 it holds that"G,H = 5 (G, H).

By the definition of 5 the matrix " is symmetric, and since @ is an integer-valued polynomial,

all of its entries are integer.

Finally, let + be the vertex set of  <(3, B, <), that is, the collection of all B-subsets of [3], and
identify every vertex � ∈ + with an indicator vector 2� ∈ {0, 1}3 in the natural way. Observe

that for every �, � ∈ + we have

"2� ,2� = 5 (2� , 2�) = @(|� ∩ �|).

Hence, for every � ∈ + we have |�| = B and thus "2� ,2� = @(B) = 1, whereas for every distinct

non-adjacent �, � ∈ + we have < ≤ |� ∩ �| ≤ B − 1 and thus "2� ,2� = @(|� ∩ �|) = 0. Since the

restriction of" to + ×+ is symmetric and has rank at most ' over the reals, Lemma 3.4 implies

that minrkF ( <(3, B, <)) ≤ ' for every finite field F and that the bound can be achieved by a

symmetric matrix, as desired. �

3.3 Applications

We gather below several applications of Theorem 3.2.

3.3.1 The Odd Alternating Cycle Conjecture over finite fields

In this section we disprove Conjecture 1.9 over every finite field. We will use the simple fact that

threshold Kneser graphs do not contain short odd cycles, as stated below (see, e. g., [15, 27]).

Lemma 3.5. Let ℓ ≥ 3 be an odd integer. For every even integer 3 and an integer < ≤ 3
2ℓ , the graph

 <(3, 3
2
, <) contains no odd cycle of length at most ℓ .

THEORY OF COMPUTING, Volume 18 (22), 2022, pp. 1–22 15

http://dx.doi.org/10.4086/toc


ALEXANDER GOLOVNEV AND ISHAY HAVIV

We prove the following theorem, confirming Theorem 1.10.

Theorem 3.6. For every odd integer ℓ ≥ 3 there exists � = �(ℓ ) > 0 such that for every sufficiently large
integer =, there exists an =-vertex graph � with no odd cycle of length at most ℓ such that for every finite
field F ,

minrkF (�) ≤ =1−� .

Moreover, the bound on the minrank can be achieved by a symmetric matrix.

Proof. Fix an odd integer ℓ ≥ 3. For an integer 3 divisible by 2ℓ , consider the graph � =

 <(3, 3
2
, <)where < = 3

2ℓ . By Lemma 3.5, � contains no odd cycle of length at most ℓ . As for

the minrank parameter, Theorem 3.2 implies that for every finite field F ,

minrkF (�) ≤
3/2−<∑
8=0

(
3

8

)
≤ 2

�( 1
2
−<
3
)·3 = 2

�( 1
2
− 1

2ℓ )·3 ,

where � stands for the binary entropy function. Since � has |+ | =
( 3
3/2

)
= 2
(1−>(1))·3

vertices, for

any � > 0 such that �(1
2
− 1

2ℓ ) < 1 − � we have minrkF (�) ≤ |+ |1−� for every sufficiently large

integer 3. The proof is completed by considering, for every sufficiently large integer =, some

=-vertex subgraph of the graph defined above, where 3 is the smallest integer divisible by 2ℓ

such that = ≤
( 3
3/2

)
. �

3.3.2 Triangle-free graphs and the orthogonality dimension over the binary field

Nowwe turn to the proof of Theorem 1.11. Its proof adopts the following special case of a result

due to Lempel [33].

Lemma 3.7 ([33]). Let " be an = by = symmetric matrix over the binary field F2 with at least one
nonzero diagonal entry and rank A. Then, there exists an = by A matrix � over F2 satisfying " = � · �) .

Proof of Theorem 1.11. Apply Theorem 3.6 with ℓ = 3 to obtain some � > 0 such that for every

sufficiently large integer =, there exist a triangle-free =-vertex graph � and an = by = symmetric

matrix" over F2 of rank A = rankF2
(") ≤ =1−�

that represents �. By Lemma 3.7, there exists an

= by Amatrix � over F2 satisfying" = � ·�) . By assigning the 8-th row of � to the 8-th vertex of �

we get an A-dimensional orthogonal representation of � over F2, hence �(�, F2) ≤ A ≤ =1−�
. �

3.3.3 The vector chromatic number vs. minrank

The vector chromatic number of graphs, introduced by Karger, Motwani, and Sudan in [30], is

defined as follows.

Definition 3.8 (Vector Chromatic Number). For a graph � = (+, �) the vector chromatic number
of �, denoted by "v(�), is the minimal real value of � > 1 such that there exists an assignment

of a unit vector FE to every vertex E ∈ + satisfying the inequality 〈FE , FE′〉 ≤ − 1

�−1
whenever E

and E′ are adjacent in �.
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To prove Theorem 1.12, we need the following simple fact that relates the minrank of a graph

to the minrank of its complement (see, e. g., [39, Remark 2.2]).

Fact 3.9. For every field F and an =-vertex graph �, minrkF (�) ·minrkF (�) ≥ =.

Proof of Theorem 1.12. For an integer 3 divisible by 8, consider the graph � =  <(3, 3
2
, <) where

< = 3
8
. We first claim that "v(�) ≤ 3. To see this, assign to every vertex � of �, representing

a
3
2
-subset of [3], the unit vector F� ∈ ℝ3

defined by (F�)8 = 1√
3
if 8 ∈ � and (F�)8 = − 1√

3

otherwise. Observe that every two distinct vertices � and � that are adjacent in � satisfy

|� ∩ �| < 3
8
and thus |� 4 �| > 33

4
, implying that 〈F� , F�〉 = 3−2·|�4�|

3
< − 1

2
. This implies that

"v(�) ≤ 3, as claimed. As for the minrank parameter, Theorem 3.2 implies that for every finite

field F ,

minrkF (�) ≤
3/2−<∑
8=0

(
3

8

)
≤ 2

�( 1
2
−<
3
)·3 = 2

�(3/8)·3 ,

where � stands for the binary entropy function. Since � has = =
( 3
3/2

)
= 2
(1−>(1))·3

vertices, for

any � < 1 − �(3/8) we have minrkF (�) ≤ =1−�
assuming that 3 is sufficiently large. By Fact 3.9,

this implies that minrkF (�) ≥ =�, and we are done. �
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