On a Generalization of Iterated and Randomized Rounding
Theory of Computing, Volume 20(6), pp. 1-23, 2024
Bibliography with links to cited articles
[1] Nima Anari and Shayan Oveis Gharan: Effective-resistance-reducing flows, spectrally thin trees, and asymmetric TSP. In Proc. 56th FOCS, pp. 20–39. IEEE Comp. Soc., 2015. [doi:10.1109/FOCS.2015.11]
[2] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan: A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. Math. Programming, 92(1):1–36, 2002. [doi:10.1007/s101070100271]
[3] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin Saberi: An O(log n∕log log n)-approximation algorithm for the asymmetric traveling salesman problem. INFORMS, 65(4):1043–1061, 2017. Preliminary version in SODA’10. [doi:10.1287/opre.2017.1603]
[4] Arash Asadpour and Amin Saberi: An approximation algorithm for max-min fair allocation of indivisible goods. SIAM J. Comput., 39(7):2970–2989, 2010. [doi:10.1137/080723491]
[5] Wojciech Banaszczyk: Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Struct. Algor., 12(4):351–360, 1998. [doi:10.1002/(SICI)1098-2418(199807)12:4¡351::AID-RSA3¿3.0.CO;2-S]
[6] Nikhil Bansal: Constructive algorithms for discrepancy minimization. In Proc. 51st FOCS, pp. 3–10. IEEE Comp. Soc., 2010. [doi:10.1109/FOCS.2010.7]
[7] Nikhil Bansal: On a generalization of iterated and randomized rounding. In Proc. 51st STOC, pp. 1125–1135. ACM Press, 2019. [doi:10.1145/3313276.3316313]
[8] Nikhil Bansal, Daniel Dadush, and Shashwat Garg: An algorithm for Komlós Conjecture matching Banaszczyk’s bound. SIAM J. Comput., 48(2):534–553, 2019. [doi:10.1137/17M1126795]
[9] Nikhil Bansal and Shashwat Garg: Algorithmic discrepancy beyond partial coloring. In Proc. 49th STOC, pp. 914–926. ACM Press, 2017. [doi:10.1145/3055399.3055490]
[10] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan: Additive guarantees for degree-bounded directed network design. SIAM J. Comput., 39(4):1413–1431, 2010. [doi:10.1137/080734340]
[11] Nikhil Bansal and Viswanath Nagarajan: Approximation-friendly discrepancy rounding. In Proc. 18th Integer Prog. Combinat. Optim. (IPCO’16), volume 9682 of LNCS, pp. 375–386. Springer, 2016. [doi:10.1007/978-3-319-33461-5_31]
[12] József Beck and Tibor Fiala: “Integer-making” theorems. Discr. Appl. Math., 3(1):1–8, 1981. [doi:10.1016/0166-218X(81)90022-6]
[13] Julius Borcea, Peter Brändén, and Thomas M. Liggett: Negative dependence and the geometry of polynomials. J. AMS, 22(2):521–567, 2009. [doi:10.1090/S0894-0347-08-00618-8]
[14] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford Univ. Press, 2013. [doi:10.1093/acprof:oso/9780199535255.001.0001]
[15] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen: Dependent randomized rounding via exchange properties of combinatorial structures. In Proc. 51st FOCS, pp. 575–584. IEEE Comp. Soc., 2010. [doi:10.1109/FOCS.2010.60]
[16] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen: Multi-budgeted matchings and matroid intersection via dependent rounding. In Proc. 22nd Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’11), pp. 1080–1097. SIAM, 2011. [doi:10.1137/1.9781611973082.82]
[17] Devdatt P. Dubhashi and Alessandro Panconesi: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge Univ. Press, 2009. [doi:10.1017/CBO9780511581274]
[18] David A. Freedman: On tail probabilities for martingales. Ann. Probab., 3(1):100–118, 1975. [doi:10.1214/aop/1176996452]
[19] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan: Dependent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–360, 2006. [doi:10.1145/1147954.1147956]
[20] Nicholas J. A. Harvey and Neil Olver: Pipage rounding, pessimistic estimators and matrix concentration. In Proc. 25th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’14), pp. 926–945. SIAM, 2014. [doi:10.1137/1.9781611973402.69]
[21] Richard M. Karp, Frank Thomson Leighton, Ronald L. Rivest, Clark D. Thompson, Umesh V. Vazirani, and Vijay V. Vazirani: Global wire routing in two-dimensional arrays. Algorithmica, 2:113–129, 1987. [doi:10.1007/BF01840353]
[22] Tamás Király, Lap Chi Lau, and Mohit Singh: Degree bounded matroids and submodular flows. Combinatorica, 32(6):703–720, 2012. [doi:10.1007/s00493-012-2760-6]
[23] Lap-Chi Lau, R. Ravi, and Mohit Singh: Iterative Methods in Combinatorial Optimization. Cambridge Univ. Press, 2011. [doi:10.1017/CBO9780511977152]
[24] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos: Approximation algorithms for scheduling unrelated parallel machines. Math. Programming, 46:259–271, 1990. [doi:10.1007/BF01585745]
[25] László Lovász, Joel H. Spencer, and Katalin Vesztergombi: Discrepancy of set-systems and matrices. Europ. J. Combinat., 7(2):151–160, 1986. [doi:10.1016/S0195-6698(86)80041-5]
[26] Shachar Lovett and Raghu Meka: Constructive discrepancy minimization by walking on the edges. SIAM J. Comput., 44(5):1573–1582, 2015. [doi:10.1137/130929400]
[27] Robin Pemantle: Towards a theory of negative dependence. J. Math. Phys., 41(3):1371–1390, 2000. [doi:10.1063/1.533200]
[28] Yuval Peres, Mohit Singh, and Nisheeth K. Vishnoi: Random walks in polytopes and negative dependence. In Proc. 8th Innovations in Theoret. Comp. Sci. Conf. (ITCS’17), pp. 50:1–10. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. [doi:10.4230/LIPIcs.ITCS.2017.50]
[29] Thomas Rothvoß: The entropy rounding method in approximation algorithms. In Proc. 23rd Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’12), pp. 356–372. SIAM, 2012. [doi:10.1137/1.9781611973099.32]
[30] Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Volume B. Springer, 2003. Springer.
[31] Mohit Singh and Lap Chi Lau: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM, 62(1):1:1–19, 2015. [doi:10.1145/2629366]
[32] Mohit Singh and Nisheeth K. Vishnoi: Entropy, optimization and counting. In Proc. 46th STOC, pp. 50–59. ACM Press, 2014. [doi:10.1145/2591796.2591803]
[33] Aravind Srinivasan: Distributions on level-sets with applications to approximation algorithms. In Proc. 42nd FOCS, pp. 588–597. IEEE Comp. Soc., 2001. [doi:10.1109/SFCS.2001.959935]
[34] Ola Svensson, Jakub Tarnawski, and László A. Végh: A constant-factor approximation algorithm for the asymmetric traveling salesman problem. J. ACM, 67(6):37:1–53, 2020. [doi:10.1145/3424306]
[35] Vijay V. Vazirani: Approximation Algorithms. Springer, 2001. ACM DL.
[36] David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms. Cambridge Univ. Press, 2011. CUP.