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Abstract. Wegive a corrected proof that ifPP ⊆ BQP/qpoly (probabilistic polynomial

time can be efficiently simulated by quantum circuits with quantum advice), then

the Counting Hierarchy collapses, as originally claimed by Aaronson (CCC’06).

This recovers the related unconditional claim that PP does not have circuits of any

fixed-polynomial size =: even with quantum advice. Our result is based on proving

that YQP∗, an oblivious version of QMA ∩ coQMA, is contained in APP, a PP-low
subclass of PP with an arbitrarily small but nonzero promise gap.

1 Introduction

Do reasonably-sized circuits solve hard problems, given they may be chosen non-uniformly

for each input size? While directly answering this question for classes such as NP has proven

difficult, progress has been made showing conditional results, such as the Karp–Lipton theorem

that if NP ⊆ P/poly, then the Polynomial Hierarchy collapses [14], or showing upper bounds
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against larger classes, such as PP or NEXP [21, 24]. Exploring further, we can consider quantum

computation. In this model, circuits are typically uniformly generated but might accept non-

uniform advice strings as part of their input. Moreover, quantum circuits can receive not only

classical advice strings (BQP/poly), but quantum advice states (BQP/qpoly).
In [2], Aaronson proved new quantum circuit lower bounds, among other results. In

particular, he gave several results characterizing quantum circuits’ ability to solve problems

in the class PP, the class of problems decidable by probabilistic polynomial-time algorithms

with no promise gap, i. e., which accept with probability at least 1/2 or strictly less than 1/2. PP
contains both BPP and NP and is contained in PSPACE. Aaronson proved that PPP

does not have

circuits of size =: for any fixed constant : even if the circuits use quantum advice states. Second,

he claimed a quantum analogue of the Karp–Lipton theorem, showing that if PP ⊆ BQP/qpoly,
then the CountingHierarchy (CH) collapses to QMA, where the CountingHierarchy is the infinite

sequence of classes C1P = PP and CiP = (Ci−1P)PP
, and where QMA is a quantum analogue of

NP. Similarly, he showed that under the stronger assumption PP ⊆ BQP/poly, using classical

advice instead of quantum advice, then CH = QCMA. Third, Aaronson combined these results

to give the unconditional bound that PP does not have classical or quantum circuits of size =:

for any fixed constant : even with quantum advice.1

However, Aaronson later noted there was an error in one of the proofs [4]. The first of the

above results was unaffected, but the proof of the second result only held under the stronger

assumption that PP ⊆ BQP/poly. This also meant the third result only held for quantum circuits

with classical, not quantum, advice. Fortunately, no other results in [2] were affected, but no fix

for this bug was forthcoming.

Very briefly, the error was a claim that for oracle classes of the form CBQP/qpoly
, if a machine

for the base class C is able to find the quantum advice state that will be used by the oracle

machine, then the base machine can “hard-code” the advice state into its oracle queries so that

the oracle no longer needs the power to find its own advice, thus reducing CBQP/qpoly
to CBQP

.

This approach works for classes with classical advice, like CBQP/poly
. But, because complexity

classes and their associated oracles are defined in terms of (classical) strings as input, there is no

way to hard-code a general quantum advice state into a query.

In this note, we give a corrected proof of Aaronson’s full claims. We show that if PP ⊆
BQP/qpoly, then the Counting Hierarchy collapses to QMA and in fact to YQP∗, defined below.

Given this correction, Aaronson’s proof for the third claim, that PP does not have circuits of size

=: for any fixed constant : even with quantum advice, now goes through.

Our primary technical contribution is to show YQP∗ ⊆ APP. Here, YQP∗ (Definition 2.2) is

an oblivious version of QMA ∩ coQMA, where “oblivious” means there exists a useful proof

state which depends only on the size of the input. Crucially, a YQP∗ protocol includes a

proof-verification circuit that tests if the given quantum state is a “good” proof, independent of

whether a particular input is a YES- or NO-instance. The class APP (Definition 2.3) is a subclass

of PP with an arbitrarily small but nonzero promise gap. It is known to have the nice property

PPAPP = PP [16], i. e., it is PP-low. Thus, we find that YQP∗ is also PP-low. Our corrected

proof combines this result with the equality BQP/qpoly = YQP∗/poly, serendipitously proven by

1Slightly earlier, Vinochandran [21] gave a proof that PP does not have classical circuits of fixed-polynomial size.
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Aaronson with Drucker [5]. Now, instead of following Aaronson’s original attempt to collapse

PPPP
to PPBQP/qpoly

to PPBQP
to PP, we can collapse PPPP

to PPYQP∗/poly
to PPYQP∗

to PP.
Our results provide stronger implications and improved bounds for quantum circuits with

quantum advice and establish new insights into PP-lowness and classes within APP. Known

quantumKarp–Lipton style bounds include that ifNP ⊆ BQP/qpoly, thenΠp
2 ⊆ QMAPromiseQMA

[5],

and that ifQCMA ⊆ BQP/poly, thenQCPH collapses to its second level [6], whereQCPH is defined

like PH but with quantum verifiers and classical proofs. Our result that if PP ⊆ BQP/qpoly, then
CH = YQP∗ adds to this list. As for unconditional bounds, following Aaronson’s unaffected

result that PPP
does not have quantum circuits with quantum advice of any fixed-polynomial

size, our corrected result that PP also does not have such circuits is the first improved bound

on fixed-polynomial-size circuits with quantum advice. Regarding PP-lowness, our primary

lemma establishes YQP∗ as the largest natural quantum complexity class known to be PP-low,
improving on the fact that BQP is PP-low [10].2 Finally, our result adds to the verification-related

classes known to be contained in APP, including FewP [16] (but not NP), showing that APP
contains the oblivious-witness classes YQP∗ ⊇ YMA∗ ⊇ YP∗.

2 Preliminaries

In this section, we give definitions, state a fact relating quantum circuits to GapP, and recall the

technique of in-place error reduction to make a few technical observations that will be useful for

our main result. For a deeper introduction to this area, see the textbook by Arora and Barak [7]

or the survey by Watrous [23]. For more motivation, see [2, 5].

Non-uniform circuits The classes of non-uniform circuits we discuss, such as P/poly, BQP/poly,
and BQP/qpoly, share the following key characteristics. First, the circuits are defined with

bounded fan-in and fan-out, in contrast to classes such as AC0 or QAC0. Second, the classes

consider circuits of polynomial-size, where the size is the number of gates in a circuit. Third,

they are defined in terms of circuits or advice that may depend on the size of the problem input

(but not on the input itself), with no requirement that the circuit or advice is generated by a

uniform algorithm.

Advice is generally considered “trusted”, in contrast to the untrusted proofs or witnesses

received in classes such as NP. In NP, in a NO-instance, a verifier should not accept given any

proof. But in P/poly, a circuit is only guaranteed to be correct when given the correct advice.

The names BQP/poly and BQP/qpoly have been used to refer to similar but distinct classes (cf.,

BQP/mpoly,BQP/*qpoly, and the Complexity Zoo [25]). The distinction is in the behavior of the

circuit when the “wrong” advice is provided: is a probabilistic circuit required to accept with

high or low probability (outside of the promise gap) only when the correct advice is provided, or

for all advice? We follow the convention that because advice is considered “trusted”, there is no

need for a promised behavior when given the wrong advice. An explicit definition of BQP/qpoly,

2Morimae and Nishimura [20] gave definitions involving quantum postselection constructed to equal AWPP and

APP, which are PP-low.
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following this convention, is given below. We follow this same convention for BQP/poly and,

later, YQP∗/poly.

Definition 2.1 ([5]). A language ! is in BQP/qpoly if there exists a polynomial-time quantum

algorithm � and polynomial-time computable function < ≤ poly(=) such that for all =, there

exists an <-qubit advice state �= such that �(G, �=) outputs !(G)with probability at least 2/3 for

all G ∈ {0, 1}= .

YQP The classYQPwas first described in [3], but the definitionwas later corrected byAaronson

and Drucker [5]. Informally, it is the oblivious version of QMA ∩ coQMA, where “oblivious”

means that the witness sent by the prover, Merlin, depends only on the length of the input.

Oblivious proofs can also be thought of as a restriction of non-uniform classes, like BQP/qpoly,
to advice that is verifiable, as in NP and QMA [13]. This combination in YQP been described as

“untrusted advice” [3].

Definition 2.2. A language ! is in YQP if there exists a polynomial-time uniform family of

quantum circuits {.=}=∈ℕ that satisfy the following. Circuit .= is of size poly(=) and takes as

input G ∈ {0, 1}= , an <-qubit state � for some < ∈ poly(=), and an ancilla register initialized to

the all-zero state, and has two designated “advice-testing” and “output” qubits. .=(G, �) acts as
follows:

1. First, .= applies a subcircuit �= to all registers, after which the advice-testing qubit is

measured, producing a value 1adv ∈ {0, 1}.

2. Next, .= applies a second subcircuit �= to all registers, then measures the output qubit,

producing a value 1out ∈ {0, 1}.

These output bits satisfy the following:

• For all =, there exists a �= such that for all G ∈ {0, 1}= , the advice bit satisfies E[1adv] ≥ 9/10.

• For any G, � such that E[1adv] ≥ 1/10, on input G, � we have

Pr [1out = !(G) | 1adv = 1] ≥ 9/10 .

! is in the subclass YQP∗ if the family can be chosen such that 1adv is independent of G.

Note that in the above definition, the subcircuit �= acts on the output of subcircuit �= . It

does not necessarily receive a clean copy of the input.

The classes YQP/poly and YQP∗/poly are simply defined by removing the requirement that

the circuit family {.=}=∈ℕ be uniform [5].

Just asOblivious-NP is unlikely to containNP [11], it also seems unlikely thatQMA is contained

in YQP. We have the trivial bounds BQP ⊆ YQP∗ ⊆ YQP ⊆ QMA and YQP ⊆ BQP/qpoly.
Studying YQP may be motivated by the use of oblivious complexity classes in constructing

circuit lower bounds [11, 8, 12], by the fact that BQP/qpoly = YQP∗/poly = YQP/poly shown in [5],

or by the results shown in this article.
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APP The class APP was introduced by Lide Li [16] in pursuit of a large class of PP-low
languages. We use the equivalent definition given by Fenner [9, Corollary 3.7].

Definition 2.3. ! ∈ APP if and only if there exist functions 5 , , ∈ GapP and constants 0 ≤ � <
 ≤ 1 such that for all = and G ∈ {0, 1}= , we have ,(1=) > 0 and

• If G ∈ ! then  ,(1=) ≤ 5 (G) ≤ ,(1=);

• If G ∉ ! then 0 ≤ 5 (G) ≤ �,(1=).

In the above definition, recall that GapP is the closure of #P under subtraction. In other

words, while every function 5 ∈ #P corresponds to a nondeterministic polynomial-time Turing

Machine # such that 5 (G) equals the number of accepting paths of #(G), a GapP function equals

the number of accepting paths minus the number of rejecting paths.

The class PP can be thought of as comparing a #P function to a threshold exactly, with

no promise gap. The class in fact remains unchanged if it is defined as comparing a GapP
function to a threshold, and the threshold may be as simple as one-half of the possible paths or

as complex as a GapP function. In these terms, APP can be thought of as comparing a GapP
function (here 5 (G)) to some threshold (here ,(1=)), where the complexity of the threshold is

limited to a GapP function which may depend on the input size but not the input, and where

there is some arbitrarily small but nonzero promise gap (from �,(1=) to  ,(1=)). Comparing the

two classes, APP is a subclass of PP and is PP-low, meaning PPAPP = PP.
Like APP, the best upper bound on the well-known class A0PP = SBQP [15] is PP, so we

make a brief comparison. A0PP contains QMA [22] and so also contains YQP∗, and A0PP is not
known to be PP-low. In contrast, APP is not known to contain even NP and is PP-low. Both APP
and A0PP contain the class AWPP [9, 22]. However, neither APP or A0PP is known to contain

the other.

A useful fact We use the following fact shown for uniform circuit families by Watrous [23,

Section IV.5], and shown earlier for QTMs by Fortnow and Rogers [10].

Lemma 2.4. For any polynomial-time uniformly generated family of quantum circuits {&=}=∈ℕ each of
size bounded by a polynomial C(=), there is a GapP function 5 such that for all =-bit G,

Pr [&=(G) accepts] =
5 (G)
5
C(=) .

Error reduction In our proof that YQP∗ ⊆ APP, we perform error reduction on quantum

circuits. Error reduction for complexity classes involving quantum inputs, such as QMA or

BQP/qpoly, is often performed using many copies of the input in parallel, but we wish to use

a particular state � as input, not �⊗: . Therefore, we require the “in-place” error reduction

technique of Marriott and Watrous [18].

Theorem 2.5 (Theorem 3.3 of [18]). Let 0, 1 : ℕ → [0, 1] and @ ∈ poly(=) satisfy 0(=) − 1(=) ≥
1/@(=). Consider any quantum circuit � of size B acting on an <-qubit input and an all-zero ancilla
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register such that � accepts with probability at least 0 or at most 1 for B, < ≤ poly(=). Then there exists
a polynomial-time procedure that, for any A ∈ poly(=), produces a circuit �′ of size poly(B) that also
acts on an <-qubit input and accepts with probability at least 1 − 2

−A or at most 2
−A .

Our proof requires analyzing not just the output probabilities of the amplified circuit, but

also the state of the system at the end of the circuit. Fortunately, studying the proof of [18,

Theorem 3.3] provides some straightforward observations. Here we briefly sketch part of the

construction and then state the properties necessary for our proof.

Consider some quantum circuit � that takes an all-zero ancilla register |0 . . . 0〉 and some

quantum state as input and that accepts or rejects with some probability. The error reduction

algorithm of [18] involves applying the circuit �, measuring the output qubit and recording

whether it is |0〉 or |1〉 in a variable H28−1, applying �
†
, measuring the circuit’s ancilla register

and recording whether it is in the all-zero state or not in a variable H28 , and repeating these

steps for some number of iterations ". Call the full, amplified circuit �′. At the end of �′,
the recorded bits {H1 , . . . , H2"} can be used to estimate the probability � accepts with high

precision. Specifically, the more pairs such that H8 = H8+1, the more likely that �′ accepts.

The recorded bits also tell us about the state of the system after applying �′. If after applying
�†, a bit H28 = 1, then the state of the ancilla register was projected into the all-zero state. Now,

suppose the circuit �′ is applied to an <-qubit proof state, so there are 2
<
eigenstates {|�8〉} 9∈[2<]

of �′. Studying the proof of [18], if the initial state given to �′ was an eigenstate |� 9〉, and after a

round of applying � and �† the recorded bits were H28−1 = H28 = 1, then not only is the ancilla

register known to be in the all-zero state, but the final state of the proof register is the same as

its initial state, |� 9〉.
A brief analysis allows us to characterize the probability of this outcome. Note � and �′ have

the same <-qubit eigenstates, and suppose an eigenstate |� 9〉 is accepted by the original circuit

� with probability ?, Intuitively, consecutive bits are transitions which depend on whether we

expect the circuit beginning with a particular proof and properly initialized all-zero ancilla

register to produce an output qubit close to |1〉 or to |0〉, and vice-versa. In other words, when �′

is run on |� 9〉, we have Pr [H8 = 1 | H8−1 = 1] = ? for all 8. This is a two-state Markov chain with

probability ? of changing states. Raising the appropriate transition matrix to the 8-th power

and applying it to the initial state H0 = 1 (�′ begins with ancilla in the all-zero state) yields

Pr [H8 = 1] =
(
(2? − 1)8 + 1

)
/2 for all 8 > 0. If we make the additional assumption that ? > 1/2,

then this probability is greater than 1/2. Then we can also conclude that Pr [H8+1 = H8 = 1] > ?/2
for all 8. Moreover, as noted above, any pair H8 = H8+1 only increases the probability the amplified

circuit accepts, allowing us to calculate a lower bound on the joint probability.

Lemma 2.6 (Extension of Theorem 3.3 of [18]). In addition to the statement of Theorem 2.5, the
amplified circuit �′ records two final variables H, I ∈ {0, 1}. Suppose |�〉 is an eigenstate of � and that
�′ is run on |�〉. If H = I = 1, then the system is left in the state |�〉 |0 . . . 0〉. If � accepts |�〉 with
probability at least 0 and 0 > 1/2, then the probability that �′ accepts |�〉 and the variables H = I = 1 is
at least (1 − 2

−A) 0/2.
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3 Results

We first prove our main technical result, that YQP∗ ⊆ APP. Our approach is as follows. APP
evaluates the ratio of two GapP functions, where one of the functions is only allowed to depend

on the input length. By Lemma 2.4, functions in GapP can encode the output probabilities

of quantum circuits. So, for a YQP∗ computation with circuit .= and subcircuit �= , we run

them both on a random proof using the maximally mixed state and ask APP to determine the

ratio of their acceptance probabilities. This is possible because the acceptance probability of

�= over a random proof depends only on the input length. We perform error reduction on

the subcircuit �= so that �= mistakenly accepting “bad” proofs has a negligible effect on the

acceptance probability of .= . Thus, the ratio of probabilities approximates how often .= accepts

given a good proof. Because we wish to use the maximally mixed state as input and parallel

copies of a uniform mixture is not the same as a uniform mixture of parallel copies, we require

the “in-place” error reduction technique reviewed above.

Lemma 3.1. YQP∗ ⊆ APP.

Proof. Consider any language ! ∈ YQP∗. Let {.= , �= , �=}=∈ℕ be the associated family of circuits

and subcircuits, in which .= takes string G and a supposed proof or advice state as input, in

which subcircuit �= validates the proof and produces output bit 1adv, and in which, given �=
accepted, �= uses the proof to verify whether the particular input G is in !, producing the output

bit 1out. Note that because we consider YQP∗, the circuit �= only takes the proof state, not G, as

input. Let < be a polynomial in = denoting the size of the proof register.

Apply the in-place error reduction of [18] stated in Theorem 2.5 on the circuits �= with a

polynomial @ in = of our choosing to produce a new circuit family {�′=}=∈ℕ such that for any

proof �,

• Pr [�=(�)] ≥ 9

10
⇒ Pr [�′=(�)] ≥ 1 − 2

−@
;

• Pr [�=(�)] ≤ 1

10
⇒ Pr [�′=(�)] ≤ 2

−@
.

For later use, we choose @ ≥ max{2<, 10}. Note that �′= also produces the two variables H and

I described by Lemma 2.6.

We define {�′′=}=∈ℕ to be the amplified circuits {�′=}=∈ℕ with the additional rule that the

circuit accepts iff both 1adv = 1 and the two recorded bits H = I = 1. Further, define {�′′′= }=∈ℕ
so that �′′′= = �′′=( I

2
< ), with the maximally mixed state hard-wired into the proof register.

Similarly, we define {.′=}=∈ℕ to apply the amplified subcircuit �′= and �= , we define {.′′= }=∈ℕ to

apply �′′= and �= and thus accept iff 1adv , 1out , H, I all equal 1, and we define {.′′′= }=∈ℕ so that

.′′′= (G) = .′′= (G, I
2
< ) with the maximally mixed state hard-wired into the proof register, meaning

that it uses �′′′= as a subcircuit.

Analysis Applying Lemma 2.4, there exist GapP functions 5 , , and polynomials A, C such that

for all =-bit G,

Pr

[
�′′′= accepts

]
=
5 (1=)
5
A(=) and Pr

[
.′′′= (G) accepts

]
=
,(G)
5
C(=) .
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The function 5 depends only on the input length =, not G, because the circuit�′′′= is independent of

G. Next, we define �(1=) = 5 (1=)5C(=)−A(=), which is a GapP function since 5
C(=)−A(=) ∈ FP ⊆ GapP

and GapP is closed under multiplication. Given the definition of YQP∗ guarantees there exists a
“good” proof for circuit �= , we have 5 (1=), �(1=) > 0. Combining these definitions,

,(G)
�(1=) =

Pr

[
.′′′= (G) accepts

]
Pr

[
�′′′= accepts

] .

We will show bounds on the ratio ,(G)/�(1=) based on whether G is in ! or not in ! in order

to prove ! is in APP. First, note that the ratio is at most 1 since .′′′= only accepts if the subcircuit

�′′′= accepts, and it is at least 0 since probabilities are non-negative. Next, let {|�8〉}8∈[2<] be the
set of eigenvectors of the circuit �= . By writing the maximally mixed state, which is hard-wired

into the proof register of .′′′= , in terms of this eigenbasis, we find

Pr

[
.′′′= (G) accepts

]
Pr

[
�′′′= accepts

] =
Pr

[
.′′= (G, I

2
< ) accepts

]
Pr

[
�′′=( I

2
< ) accepts

] =

∑
2
<

8=1
Pr

[
.′′= (G, |�8〉) accepts

]∑
2
<

8=1
Pr

[
�′′=(|�8〉) accepts

] .

Next, use the fact that .′′= accepting requires that �′′= accepts to find the above equals∑
2
<

8=1
Pr

[
.′′= (G, |�8〉) accepts | �′′=(|�8〉) accepts

]
Pr

[
�′′=(|�8〉) accepts

]∑
2
<

8=1
Pr

[
�′′=(|�8〉) accepts

] .

The observation from Lemma 2.6 implies that if the amplified circuit �′′= accepts, then the state

sent on to the subcircuit �= within .′′= is the initial eigenstate |�8〉. Then, the above equals∑
2
<

8=1
Pr

[
�=(G, |�8〉) accepts

]
· Pr

[
�′′=(|�8〉) accepts

]∑
2
<

8=1
Pr

[
�′′=(|�8〉) accepts

] .

Define

ℬ = {8 ∈ [2<] | Pr [�=(|�8〉)] ≤ 0.1} ,
which are intuitively the “bad” proofs, such that states in ℬ will be rejected by �′= with high

probability while the “not bad” states in ℬ cause �= to output the correct answer with high

probability. We can now rewrite the numerator in the above ratio as∑
8∈ℬ

Pr

[
�=(G, |�8〉) accepts

]
· Pr

[
�′′=(|�8〉) accepts

]
+

∑
8∈ℬ

Pr

[
�=(G, |�8〉) accepts

]
· Pr

[
�′′=(|�8〉) accepts

]
and rewrite the denominator as∑

8∈ℬ
Pr

[
�′′=(|�8〉) accepts

]
+

∑
8∈ℬ

Pr

[
�′′=(|�8〉) accepts

]
.
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We will use this expression for ,(G)/�(1=) as the starting point in our analysis of the YES and

NO cases. Additionally, let |�∗〉 denote a proof in ℬ, which is guaranteed to be nonempty

by the definition of YQP∗. By the observation from Lemma 2.6, Pr

[
�′′=(|�∗〉) accepts

]
≥

(1 − 2
−@) (0.9)(0.5).

Suppose we have a YES instance with G ∈ !. Then, we may calculate that ,(G)/�(1=) is at
least ∑

8∈ℬ 0 +∑
8∈ℬ

9

10
Pr

[
�′′=(|�8〉) accepts

]∑
8∈ℬ 2

−@ +∑
8∈ℬ Pr

[
�′′=(|�8〉) accepts

] = ∑
8∈ℬ

9

10
Pr

[
�′′=(|�8〉) accepts

]
|ℬ| 2−@ +∑

8∈ℬ Pr

[
�′′=(|�8〉) accepts

]
≥

9

10
Pr

[
�′′=(|�∗〉) accepts

]
|ℬ| 2−@ + Pr

[
�′′=(|�∗〉) accepts

] ,
where the second line follows by the fact that G/(2 + G) decreases as G decreases. Applying this

fact again along with our choice @ ≥ max{2<, 10}, we find the above is at least

9

10
(1 − 2

−@)(0.9)(0.5)
|ℬ| 2−@ + (1 − 2

−@)(0.9)(0.5) ≥
0.405(1 − 2

−@)
2
<−@ + 0.45(1 − 2

−@)

≥ 0.405(1 − 2
−@)

2
@/2−@ + 0.45(1 − 2

−@)
> 0.84 .

On the other hand, consider a NO-instance. By similar steps as in the YES-case, we have that

,(G)/�(1=) is at most

|ℬ| 2−@ +∑
8∈ℬ

1

10
Pr

[
�′′=(|�8〉) accepts

]∑
8∈ℬ 0 +∑

8∈ℬ Pr

[
�′′=(|�8〉) accepts

] ≤ 2
<−@∑

8∈ℬ Pr

[
�′′=(|�8〉) accepts

] + 1

10

≤ 2
−@/2

Pr

[
�′′=(|�∗〉) accepts

] + 1

10

≤ 2
−@/2

(1 − 2
−@) (0.9)(0.5) +

1

10

< 0.2 .

We have shown a constant separation of ,(G)/�(1=) in YES- and NO-instances. This satisfies

the criteria of APP in Definition 2.3, so we conclude YQP∗ ⊆ APP. �

Next, the fact APP is known to be PP-low [16, Theorem 6.4.14] gives us the following

corollary.

Corollary 3.2. YQP∗ is PP-low, i. e., PPYQP∗ = PP.

For intuition, an alternative proof of Corollary 3.2 without Lemma 3.1 might have relied on

the equality PP = postBQP [1], where postBQP has the ability to post-select, i. e., it is guaranteed

to output the correct answer with high probability conditioned on some other event which

may occur with very small probability. So, instead of PPYQP∗
, we might have considered

THEORY OF COMPUTING, Volume 21 (7), 2025, pp. 1–13 9

http://dx.doi.org/10.4086/toc


JUSTIN YIRKA

postBQPYQP∗
. Whenever the postBQP machine would make a query, it instead could run the

YQP∗ proof-validation circuit on the maximally mixed state, post-select on it accepting, then

simulate the rest of the YQP∗ computation.

We are now able to give a corrected proof of the result originally claimed for BQP/qpoly but

only proved for BQP/poly by Aaronson [2]. We mostly repeat Aaronson’s proof, but substitute

YQP∗ where he relied on QMA.

Theorem 3.3. If PP ⊆ BQP/qpoly, then the Counting Hierarchy collapses to CH = QMA = YQP∗.

Proof. Suppose PP ⊆ BQP/qpoly. Clearly then PPP
is also contained in BQP/qpoly. So, the

#P-complete problem Permanent is contained in BQP/qpoly, since #P ⊆ P#P = PPP
. From [5],

we know that BQP/qpoly = YQP∗/poly. A YQP∗/poly protocol involves a circuit, a trusted advice

string, and an untrusted quantum proof. Let � and 0 be the circuit and advice string for solving

Permanent in YQP∗/poly.
Next in YQP∗, without trusted advice, Arthur can request that an untrusted Merlin send

many copies of the resources from the above YQP∗/poly protocol, including the quantum proof

and a supposed copy of the circuit � and advice 0. To check these untrusted copies of the

proof, circuit, and advice, Arthur generates a random set of inputs and simulates the interactive

protocol for Permanent due to [17] using the copies in place of the prover. If the protocol accepts

(meaning the “prover” worked), then with high probability, Merlin must have sent resources

that work on a large fraction of inputs. This ends the proof-verification phase of YQP∗.
Given a circuit and advice that work on most inputs, Arthur can use the random self-

reducibility of Permanent to generate a circuit �′ that is correct on all inputs with high

probability (see e. g., [7, Sec. 8.6.2]). Thus, after the verification phase, the YQP∗ protocol can
simulate #P. By the same argument as above, this also means it can simulate P#P ⊇ PP, and we

have PP = YQP∗.
In this way, any level of the Counting Hierarchy CiP = (Ci−1P)PP

with 8 > 1 is reducible to

(Ci−1P)YQP∗
which by Corollary 3.2 equals Ci−1P. This works recursively for all levels, collapsing

CiP to C1P = PP, so that all of CH = PP = YQP∗. �

An alert reader may notice the proof never directly asks the base PP machine to guess advice

and hard-code it into a query, as referenced in the introduction. That step was explicit in the

original proof in [2], to reduce PPBQP/poly
to PPBQP = PP. Here, unlike BQP, the class YQP∗ is

itself able to guess a proof, so we reduce PPYQP∗/poly
to PPYQP∗

without “asking” anything of the

base computation until collapsing PPYQP∗
to PP.

Given the above result, we can also fully recover the following result originally claimed

by Aaronson [2], giving an improved unconditional upper bound on fixed-polynomial-size

quantum circuits with quantum advice. For completeness, we repeat the proof.

Theorem 3.4. PP does not have quantum circuits of size =: for any fixed :. Furthermore, this holds
even if the circuits can use quantum advice.

Proof. Suppose PP does have circuits of size =: . This implies PP ⊆ BQP/qpoly, which by

Theorem 3.3 implies CH = YQP∗, which includes PPP = PP = YQP∗. Together, there are circuits

THEORY OF COMPUTING, Volume 21 (7), 2025, pp. 1–13 10

http://dx.doi.org/10.4086/toc


EVEN QUANTUM ADVICE IS UNLIKELY TO SOLVE PP

of size =: for PPP
, which contradicts the result [2, Theorem 4] (unaffected by the bug) that PPP

does not have such circuits even with quantum advice. �

In fact, [2] noted that the proof showing PPP
does not have circuits of size =: for fixed

: even with quantum advice can be strengthened. Substituting this stronger result into the

above proof, we have that Theorem 3.4 can be strengthened to show for all functions 5 (=) ≤ 2
=
,

the class PTIME(f(f(n))), which is like PP but for machines of running time 5 ( 5 (=)), requires
quantum circuits using quantum advice of size at least 5 (=)/=2

. In particular, this implies

PEXP, the exponential-time version of PP, requires quantum circuits with quantum advice of

“half-exponential” size (meaning a function that becomes exponential when composed with

itself [19]).
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